

(p, q)-Convexity in quasi-Banach lattices and applications

by

BIENVENIDO CUARTERO and MIGUEL A. TRIANA (Zaragoza)

Dedicated to Prof. Luis Vigil

Abstract. We define (p, q)-convexity in quasi-Banach lattices for p, q > 0 and study the values r, s > 0 for which (p, q)-convexity implies (r, s)-convexity, showing the difference between this situation and the Banach case.

Finally, we apply our results to a problem of Turpin on the existence of tensor p-norms.

0. Introduction. In the recent development of the theory of Banach lattices the concepts of *p-convexity* and *p-concavity* play a very important role (see Lindenstrauss-Tzafriri [9]). They were first defined by Krivine [8] as "type $\geq p$ " and "type $\leq p$ ". Maurey [11] introduced the more general notions of "type $\geq (p, q)$ " and "type $\leq (p, q)$ " as follows: given a Banach lattice X, we say that X is of "type $\geq (p, q)$ " or (p, q)-convex, $1 \leq q \leq p < \infty$, if there is some constant C such that for all finite sequences x_1, \ldots, x_n of elements of X we have

$$\left\| \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \right\| \leqslant C \left(\sum_{i=1}^{n} ||x_i||^q \right)^{1/q}.$$

((p, q)-concavity is dually defined.) Maurey himself showed ([11], especially pp. 11, 12 and 17) that for Banach lattices (p, q)-convexity (resp. (p, q)-concavity) adds nothing to p-convexity (resp. p-concavity), a (p, q)-convex Banach lattice also being r-convex for every r < q.

We shall show that the situation is entirely different when one considers quasi-Banach lattices (for the definition, see Kalton [6]). In this case (p, q)-convexity, now defined for $p \ge q > 0$, cannot be reduced in general to r-convexity for any r > 0.

Observe that on the left side of the inequality (*) the expression $\binom{n}{l+1}|x_l|^p)^{1/p}$ is used. This element in X is defined by means of a "homogeneous functional calculus", i.e., by proving that for every positive

AMS 1980 subject classification: 46A10, 46A40, 46B20, 46B30. Key words: convexity, quasi-Banach lattices, tensor p-norms.

integer n and x_1,\ldots,x_n in X there is a unique continuous lattice homomorphism from \mathscr{H}_n into X, where \mathscr{H}_n is the Banach lattice of 1-homogeneous continuous functions $h\colon R^n\to R$ normed by

$$||h||_{\mathscr{H}_n} = \sup \{|h(t_1,\ldots,t_n)|; \max(|t_1|,\ldots,|t_n|) = 1\}$$

(Krivine [8], Lindenstrauss-Tzafriri [9]), such that it maps the coordinate projections $(t_1, \ldots, t_n) \in \mathbb{R}^n \to t_i \in \mathbb{R}$ into x_i $(1 \le i \le n)$. We denote this nonmomorphism by $T_{(x_1, \ldots, x_n)}$ and the image of a function h in it by $h(x_1, \ldots, x_n)$.

This construction also works for p-Banach lattices, 0 (see Popa [12]) and can be extended even to certain classes of vector lattices without any topology, for example to uniformly complete vector lattices (see Cuartero-Triana [2] for details).

Note. The uniqueness of each $T_{(x_1,...,x_n)}$ avoids possible ambiguities and allows in many cases to manage the expressions $h(x_1,...,x_n)$ like the functions $h(t_1,...,t_n)$. For example, if f and g are homogeneous continuous functions on \mathbb{R}^n and \mathbb{R}^{n+1} respectively, satisfying

$$f(t_1, t_2, ..., t_n) = g(t_1, t_1, t_2, ..., t_n)$$
 for all $(t_1, t_2, ..., t_n)$ in \mathbb{R}^n ,

then $f(x_1, x_2, ..., x_n) = g(x_1, x_1, x_2, ..., x_n)$ for all $x_1, x_2, ..., x_n$ in X. (In fact, if $S: \mathscr{H}_{n+1} \to \mathscr{H}_n$ is defined by

$$(Sh)(t_1,\ldots,t_n)=h(t_1,t_1,t_2,\ldots,t_n),$$

then $T=T_{(x_1,x_2,...,x_n)}\circ S$ is a lattice homomorphism which maps the coordinate projections into $x_1,\,x_1,\,x_2,...,\,x_n$ and so $T=T_{(x_1,x_1,x_2,...,x_n)}$. In a similar way, if for each permutation σ of the indices 1,...,n we take $S_\sigma\colon \mathscr{H}_n\to \mathscr{H}_n$ such that

$$(S_{\sigma}h)(t_1,\ldots,t_n)=h(t_{\sigma_1},\ldots,t_{\sigma_n})$$

we see that $(S_{\sigma}h)(x_1,\ldots,x_n)=h(x_{\sigma_1},\ldots,x_{\sigma_n})$, and so on. This result will be used later in § 2.

