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{p, g)-Convexity in quasi-Banach lattices and applications
by
BIENVENIDO CUARTERO and MIGUEL A. TRIANA (Zaragoza)

Dedicated to Prof. Luis Vigil

Abstract, We define (p, g)-convexity in quasi-Banach lattices for p, ¢ > 0 and study the
values r, § > 0 for which (p, g)-convexity implies (r, v)-convcmy showing the difference between
this situation and the Banach case,

Finally, we apply our results to a problem of Turpin on the existence of tensor p-norms.

0. Introduction. In the recent development of the theory of Banach
lattices the concepts of p-convexity and p-concavity play a very important
role (see Lindenstrauss-Tzafriri {9]). They were first defined by Krivine [8]
s “type = p” and “type < p”. Maurey [11] introduced the more general
notions of “type = (p, q)” and “type <(p,q)" as follows: given a Banach
lattice X, we say that X is of “type > (p, q)” or {p, g)-convex, 1 < g < p < =,
if there is some constant C such that for all finite sequences x.,..., x, of
elements of X we have

“ IS, bl < (S, e

((p. g)-concaviry 15 dually defined.) Maurey himself showed ([11], especially
pp. 11, 12 and 17) that for Banach lattices (p, g)-convexity (resp. (p, g)-
concavity) adds nothing to p-convexity (resp. p-concavity), a (p, g)-convex
Banach lattice also being r-convex for every r < gq.

We shall show that the situation is entirely different when one considers
quasi-Banach lattices (for the definition, see Kalton [6]). In this case (p, g)-
convexity, now defined for p > g > 0, cannot be reduced in general to r-
convexity for any r > 0.

Observe that on the left side of the inequality (*) the expression

n
(Y |x|?)* is used. This element in X is defined by means of a
=1
“homogeneous functional calculus”, i.e, by proving that for every positive
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integer n and Xx;,...,x, in X there is a unique continuous lattice
homomorphism from #, into X, where .#, is the Banach lattice of 1-
homogeneous continuous functions s: R”— R normed by

“h”.ﬁi‘" =Sup ”h(llv"v tn)l; max(“l[a-“: !rnl) = 1}

(Krivine [8], Lindenstrauss-Tzafriri [9]), such that it maps the coordinate
projections (t;.,...,t,)eR"— ;e R into x; (1 <i<n). We denote this
homomorphism by T, .., and the image of a function h in it by
hi{xy, ..., ).

This construction also works for p-Banach lattices, 0 < p < 1 (see Popa
[12]) and can be extended even to certain classes of vector lattices without
any topology, for example to uniformly complete vector lattices (see
Cuartero-Triana [2] for details).

Note. The uniqueness of each Tix;,...x,y avoids possible ambiguities and

)

allows in many cases to manage the expressions h(x,,..., x,) like the
functions h(t,..., t,). For example, if f and ¢ are homogeneous continuous
functions on R" and R"*' respectively, satisfying

JU by ) =gty 1y, 15,0, 8)  for all (¢, t,,...,1,) in R,

then f(x;, X35,..., X,) =g (X[, X[, Xg,...
(In fact, if S: #,,, — #, is defined by

(Sh(ty,..., t) = h(ty, ty, 1y, ...

,x,) for all xy,x,,...,x, in X.

* rll) ’

then T = Ts) 290y ©S 15 a lattice homomorphism which maps the
coordinate projections into x, X, X,,..., X, and so T = Tixy,xqoxp0nsg) IN

a similar way, if for each permutation ¢ of the indices 1,..., n we take
8,0 Hy— #, such that

(Sah) (110 1) = Bty seees 1)

we see that (S, h)(xy,..., x,) = h(x,l,..., X,,), and so on. This result will be
used later in § 2.

This paper is an improved version of the first chapter in Triana [13].
Not too .surprisingly for us, Kalton [6] has been independently working on
p-convexity in quasi-Banach lattices but his results, though interacting with
ours, go in a different direction.