This paper is an improved version of the first chapter in Triana [13]. Not too surprisingly for us, Kalton [6] has been independently working on p-convexity in quasi-Banach lattices but his results, though interacting with ours, go in a different direction.

In § 1 we define (p, q)-convexity in quasi-Banach lattices L and by means of the s-convexification of L we give several answers to the question: For what values r, s > 0 the (p, q)-convexity of L implies its (r, s)-convexity? Taking account of an example of Kalton [6], the more general result (Proposition 1.3) cannot be improved. With supplementary conditions of q-concavity, we can obtain better results (Proposition 1.6).

What about the s-convexifications of Banach lattices? As such s-convexifications are s-convex quasi-Banach lattices, in order to be sure that we have something essentially distinct from Banach lattices we must find quasi-Banach lattices not s-convex for any s>0. We describe here an example; some others of a different kind can be seen in Kalton [6]. Thus we have an important classification of quasi-Banach lattices into two nonvoid groups:

- (1) the s-convexifications of Banach lattices, i.e., the s-convex quasi-Banach lattices for some s > 0, for which Kalton has given a nice intrinsic characterization, the L-convexity (see [6]);
- (2) the non-L-convex quasi-Banach lattices, those for which there is no s > 0 such that their (1/s)-convexification is Banach (equivalently, which are not s-convex for any s > 0).

In § 2 we apply our results on (p,q)-convexity to tensor products of p-Banach spaces. Turpin [14], solving a problem which goes back to Waelbroeck, proved that if E is a p-normed space and F is a q-normed space, then a tensor r-norm may be given in $E \otimes F$ with r = pq/(p+q-pq) (recall that a tensor r-norm is an r-norm in $E \otimes F$ such that the canonical bilinear map $E \times F \to E \otimes F$ is continuous). We obtain in the general case the same value for r as Turpin does and we can improve it under additional conditions on one of the spaces E, F. Moreover, the examples of non-L-convex quasi-Banach lattices suggest that the value r = pq/(p+q-pq) is best possible. After the elaboration of this paper and using very different ideas, Kalton [7] has been able to prove this.

§ 1. (p, q)-convexity in quasi-Banach lattices. Let L be a quasi-Banach lattice, i.e. a complete quasi-normed space $(L, \|\cdot\|)$ where L is a vector lattice and $\|\cdot\|$ is a lattice quasi-norm, i.e., a map $\|\cdot\|$: $L \to R$ such that

$$||x|| > 0 \qquad \text{if } x \in L \setminus \{0\},$$

$$||tx|| = |t| ||x|| \qquad \text{if } t \in \mathbf{R}, x \in L,$$

$$||x + v|| \le M(||x|| + ||v||) \qquad \text{if } x, y \in L.$$

for some constant M independent of x and y (the best constant M is called the *multiplier* of the quasi-norm) and

$$||x|| \le ||y||$$
 whenever $|x| \le |y|$ in L.

L is said to be (p, q)-convex where $0 < q \le p \le \infty$ and $q < \infty$ if there exists a constant $K < \infty$ so that

$$\left\| \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \right\| \le K \left(\sum_{i=1}^{n} \|x_i\|^q \right)^{1/q}$$

for every choice of vectors $\{x_i\}_{i=1}^n$ in L. The smallest possible value of K is called the (p,q)-convexity constant. As usual, for $p=\infty$ we suppose

$$\left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} = \bigvee_{i=1}^{n} |x_i|.$$

When p=q with $1 \le p < \infty$ we find the concept of p-convex Banach lattice (cf. Lindenstrauss-Tzafriri [9]), and if $p=\infty$ the concept of upper q-estimate (cf. Lindenstrauss-Tzafriri [8] and Kalton [6]). Observe that for p=1 we can define (1,q)-convexity in each quasi-normed space $(X,\|\cdot\|)$ replacing $\sum_{i=1}^{n}|x_i|$ by $\sum_{i=1}^{n}x_i$. In this case we say that the space X is q-convex, and it is clear that q-convexity is equivalent to q-normability.

Now, we define the s-convexification of a quasi-Banach lattice L as in Lindenstrauss-Tzafriri [9], but for all s>0.