In §1 we define (p, g)-convexity in quasi-Banach lattices L and by
means of the s-convexification of L we give several answers to the question:
For what values r, s > 0 the (p, g)-convexity of L implies its (r, s)-convexity?
Taking account of an example of Kalton [6], the more general result
(Proposition 1.3) cannot be improved. With supplementary conditions of q-
concavity, we can obtain better results (Proposition 1.6).
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What about the s-convexifications of Banach lattices? As such s-
convexifications are s-convex quasi-Banach lattices, in order to be sure that
we have something essentially distinct from Banach lattices we must find
quasi-Banach lattices not s-convex for any s> 0. We describe here an
example; some others of a different kind can be seen in Kalton [6]. Thus we
have an important classification of quasi-Banach lattices into two nonvoid
groups:

(1) the s-convexifications of Banach lattices, i.e., the s-convex quasi-
Banach lattices for some s > 0, for which Kalton has given a nice intrinsic
characterization, the L-convexity (see [6]);

(2) the non-L-convex quasi-Banach lattices, those for which there is no
s> 0 such that their (1/s)-convexification is Banach (equivalently, which are
not s-convex for any s > 0).

In § 2 we apply our results on (p, g)-convexity to tensor products of p-
Banach spaces. Turpin [14], solving a problem which goes back to
Waelbroeck, proved that if E is a p-normed space and F is a g-normed
space, then a tensor r-norm may be given in EQF with r = pg/(p+q—pq)
(recall that a tensor r-norm is an r-norm in E®@F such that the canonical
bilinear map E x F — E®F is continuous). We obtain in the general case the
same value for r as Turpin does and we can improve it under additional
conditions on one of the spaces E, F. Moreover, the examples of non-L-
convex quasi-Banach lattices suggest that the value r = pg/(p+q—pg) is best
possible. After the elaboration of this paper and using very different ideas,
Kalton [7] has been able to prove this.

§ 1. (p, g)-convexity in quasi-Banach lattices. Let L be a quasi-Banach
lattice, i.e. a complete quasi-normed space (L, || -||) where L is a vector lattice

and ||-]] is a lattice quasi-norm, ie., a map [|-||: L— R such that
lIx|l >0 if xeI\{0},
el = 1l 1] if teR, xeL,

llx+yll < M=+ M) if x, yeL,
for some constant M independent of x and y (the best constant M is called
the multiplier of the quasi-norm) and

lIxlI < Iyl whenever

Ix <yl in L.
L is said to be (p, g)-convex where 0 < g < p <o and g < oc if there
exists a constant K < co so that

n

(03

i=1

)] < K (3 )
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for every choice of vectors {x;}/., in L. The smallest possible value of K is
called the (p, g)-convexity constant. As usual, for p = oc we suppose

(Z Ixilp)llp = &/1 Ix].

When p =g with 1 <p <oo we find the concept of p-convex Banach
lattice (cf. Lindenstrauss-Tzafriri [9]), and if p = co the concept of upper -
estimate (cf. Lindenstrauss-Tzafriri [8] and Kalton [6]). Observe that for p
=1 we can define (1, g)-convexity in each quasi-normed space (X, |||

replacing Y |x] by ), x;. In this case we say that the space X is g-convex,
i=1 i=1

and it is clear that g-convexity is equivalent to g-normability.

Now, we define the s-convexification of a quasi-Banach lattice L as in
Lindenstrauss-Tzafriri [9], but for all 5> 0.

We denote, as usual, by +, - and ||-|| the algebraic operations and the
quasi-norm of L. Let s€(0, 4+ ); for x and y in L and for any scalar o, we
define

X(4)sy = (x4 p1oy,

where (x'#+y') is the element in L corresponding to the function

o )gx=0a"x

Sty ta) = l[’l'llsSignfl +t5] " sign fzIS
“sign (|1,|' " sign, + [t sign 1,)
and o' is |«[*signa (cf. Popa [12] and Cuartero-Triana [2]).