We denote, as usual, by +, and $\|\cdot\|$ the algebraic operations and the quasi-norm of L. Let $s \in (0, +\infty)$; for x and y in L and for any scalar α , we define

$$x(+)_{s} y = (x^{1/s} + y^{1/s})^{s}, \quad \alpha(\cdot)_{s} x = \alpha^{s} \cdot x$$

where $(x^{1/s} + y^{1/s})^s$ is the element in L corresponding to the function

$$f(t_1, t_2) = ||t_1|^{1/s} \operatorname{sign} t_1 + |t_2|^{1/s} \operatorname{sign} t_2|^s$$
$$\cdot \operatorname{sign} (|t_1|^{1/s} \operatorname{sign} t_1 + |t_2|^{1/s} \operatorname{sign} t_2)$$

and α^s is $|\alpha|^s \operatorname{sign} \alpha$ (cf. Popa [12] and Cuartero-Triana [2]).

 $(L, (+)_s, (\cdot)_s, \leq)$ is a vector lattice denoted by L_s , in which we can define a lattice quasi-norm $||x||_s = ||x||^{1/s}$ (by Hölder's inequality we obtain

$$||x(+)_s y||_s \le 2^{|1-1/s|} M^{1/s} \cdot (||x||_s + ||y||_s),$$

where M is the multiplier of the quasi-norm $\|\cdot\|$). $(L_s, \|\cdot\|_s)$ is called the s-convexification of L.

1.1. Lemma. Let (L, $||\cdot||$) be a quasi-Banach lattice. Then for every 0 < 0 < 1 and $x, y \in L$

$$|||x|^{\theta}||y|^{1-\theta}|| \leq M||x||^{\theta}||y||^{1-\theta}$$

where M is the multiplier of $\|\cdot\|$.

The proof is similar to that of Proposition 1.d.2 (i) of Lindenstrauss-Tzafriri [9].

1.2. PROPOSITION. Let $(L, ||\cdot||)$ be a quasi-Banach lattice. Then $(L_s, ||\cdot||_s)$ is also quasi-Banach for every $0 < s < \infty$.

Proof. Let $\{x_n\}$ be a Cauchy sequence in the positive cone L_s^+ . We now distinguish two cases:

(a) 0 < s < 1. Since $||x_n - x_m|| \le |||x_n^{1/s} - x_m^{1/s}|^s||$ $(m, n \in N)$ there is $x \in L^+$ such that the sequence $\{x_n\}$ converges to x in L. We shall prove that $\{x_n\}$ converges to x in L_s ; indeed, let M be the multiplier of the quasi-norm $||\cdot||$; for every $n \in N$

$$\begin{aligned} |||x^{1/s} - x_n^{1/s}|^s|| &\leq |||x|^s|x^{(1-s)/s} - x_n^{(1-s)/s}|^s + |x_n|^{1-s}|x - x_n|^s|| \\ &\leq M^2 \left[||x||^s|||x^{(1-s)/s} - x_n^{(1-s)/s}|^{s/(1-s)}||^{1-s} \right. \\ &+ ||x_n||^{1-s}||x - x_n||^s \right]. \end{aligned}$$

When $s \ge 1/2$, $|x^{(1-s)/s} - x_n^{(1-s)/s}|^{s/(1-s)} \le |x-x_n|$, consequently $\lim_n x_n = x$ in L_s . If $s \ge 1/2^{k+1}$ we repeat the procedure k times.

(b)
$$1 < s < \infty$$
. Now

$$\begin{aligned} ||x_n - x_m|| &\leqslant M^2 \left[||x_n||^{1/s} || |x_n^{(s-1)/s} - x_m^{(s-1)/s}|^{s/(s-1)} ||^{(s-1)/s} \right. \\ &+ ||x_m||^{(s-1)/s} || |x_n^{1/s} - x_m^{1/s}|^{s} ||^{1/s} \right]. \end{aligned}$$

When $s \le 2$ then $|x_n^{(s-1)/s} - x_m^{(s-1)/s}|^{s/(s-1)} \le |x_n^{1/s} - x_m^{1/s}|^s$ and so $\{x_n\}$ is a Cauchy sequence in L^+ . If $s \le 2^{k+1}$ we shall repeat the procedure k times. Hence, there is $x \in L^+$ so that $\lim_n x_n = x$ in L, and also in L_s . In order to complete the proof, we can use Theorem 16.1 of Aliprantis-Burkinshaw [1].

It is easily verified that if L is (p, q)-convex for $0 < q \le p < \infty$ then L_s is (sp, sq)-convex for every $0 < s < \infty$. In particular, L is (p, p)-convex if and only if $L_{1/p}$ is normable.

The property of being (p, p)-convex for some p > 0 or, equivalently, of having a Banach s-convexification for some s > 0, has been characterized by Kalton [6] by means of L-convexity: a quasi-Banach lattice has this property if and only if there exists $0 < \varepsilon < 1$ so that if $u \in L^+$ with ||u|| = 1 and $0 \le x_i \le u$ $(1 \le i \le n)$ satisfy

$$\frac{1}{n}(x_1 + \ldots + x_n) \geqslant (1 - \varepsilon)u$$

then

$$\max_{1 \le i \le n} ||x_i|| \ge \varepsilon.$$

In contrast with the Banach case, there are (q, p)-convex quasi-Banach lattices for some $q \geqslant p > 0$ which are not (r, r)-convex for any r > 0, i.e., which are not L-convex. An example of this with $q = \infty$ are the spaces $L^p(\varphi)$ where φ is a suitable pathological submeasure (Kalton [6]). A different example has been supplied to us by G. Pisier (1):

 $^{(^{\}rm i})$ During a collaboration supported by the "Programa general de relaciones científicas hispano-francesas".

Let $(E, \|\cdot\|)$ be a Banach space of Rademacher type ≥ 1 and consider it canonically imbedded in the Banach lattice $\mathscr{C}(K)$ of continuous functions over the unit ball K of the dual E^* with its w^* -topology. Consider the ideal L generated by E in $\mathscr{C}(K)$ endowed with the quasi-norm $\|\cdot\|$ defined by

$$|\varphi| = \inf \{ (\sum_{i=1}^{n} ||x_i||^p)^{1/p}; (x_i)_{i=1}^n \subset E \text{ and }$$

$$|\varphi| \leq \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2}$$
.

It is easily verified that $(\mathbf{E}, |\cdot|)$ is a (2, p)-convex quasi-normed lattice. With a suitable choice of E, (the completion of) L cannot be (r, r)-convex for any r > 0. Suppose, to the contrary, that it is (r, r)-convex for some r > 0. Consequently there exists a constant K such that

$$\left| \left(\sum_{j=1}^{n} |y_j|^r \right)^{1/r} \right| \le K \left(\sum_{j=1}^{n} ||y_j||^r \right)^{1/r}$$

for every $(y_j)_{j=1}^n \subset E$.

Let $(g_{jk})_{\substack{1 \le j \le m \\ 1 \le k \le n}}$ be Gaussian random variables with zero mean and variance 1. Then there is a constant C such that

$$\left\| \sum_{j,k} g_{jk} y_{jk} \right\|_{L^{2}(E)} = C \left| \left(\sum_{j,k} (y_{jk})^{2} \right)^{1/2} \right|$$

(cf. Krivine [8], Lemme 2).

Moreover, by Khintchine's inequality, there are constants \mathcal{C}_1 and \mathcal{C}_2 such that

$$\begin{split} \left| \left(\sum_{j,k} |y_{jk}|^2 \right)^{1/2} \right| &\leq C_1 \left| \left(\mathbb{E} \left| \sum_{j,k} y_{j,k} \, \varepsilon_j' \, \varepsilon_k'' \right|^r \right)^{1/r} \right| \\ &\leq C_2 \left(\mathbb{E} \left| \sum_{i,k} y_{jk} \, \varepsilon_j' \, \varepsilon_k'' \right|^r \right)^{1/r} \end{split}$$

where $\{\varepsilon_j'\}_{j=1}^m$, $\{\varepsilon_k''\}_{k=1}^n$ denote the Rademacher functions. Hence,

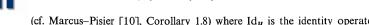
$$\|\sum_{j,k} g_{jk} y_{jk}\|_{L^{2}(E)} \leqslant C \cdot C_{2} \|\sum_{j,k} y_{jk} \varepsilon'_{j} \varepsilon''_{k}\|_{L^{p}(E)}$$

and this is false, for example, when $E=C_p$ with $p\neq 2$, where C_p are the Schatten classes of operators. Indeed, if

$$G_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \sum_{j=1}^n g_{ij} e_i \otimes e_j,$$

we know that there exists a constant $\delta > 0$ such that

$$\left\| \sum_{i,j} g_{ij} e_i \otimes e_j \right\|_{L^2(E)} \geqslant n^{1/2} \int \|G_n\|_{C_p} \geqslant \delta n^{1/2} \| \mathrm{Id}_H \|_{C_p} = \delta n^{1/2} n^{1/p}$$



(cf. Marcus-Pisier [10], Corollary 1.8) where Id_H is the identity operator on H. On the other hand

$$\left\|\sum_{i,j}\varepsilon_i'\varepsilon_j''e_i\otimes e_j\right\|_{L^{\mathbf{r}}(E)}=n,$$

which is impossible by (*).

Then it is natural to ask for what values of r, s, (p, q)-convexity implies (r, s)-convexity.