(L (+)ss ()s» <) is a vector lattice denoted by L., in which we can
define a lattice quasi-norm ||x||, = ||x]|*/* (by Holder's inequality we obtain
lle () plly < 21 1L MY (11411 W11,
where M is the multiplier of the quasi-norm || |)). (L, ||-l,) is called the s-

convexification of L.
L1. Lemma. Let (L, ||*|l) be a quasi-Banach lattice. Then for every 0 <0
<1 and x, yeL .
N [ = < M I )0
where M is the multiplier. of ||-||.

The proof is similar to that of Proposition 1.d.2 (i) of Lindenstrauss-
Tzafriri [9].

1.2. PropositioN. Let (L, ||-||) be a quasi-Banach lattice. Then (L, )| -|ly) is
also quasi-Banach for every 0 < s < oo.

Proof. Let {x,} be 2 Cauchy sequence in the positive cone L. We now
distinguish two cases:
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(a) 0 <s < 1. Since |lx,—Xul| < |[|x5~xY%*|| (m, neN) there is xe L'
such that the sequence {x,} converges to x in L. We shall prove that {x,}
converges to x in L; indeed, let M be the multiplier of the quasi-norm || -||;
for every neN

e IS [ B e e A A e
< M2[||x|| |~ s — = Ssppltt =y =
+llallt 5 e = 1<
When s > 1/2, |~ — x{1=9ss/0=9)  |x — x|, consequently limx, = x
n

in L. If s> 1/2**! we repeat the procedure k times.
(b) 1 <s < oo. Now

ey = ] < M2 [l iy~ 0 i D= =10
Il ) it — x5 ]

When s < 2 then |x§™D/s— x&=Dissls= 1  elis_x1i55 and so {x,} is a
Cauchy sequence in L*. If s <2**! we shall repeat the procedure k times.
Hence, there is xe L' so that limx, =x in L, and also in L,. In order to

n

complete the proof, we can use Theorem 16.1 of Aliprantis—-Burkinshaw
[1]. =

It is easily verified that if L is (p, g)-convex for 0 < g < p < oc then L, is
(sp. sq)-convex for every 0 <s < oc. In particular, L is (p, p)-convex if and
only if Ly,, is normable.

The property of being (p, p)-convex for some p > 0 or, equivalently, of
having a Banach s-convexification for some s > 0, has been characterized by
Kalton [6] by means of L-convexity: a quasi-Banach lattice has this property
if and only if there exists 0 <& <1 so that if weL" with |jull =1 and
0< x <u (1 <i<n) satisfy

1
-n—(x1+ ot x) =2 (1—eu
then
max ||x]| = e.
1<i<n
In contrast with the Banach case, there are (g, p)-convex quasi-Banach
lattices for some g = p > 0 which are not (r, r)-convex for any r >0, ie,
which are not L-convex. An example of this with g = oo are the spaces I”(¢)
where ¢ is a suitable pathological submeasure (Kalton [6]). A different
example has been supplied to us by G. Pisier (}):

() During a collaboration supported by the “Programa general de relaciones cientificas
hispano-francesas”.
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Let (E, || -{l) be a Banach space of Rademacher type > 1 and consider it
canonically imbedded in the Banach lattice %'(K) of continuous functions
over the unit ball K of the dual E* with its w*-topology. Consider the ideal
L generated by E in % (K) endowed with the quasi-norm |-| defined by

lol = nf {( X II1"/7: () < E and

o< (2 )",

It is easily verified that (€, |-|) is a (2, p}-convex quasi-normed lattice.

With a suitable choice of E, (the completion of) L cannot be (r, r)-
convex for any r> 0. Suppose, to the contrary, that it is (r, r)-convex for
some r > 0. Consequently there exists a constant K such that

| ; l/rl < K Z ”,V,“ l/r

for every (y))j=; cE.
Let (gjk)}ﬁiﬁm be Gaussian random variables with zero mean and
ELEY
variance 1. Then there is a constant C such that
21/2
”Z quJﬂ\Hr«(E) = Cl Z(-Vl I
(cf. Krivine [8], Lemme 2),

Moreover, by Khintchine's inequality, there are constants C;y and C,
such that

I(Zk'w)ml < GIEIS el )]
< <
EIZYkE’ Hl 1/r
where {&}}7L,, {e/}i-, denote the Rademacher functions. Hence,
(*) ”Zgjkyjk”LZ(E) <C-C “Z Vik ﬁjﬁkllLr(E)

and this is false, for example, when E = C, with p # 2, where C, are the
Schatten classes of operators. Indeed, if

n n
G, T )y Z giyea®e;,
we know that there exists a constant 6 > 0 such that

”Zg‘f ei@ef”Lz(E) >n’? _f“G,,lICP > 5"1/2“1dH”c,, = on'/2ntp
L)
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(cf. Marcus—Pisier [10], Corollary 1.8) where Idy is the identity operator on
H. On the other hand
HZ&Q&}' ei@e}“uw» =",
LJ
which is impossible by ().
Then it is natural to ask for what values of r, s, (p, ¢)-convexity implies
(r, s)-convexity.
1.3. ProvosiTioN. If a quasi-Banach lattice L is (p, g)-convex, then for
every r < p, L is also (r, s)-convex, where

LA ()
s r g p

In particular,

(@) L is (r, r)-convex for every r < p if it is (p, p)-convex.

(b) If L is g-normable, 0 < q < 1, then it is (p, pg/(p+q— pq))-convex for
every pe(0, 1].

Proof. Let r <p, {x}-; = I\{0}. By Hélder’s inequality, we have for
every xe(0, 1) if p <0

“(Z %" 1/r“ < le ||~ et ry)ip= r)/(pr)“ Z i1 n2l | x| P) 1/P||
i=1 =1

. || =) plp = )\(p—n)/(pr) 2 aqfr\1/q
(=Z I ) (i; Il

and if p=co

”( i |xil')1/’“ < (i ”xl.”u)llr”‘\"/l “xi“—‘z/r ’xlm
i=1 K] v
K3, Il (3 ey
i=1 i

i=1
where K is the (p, g)-convexity constant.
2
————u’—( =14 if p=cc), we are done. m
q(p—r)+pr q+r
This proposition gives the best possible result, as Example 2.4 of Kalton
[6] shows (this follows from the fact that we can identify the s-

convexification of L,(¢) with L (p) in the obvious manner).
We have also
1.4. ProposITION. Let a quasi-Banach lattice L be (py, qo)-convex and
(p1, q1)-convex (po < p1)- If
1 6. 1-96

-=—+——  (0e(0, 1)
r po D1

Taking a =
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then L is (r, s)-convex for every s with

1_ 6 1-6
o

S 4o 4y

In particular, if L is L-convex and g-normable (0 < q < 1), then L is (s, s)-
convex for every s in (0, q).

Proof. Let {x}/-; = L be such that ||x|| < 1. By Hoélder’s inequality

n

" "
“(Z |x‘.]r)1/r” < ”(Z |xi'Po)B/Po(Z Ixilpl)(l--a)/m“
=1 i=1

i=1

- M”(lgl lxilpo)l/po”ﬂ”(iél 'x‘|171‘)1/l'1”1-0

/g0 +(1~6)
< Cn lag+( )/41'

Then it follows from Proposition 2.2 of Kalton [3] that Ly, is (1, s/r)-
convex whenever
1 8 1-90
->—+
S G0 41

and so L is (r, s)-convex. m
We can obtain better values for s than those.in Proposition 1.3 if we
suppose that L is (g, g)-concave for some ge(0, #co).

L5. DeFiNITION. Let p, (0, +0). We say that L is (p, g)-concave if
there is a constant K such that

(5, iy <K ey

for every choice of vectors {x;}i; in L.