1.3. Proposition. If a quasi-Banach lattice L is (p, q)-convex, then for every $r \leq p$, L is also (r, s)-convex, where

$$\frac{1}{s} - \frac{1}{r} = \frac{1}{q} - \frac{1}{p} \quad \left(\frac{1}{s} - \frac{1}{r} = \frac{1}{q} \quad \text{if } p = \infty\right).$$

In particular,

- (a) L is (r, r)-convex for every $r \leq p$ if it is (p, p)-convex.
- (b) If L is q-normable, $0 < q \le 1$, then it is (p, pq/(p+q-pq))-convex for every $p \in (0, 1]$.

Proof. Let r < p, $\{x_i\}_{i=1}^n \subset L \setminus \{0\}$. By Hölder's inequality, we have for every $\alpha \in (0, 1)$ if $p < \infty$

$$\begin{split} \left\| \left(\sum_{i=1}^{n} |x_{i}|^{r} \right)^{1/r} \right\| &\leq \left(\sum_{i=1}^{n} ||x_{i}||^{(r-\alpha)p/(p-r)} \right)^{(p-r)/(pr)} \left\| \left(\sum_{i=1}^{n} ||x_{i}||^{(\alpha-r)p/r} |x_{i}|^{p} \right)^{1/p} \right\| \\ &\leq K \left(\sum_{i=1}^{n} ||x_{i}||^{(r-\alpha)p/(p-r)} \right)^{(p-r)/(pr)} \left(\sum_{i=1}^{n} ||x_{i}||^{\alpha q/r} \right)^{1/q} \end{split}$$

and if $p = \infty$

$$\left\| \left(\sum_{i=1}^{n} |x_{i}|^{r} \right)^{1/r} \right\| \leq \left(\sum_{i=1}^{n} ||x_{i}||^{\alpha} \right)^{1/r} \left\| \bigvee_{i=1}^{n} ||x_{i}||^{-\alpha/r} |x_{i}| \right\|$$

$$\leq K \left(\sum_{i=1}^{n} ||x_{i}||^{\alpha} \right)^{1/r} \left(\sum_{i=1}^{n} ||x_{i}||^{q(r-\alpha)/r} \right)^{1/q}$$

where K is the (p, q)-convexity constant.

Taking
$$\alpha = \frac{r^2 p}{q(p-r) + pr}$$
 ($\alpha = \frac{rq}{q+r}$ if $p = \infty$), we are done.

This proposition gives the best possible result, as Example 2.4 of Kalton [6] shows (this follows from the fact that we can identify the s-convexification of $L_p(\varphi)$ with $L_{ps}(\varphi)$ in the obvious manner).

We have also

1.4. Proposition. Let a quasi-Banach lattice L be (p_0, q_0) -convex and (p_1, q_1) -convex $(p_0 < p_1)$. If

$$\frac{1}{r} = \frac{\theta}{p_0} + \frac{1 - \theta}{p_1} \quad (\theta \in (0, 1))$$

then L is (r, s)-convex for every s with

$$\frac{1}{s} > \frac{\theta}{q_0} + \frac{1-\theta}{q_1}.$$

In particular, if L is L-convex and q-normable $(0 < q \le 1)$, then L is (s, s)-convex for every s in (0, q).

Proof. Let $\{x_i\}_{i=1}^n \subset L$ be such that $||x_i|| \leq 1$. By Hölder's inequality

$$\begin{split} \left\| \left(\sum_{i=1}^{n} |x_{i}|^{p} \right)^{1/p} \right\| & \leq \left\| \left(\sum_{i=1}^{n} |x_{i}|^{p_{0}} \right)^{\theta/p_{0}} \left(\sum_{i=1}^{n} |x_{i}|^{p_{1}} \right)^{(1-\theta)/p_{1}} \right\| \\ & = M \left\| \left(\sum_{i=1}^{n} |x_{i}|^{p_{0}} \right)^{1/p_{0}} \right\|^{\theta} \left\| \left(\sum_{i=1}^{n} |x_{i}|^{p_{1}} \right)^{1/p_{1}} \right\|^{1-\theta} \\ & \leq C n^{\theta/q_{0} + (1-\theta)/q_{1}}. \end{split}$$

Then it follows from Proposition 2.2 of Kalton [3] that $L_{1/r}$ is (1, s/r)-convex whenever

$$\frac{1}{s} > \frac{\theta}{q_0} + \frac{1-\theta}{q_1}$$

and so L is (r, s)-convex.

We can obtain better values for s than those in Proposition 1.3 if we suppose that L is (q, q)-concave for some $q \in (0, +\infty)$.