L.6. ProrosiTion. If a quasi-Banach lattice L is (u, r)-convex (u < o) and
(9, q)-concave for some q < o, then for every s>r, L is (s, r)-convex,

In particular, if L is r-normable and (q, g)-concave Jor some q < oo, then L
is (s, r)-convex for every s >r.

Proof. We may assume that u = 1 (otherwise we can use the fact that
Ly is (1, r/u)-convex). It is known that a quasi-Banach space E of
Rademacher type p is p-convex (cf. Theorem 4.2 of Kalton [4]). Let p
< mig{l/r, 2}; we shall prove that L, is of Rademacher type rp.

Since L is (g, g)concave (we may assume without loss of generality that
q > 1/p) there exists a constant C such.that if {e;}f2 | is the sequence of the
Rademacher functions and {x}{., = L then
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1 n 1 n
(fI1X (+)pecte xlfe de ' < CI(T X (+)pe(0) xf*dr) o7
0 i=1 i

0i=1
1 n

= CIJI, a0 any
0i=1

by Khintchine’s inequality and since L is (1, r)-convex, there exist two
constants A, B so that this expression is upper bounded by

AJ(S P < A S i < B(E, llxiryire = B(S. Il .
i=1 i=1 i=1 i=1

Hence L, is of Rademacher type rp, and thus rp-convex. If
1/2"<r<1/2* " for some neN, then L, is 2"~ !r.convex and then for
every p < 1/(2""1r) we conclude that LG-l,, is 2" ! pr-convex and so L is
(12" ! p), r)-convex. = ‘

§ 2. Applications to tensor products. It is known (Kalton [5]) that it is
possible to find a p-Banach space E such that EQE admits no tensor p-
norm. So, the question naturally arises:

Given a p-Banach space E and a q-Banach space F, for what values of
r >0 the tensor product EQF admits a tensor r-norm?

The complete answer to the question is still an open problem.

As we have said in the introduction, Turpin obtains the value r = pg/(p
+g—pq). From our results on (p, ¢g)-convexity, we can obtain in the general
case the same value as Turpin and we are able to improve it under
additional conditions on one of the spaces E, F.

To see this, let us consider a quasi-Banach space (E, ¢) with g a
continuous quasi-norm and a quasi-Banach lattice L. Given {x;,..., x,} < E,
the mapping

et (1o T2seeos t)ER" = B e (tr,..os 1) = g(k; t,x)eR

is a continuous homogeneous function and so we can define (by means of
the “homogeneous functional calculus”) the corresponding mapping

Byt (P1seeos V€L X oo X Lo ey e (P15 Y€ L
The following properties are easily verified:
(1 Bt gt (V1 V2o oo Vo) = R g (V12 Y12 Y200005 Vs
(2) By egeee (V10 ¥ 20000 ¥) = By e (1015 Yoo W)y
(3) Bisg gy (VY V2vees V) = Bisp sy g (Vs Vs Y25 Dy

‘4) h(xl.xz..‘...\‘") ( Yis Vao-oes .‘n) = h(x,,‘.xﬂz....,xn.") ( yrr] ’ _)'rrzv (AR _":r")
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for every permutation ¢ of the indices 1,2,...,n (see Note in the
introduction).
Thus, the mapping

n

h: w= Z x®y e EQL— h(w) = h(xl,...,x,,)(y1=~--s ymeL

i=1
is well defined and satisfies for all w, w' e EQL and teR
(i) h(w) = 0.

(i) h(w) =0 iff w=0.

(iii) A(w+w) < M[h(W)+h(w)] where M is the multiplier of ¢.

(iv) h(tw) = [t| h(w).