1.5. DEFINITION. Let $p, q \in (0, +\infty)$. We say that L is (p, q)-concave if there is a constant K such that

$$\left(\sum_{i=1}^{n} \|x_i\|^p\right)^{1/p} \leqslant K \left\| \left(\sum_{i=1}^{n} |x_i|^q\right)^{1/q} \right\|$$

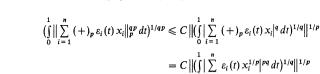
for every choice of vectors $\{x_i\}_{i=1}^n$ in L.

1.6. Proposition. If a quasi-Banach lattice L is (u, r)-convex $(u < \infty)$ and (q, q)-concave for some $q < \infty$, then for every s > r, L is (s, r)-convex.

In particular, if L is r-normable and (q, q)-concave for some $q < \infty$, then L is (s, r)-convex for every s > r.

Proof. We may assume that u=1 (otherwise we can use the fact that $L_{1/u}$ is (1, r/u)-convex). It is known that a quasi-Banach space E of Rademacher type p is p-convex (cf. Theorem 4.2 of Kalton [4]). Let $p < \min\{1/r, 2\}$; we shall prove that L_p is of Rademacher type p.

Since L is (q, q)-concave (we may assume without loss of generality that q > 1/p) there exists a constant C such that if $\{\varepsilon_i\}_{i=1}^{\infty}$ is the sequence of the Rademacher functions and $\{x_i\}_{i=1}^n \subset L$ then



by Khintchine's inequality and since L is (1, r)-convex, there exist two constants A, B so that this expression is upper bounded by

$$A \left\| \left(\sum_{i=1}^{n} |x_i|^{2/p} \right)^{p/2} \right\|^{1/p} \leqslant A \left\| \sum_{i=1}^{n} |x_i| \right\|^{1/p} \leqslant B \left(\sum_{i=1}^{n} ||x_i||^r \right)^{1/rp} = B \left(\sum_{i=1}^{n} ||x_i||^{rp} \right)^{1/rp}.$$

Hence L_p is of Rademacher type rp, and thus rp-convex. If $1/2^n \le r \le 1/2^{n-1}$ for some $n \in \mathbb{N}$, then $L_{2^{n-1}}$ is $2^{n-1}r$ -convex and then for every $p < 1/(2^{n-1}r)$ we conclude that $L_{2^{n-1}p}$ is $2^{n-1}pr$ -convex and so L is $(1/(2^{n-1}p), r)$ -convex.

§ 2. Applications to tensor products. It is known (Kalton [5]) that it is possible to find a p-Banach space E such that $E \otimes E$ admits no tensor p-norm. So, the question naturally arises:

Given a p-Banach space E and a q-Banach space F, for what values of r > 0 the tensor product $E \otimes F$ admits a tensor r-norm?

The complete answer to the question is still an open problem.

As we have said in the introduction, Turpin obtains the value r = pq/(p + q - pq). From our results on (p, q)-convexity, we can obtain in the general case the same value as Turpin and we are able to improve it under additional conditions on *one* of the spaces E, F.

To see this, let us consider a quasi-Banach space (E, ϱ) with ϱ a continuous quasi-norm and a quasi-Banach lattice L. Given $\{x_1, \ldots, x_n\} \subset E$, the mapping

$$h_{(x_1,\ldots,x_n)}: (t_1, t_2,\ldots, t_n) \in \mathbb{R}^n \to h_{(x_1,\ldots,x_n)}(t_1,\ldots, t_n) = \varrho(\sum_{k=1}^n t_k x_k) \in \mathbb{R}$$

is a continuous homogeneous function and so we can define (by means of the "homogeneous functional calculus") the corresponding mapping

$$h_{(x_1,...,x_n)}: (y_1,...,y_n) \in L \times ... \times L \to h_{(x_1,...,x_n)}(y_1,...,y_n) \in L.$$

The following properties are easily verified:

(1)
$$h_{(x+x',x_2,...,x_n)}(y_1, y_2,..., y_n) = h_{(x,x',x_2,...,x_n)}(y_1, y_1, y_2,..., y_n),$$

(2)
$$h_{(tx_1,x_2,...,x_n)}(y_1,y_2,...,y_n) = h_{(x_1,x_2,...,x_n)}(ty_1,y_2,...,y_n),$$

(3)
$$h_{(x_1,x_2,...,x_n)}(y+y',y_2,...,y_n) = h_{(x_1,x_1,x_2,...,x_n)}(y,y',y_2,...,y_n),$$

(4)
$$h_{(x_1,x_2,...,x_n)}(y_1, y_2,..., y_n) = h_{(x_{\sigma_1},x_{\sigma_2},...,x_{\sigma_n})}(y_{\sigma_1}, y_{\sigma_2},..., y_{\sigma_n})$$

(p, q)-Convexity in quasi-Banach lattices

for every permutation σ of the indices 1, 2,..., n (see Note in the introduction).