(To see that h is well defined, perhaps the simplest way is to consider a
Hamel basis B of the space L and recall that every w in EQL can be
uniquely written as w = ) x,®b with (x,),ce E®. Then if

beB
n m
w= Y %@y =3 X®,

i=1 j=1

sube (1<jsm),
1

I =

N
=3 taby, A<i<gn), yj=
k=1 k
we have
h(xl,...,xn)(yls ey yn)
= h(x1,...,xl,...,x",...,x") (tll bl: LERE] thbNa rey rnl bl: ey tnN bN)
= h(l] 1X sersl | NX Y 5ol g Xy e s yNX ) (bl’ EEEE] bNa seey bly tees bN)

(by,..., bw)

=h n n
CF ti1%pe. T_tiN%0)
i=111‘ i=1iNl.

=h , (by,-.., by)

m
(jzzls“x}-....,jglstx_‘,-)
= Mty (Ve Vi)

n
To prove, for example, that h(w) = 0 implies w =0, take w = Y x,®y,
(=1
with (x;) linearly independent. Since

h(xl,....x,,)(tls-"9 tn) 7& 0 lf
there exists a constant C > 0 such that

(tl!"w tn)aé‘(o’---: O)

h(xl,...,x,,) (tl) ey tn) 2 C max Iti|

1<isn

for all (ty,...,t,)eR"

icm
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and so O=hW)=C(y]v ...
(I<i<n) sow=0)

Moreover, if E is p-convex with constant of p-convexity C, for every
finite collection {w,,..., w,} <« EQL,

VI|yl) =0 Then |y/=0 and y; =0

W) < (3 W (wp)iie.

1 i=1

M=

h(

i

I

Of course, this construction also works when L is merely a Riesz space
with a homogeneous functional calculus.
From (i) to (iv), we have (with the same notation):
2.1. ProrosimioN. Let E be a quasi-Banach space for a continuous quasi-
norm g, and (L, ||-||y) a quasi-Banach lattice. The mapping

I-ll: we E®L— ||l = lh(W)llLeR

is a tensor quasi-norm.

Moreover, if E is p-normable and L is (p, q)-convex, then (EQL, ||-||) is g-
normable.

Consequently, using Proposition 1.3 together with Théoréme 2.1 of
Turpin [14] we can prove, by a different way, the following theorem of
Turpin [14]:

2.2. CoroLLARY. If E and F are p-normed and q-normed (respectively) real
vector spaces, then there exists a tensor pq/(p+q— pg)-norm in EQF.

Finally, we have

2.3. ProrosiTioN. Let E be a p-normed space continuously imbedded in a
p-normable quasi-Banach lattice L and let F be a q-normed space.

(1) If L is (p, p)-convex, then EQF is r-normed with r = min {p, a}-

(2) If L is L-convex, then EQF is r-normed for every r < min{p, q}.

(3) If L is (s, s)-concave for some se(0, + o), then EQF is r-normed for
every r <min{p, g}.
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A direct proof of van der Vaart’s theorem
by

J. BOURGAIN (Brussels and Pasadena, Caly and H. SATO (Fukuoka)

Abstract. The aim of this paper is to give a direct and simple proof of van der Vaart's
theorem [3] determining the absolutely continuous component of a signed measure on R from
ity characteristic functional.

1. Introduction and results. Let

diQt) = dilty, ty,..., ty) = (2n)" 2 dt, dt, ... dt,

be the modified Lebesgue measure on RY for a l-integrable function f on R?
define the Fourier transform by

J = [&® f(dA(), «eR,
x

where (x, 1) is the inner product of RY let 2 be the collection of all i-
integrable functions » which satisfy the following conditions:

() fxydity=1.
(2) There exists « > 1 such that

Q () = sup(L+]]¢l|")

Te

where ||#]} is the Euclidean norm on RY and define
H={xed; Zcl(1).

Furthermore, for every » in # and T >0 define xp(f) = T3 (Tt). Then
evidently we have for every T > 0,

frr(NdA() =1 and %Zp(0)=Z(yT).

Let u be a signed measure on RY Then we have the Lebesgue
decomposition

x(t) < + o0,

d
du(t) = ;—f{(z) dA () +dpss (1),

where f, is the singular component of pu.
In this paper we shall prove the following theorems.


GUEST