Thus, the mapping

h:
$$w = \sum_{i=1}^{n} x_i \otimes y_i \in E \otimes L \to h(w) = h_{(x_1,...,x_n)}(y_1,...,y_n) \in L$$

is well defined and satisfies for all $w, w' \in E \otimes L$ and $t \in R$

- (i) $h(w) \geqslant 0$.
- (ii) h(w) = 0 iff w = 0.
- (iii) $h(w+w') \le M[h(w)+h(w')]$ where M is the multiplier of ϱ .
- (iv) h(tw) = |t| h(w).

(To see that h is well defined, perhaps the simplest way is to consider a Hamel basis B of the space L and recall that every w in $E \otimes L$ can be uniquely written as $w = \sum_{b \in B} x_b \otimes b$ with $(x_b)_{b \in B} \in E^{(B)}$. Then if

$$w = \sum_{i=1}^{n} x_i \otimes y_i = \sum_{j=1}^{m} x_j' \otimes y_j',$$

$$y_i = \sum_{i=1}^{N} t_{ik} b_k \quad (1 \le i \le n), \quad y_j' = \sum_{i=1}^{N} s_{jk} b_k \quad (1 \le j \le m),$$

we have

$$h_{(x_{1},...,x_{n})}(y_{1},...,y_{n})$$

$$=h_{(x_{1},...,x_{1},...,x_{n},...,x_{n})}(t_{11}b_{1},...,t_{1N}b_{N},...,t_{n1}b_{1},...,t_{nN}b_{N})$$

$$=h_{(t_{11}x_{1},...,t_{1N}x_{1},...,t_{n1}x_{n},...,t_{nN}x_{n})}(b_{1},...,b_{N},...,b_{1},...,b_{N})$$

$$=h_{n} \sum_{\substack{i=1\\i=1}}^{n} t_{i1}x_{i},...,\substack{i=1\\i=1}} t_{iN}x_{i})$$

$$=h_{m} \sum_{\substack{j=1\\j=1}}^{m} s_{j1}x_{j},...,\substack{j=1\\j=1}} s_{jN}x_{j})}(b_{1},...,b_{N})$$

$$=h_{(x_{1},...,x_{m})}(y'_{1},...,y'_{m}).$$

To prove, for example, that h(w) = 0 implies w = 0, take $w = \sum_{i=1}^{n} x_i \otimes y_i$ with (x_i) linearly independent. Since

$$h_{(\mathbf{x}_1,...,\mathbf{x}_n)}(t_1,...,t_n) \neq 0$$
 if $(t_1,...,t_n) \neq (0,...,0)$

there exists a constant C > 0 such that

$$h_{(x_1,\ldots,x_n)}(t_1,\ldots,t_n)\geqslant C\max_{1\leqslant i\leqslant n}|t_i|\quad\text{ for all }(t_1,\ldots,t_n)\in I\!\!R^n$$

and so $0 = h(w) \ge C(|y_1| \lor ... \lor |y_n|) \ge 0$. Then $|y_i| = 0$ and $y_i = 0$ $(1 \le i \le n)$ so w = 0.

Moreover, if E is p-convex with constant of p-convexity C, for every finite collection $\{w_1,\ldots,w_n\}\subset E\otimes L$,

$$h\left(\sum_{i=1}^n w_i\right) \leqslant C\left(\sum_{i=1}^n h^p(w_i)\right)^{1/p}.$$

Of course, this construction also works when L is merely a Riesz space with a homogeneous functional calculus.

From (i) to (iv), we have (with the same notation):

2.1. Proposition. Let E be a quasi-Banach space for a continuous quasi-norm ϱ , and $(L, \|\cdot\|_L)$ a quasi-Banach lattice. The mapping

$$||\cdot||: w \in E \otimes L \rightarrow ||w|| = ||h(w)||_L \in \mathbf{R}$$

is a tensor quasi-norm.

Moreover, if E is p-normable and L is (p, q)-convex, then $(E \otimes L, ||\cdot||)$ is q-normable.

Consequently, using Proposition 1.3 together with Théorème 2.1 of Turpin [14] we can prove, by a different way, the following theorem of Turpin [14]:

2.2. COROLLARY. If E and F are p-normed and q-normed (respectively) real vector spaces, then there exists a tensor pq/(p+q-pq)-norm in $E \otimes F$.

Finally, we have

- 2.3. Proposition. Let E be a p-normed space continuously imbedded in a p-normable quasi-Banach lattice L and let F be a q-normed space.
 - (1) If L is (p, p)-convex, then $E \otimes F$ is r-normed with $r = \min\{p, q\}$.
 - (2) If L is L-convex, then $E \otimes F$ is r-normed for every $r < \min\{p, q\}$.
- (3) If L is (s, s)-concave for some $s \in (0, +\infty)$, then $E \otimes F$ is r-normed for every $r < \min\{p, q\}$.

References

- C. D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces, Academic Press, 1978.
- [2] B. Cuartero and M. A. Triana, Cálculo functional homogéneo en espacios de Riesz, in: Contribuciones Matemáticas en honor de Luis Vigil, Zaragoza 1984, 123-132.
- [3] N. J. Kalton, The three space problem for locally bounded F-spaces, Compositio Math. 37
 (3) (1978), 243-276.
- [4] -, Convexity, type and the three space problem, Studia Math. 69 (3) (1980/81), 247-287.
- [5] -. An example in the theory of bilinear maps, Canad. Math. Bull. 25 (3) (1982), 377-379.
- [6] -, Convexity conditions for non-locally convex lattices, Glasgow Math. J. 25 (1984), 141-152.

B. Cuartero and M. A. Triana

- [7] N. J. Kalton, Plurisubharmonic functions on quasi-Banach spaces, Studia Math. 84 (3) (1986), to appear.
- [8] J. L. Krivine, Théorèmes de factorisation dans les espaces réticulés, Sém. Maurey-Schwartz 1973-74, Exposés 22-23, École Polytechnique, Paris.
- [9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, 1979.
- [10] M. R. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Ann. of Math. Stud., Princeton University Press, 1981.
- [11] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L. Astérisque 11 (1974), Soc. Math. France.
- [12] N. Popa, Uniqueness of the symmetric structure in $L_p(\mu)$ for 0 , Rev. Roumaine Math. Pures Appl. 27 (10) (1982), 1061–1083.
- [13] M. A. Triana, Espacios F-normados de funciones y sucesiones vectoriales, Doctoral Thesis, Zaragoza 1984.
- [14] P. Turpin, Représentation fonctionnelle des espaces vectoriels topologiques, Studia Math. 73 (1982), 1-10.

DEPARTAMENTO TEORÍA DE FUNCIONES FACULLAD DE CIENCIAS (MATEMÁTICAS) 5000/ Zuragoza, Spain and DEPARTAMENTO MATEMÁTICAS I FTSII, UNIVERSIDAD DE ZARAGOZA

50009 Zaragoza, Spain

124

Received December 24, 1984 (2024) Revised version August 22, 1985 STUDIA MATHEM

STUDIA MATHEMATICA, T. LXXXIV. (1986)

A direct proof of van der Vaart's theorem

b

J. BOURGAIN (Brussels and Pasadena, Cal.) and H. SATO (Fukuoka)

Abstract. The aim of this paper is to give a direct and simple proof of van der Vaart's theorem [3] determining the absolutely continuous component of a signed measure on R^d from its characteristic functional.

1. Introduction and results. Let

$$d\lambda(t) = d\lambda(t_1, t_2, ..., t_d) = (2\pi)^{-d/2} dt_1 dt_2 ... dt_d$$

be the modified Lebesgue measure on \mathbf{R}^d , for a λ -integrable function f on \mathbf{R}^d define the Fourier transform by

$$\widetilde{f}(\alpha) = \int_{\mathbf{R}^d} e^{i(\alpha,t)} f(t) d\lambda(t), \quad \alpha \in \mathbf{R}^d,$$

where (α, t) is the inner product of \mathbb{R}^d , let \mathscr{K} be the collection of all λ -integrable functions \varkappa which satisfy the following conditions:

- (1) $\{ \varkappa(t) \, d\lambda(t) = 1.$
- (2) There exists a > 1 such that

$$Q(\varkappa) = \sup_{t \in \mathbf{R}^d} (1 + ||t||^{da}) |\varkappa(t)| < +\infty,$$

where ||t|| is the Euclidean norm on \mathbb{R}^d , and define

$$\widetilde{\mathscr{K}} = \{ \varkappa \in \mathscr{K}; \ \widetilde{\varkappa} \in L^1(\lambda) \}.$$

Furthermore, for every \varkappa in \mathscr{K} and T>0 define $\varkappa_T(t)=T^d\varkappa(Tt)$. Then evidently we have for every T>0,

$$\int \kappa_T(t) d\lambda(t) = 1$$
 and $\tilde{\kappa}_T(\alpha) = \tilde{\kappa}(\alpha/T)$.

Let μ be a signed measure on \mathbf{R}^d . Then we have the Lebesgue decomposition

$$d\mu(t) = \frac{d\mu}{d\lambda}(t) d\lambda(t) + d\mu_{s}(t),$$

where μ_s is the singular component of μ .

In this paper we shall prove the following theorems.