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Both the Perron and the Denjoy integrals provide integration processes
which include the Lebesgue integral and also integrate the derivatives of
differentiable functions. It is natural to ask whether one needs the generality
of these integrals to do this; that is, is there a weaker integral which suffices
for this purpose?

In the present paper we provide an affirmative answer to this question
by giving a descriptive definition of an integral which integrates all Lebesgue
integrable functions and all derivatives. We call f integrable in this sense iff f
can be decomposed into a sum of a Lebesgue integrable function and a
derivative.

Theorem 2 provides a comparison of this integral with the Lebesgue
integral and Example 1 shows that this integral is strictly smaller than the
Denjoy—Perron integral. In Theorem 4 we give a simple condition whlch
suffices for a function to be an integral in this new sense.

Recall the descriptive definitions of the Lebesgue and Denjoy-Perron
integrals [3].

A function f is Lebesgue integrable if there exists an absolutely
continuous function F such that F’' = f almost everywhere.

A function f is Denjoy—Perron integrable if there exists a function F
which is generalized absolutely continuous in the restricted sense and F' = f
almost everywhere. .

In what follows, functions will be considered to be real valued and
defined on [0, 1]. Throughout,

|X| will refer to the Lebesgue measure of X,

Var (F) the total variation of F,

Var(F; I) the total variation of F on the interval I,

O(F; I) the oscillation of F on I,

AC the class of absolutely continuous functions,
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A4 the class of differentiable functions,

ACG* the set of primitives for the Perron integral,

ACG the set of primitives for the wide sense Denjoy integral,

(AC, 4> the set of functions H = F+ G with Fe 4, Ge AC,

(N) the set of functions F which satisfy Lusin’s condition (N); i.e., the
image under F of each set measure 0 is of measure 0.

Clearly, the primitives for the smallest integral which includes the AC
functions and the differentiable functions and is closed under addition is
(AC, 4).

The following theorem is well known and will be used for the theorems
which follow.

THEOREM 1. A function F is absolutely continuous if and only if there
exists a sequence of continuously differentiable functions {G,) < C, such that
lim Var(F-G,) =0.

n— o

Theorem 1 can either be viewed as an analogue of a theorem of
Goffman and Liu [2] or, as pointed out by the editor, to follow easily from
the fact that every L' function is the L' limit of trigonometric polynomials
and that the variation norm for integrals corresponds exactly to the L! norm
for integrable functions.

THEOREM 2. A function H belongs to {AC, 4> if and if H is the limit in
variation of a sequence of differentiable functions.

Proof. If He (AC, 4), H = F+G where Fed, Ge AC. By the above
result, G is the limit in variation of a sequence {G,} of C, functions. Then H
is the limit in variation of H,= F+G, since Var(H—H,) = Var(G-G,)
approaches 0. If, on the other hand, H =limF, where Var(H-F,)
approaches 0 and each F,e A4, then H = F,+(H—F,). It remains to show
that H—F,; is in AC. Since for each n, H—F, is of bounded variation,
F,—F, is both of bounded variation and in 4 and hence is in AC. Given
&£ > 0 choose n so that Var(H—F,) <¢/2. Choose 6 > 0 so that whenever

I} is a sequence of non-overlapping intervals with ) |I,| < 4 it follows that
k

Y |(F,—F,)(I)] <¢&/2. But then
k

LIH=F)U <Y (H=F)U)+Y (Fa—F) (L) <e.
k k k

Thus H—F, is in AC.

ProsLem 1. (P 1290) If H is the limit in variation of a sequence of
functions satisfying (N), must H satisfy (N)?

Generally, the primitives of an integral are closed under multiplication.

This is the case for Riemann integral and for the classes AC, ACG* and
ACG (cf. [1]). Theorem 3 shows that it is also the case for (AC, 4).
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THeoremM 3. If H,, H, belong to {AC, A) then so does H, H,.

Proof. Let H; = F;+G; where F;e4 and G;eAC. Then G, -G,eAC
and F,-F,eA. It remains to show that the product of a function Fe 4 with
a function Ge AC belongs to (AC, 4). The function F-G is differentiable

a.e. and
(FG) =F' G+FG' ae.

Since the product of an AC function and a derivative is a derivative (cf. [1]),
F’' G is a derivative and there is H, e 4 with H} = F’'G. Since F is continuous
and G’ is Lebesgue integrable, FG' is Lebesgue integrable and there is
H,e AC with H, = FG' ae. Since F-Ge ACG and H, + H,€ ACQG, it follows
that F -G differs from H, + H, by a constant function. Thus F-Ge (AC, 4).

The following example shows that there are functions in ACG* which
are not in (AC, 4).

ExampLe 1. Let H(x) = xsin(x~2), H(0) = 0. Then He ACG*.

Let ¢, =(n/2+2nr)” "2 and note that H(c, =c,. That H is not of
bounded variation follows from the fact that Y, = 0, since H assumes the
value zero in between c, and ¢,,,. Suppose H = F+G with Fed, GeAC.
Clearly, by addition of a linear function, F can be chosen so that F(0)
= F'(0)=0. Then ,xe(0, ¢;,)} H(x)> x/6) is the union of a sequence of
intervals {I,} with c,el, = [a,, b,]. Note that O(H; 1,) =c,—ta,> 2Cps -
Choose N so that for n > N, ¢,y > %$c,_, and |F(x)] <ix when x <c,.
Then for n> N, O(F; I,) <}b, <}c,-y <3Cuir.

Consequently,

OH-F;1)>3c,.;y and Var(H-F)> ) OMH-F;I)=x.

n=N
Thus G = H—F is of unbounded variation, a contradiction.

A sufficient condition for a function H to belong to (AC, 4) is given
by the following

THEOREM 4. Given a continuous function H, let U be the set of x such that
H is not of bounded variation in any neighborhood of x and let N be the set of
x where H'(x) does not exist. Suppose U "N = Q. Then if H satisfies (N),
He (AC, 4).

Proof. Note that U is closed. Since H satisfies (N). H is differentiable
on a dense set of points (cf. [3], pp. 280-284). Since U~ N=0Q, U is
nowhere dense. Let I,] be the set of intervals contiguous to U and for each
integer k choose a,, such that if I, =[a,, b,]

a, < Au < Auy+1 < bm pk+1 — Uy < Uy —d,y,,
Ank+1 Ak < bn_an.k+ 19

lim a,, = b,, lim a,, =a,

k—-a k—-—- x
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and H is differentiable at each a,,. Let F,, be a C, function defined on
[anxs Gni+1] such that F,,(a,,) = H(a,,) and

Var(H—F,;; (@i Gni+1])) <(@pis1— an.k)2~

This is possible because H is AC on each closed subinterval of intervals
contiguous to U and thus can be so approximated by a C, function. Let

Foxlx) if xel[apy; Anx+1)s
H(x) if xeU.

Then (H—F)(x) =0 at each xe U. Since
Var(H-F) = Z Var(H—-F; [api, Gpi+1]) <
nk

F(x)={

and H—F satisfies (N), H—Fe AC. But F is differentiable at each point of
the complement of U. So it remains to show that F is differentiable at each
point of U. Let xe U. Then

F(x+h—F(x) F(x+h—-H(x+h H(x+h—H(x)
= + -
h h h
since F(x) = H(x) for xeU. As h— 0 (H(x+h)— H(x))/h approaches H’(x)
and
F(x+h—H(x+h)| _Var(F—H;[x, x+h]) _} (nrs1 =)+
h - |hi - Ih|

< 2|h

where the sum )’ is taken over all [a,;, a,x+,] =[x, x+h] and the h?
following )’ allows for the possibility that x+h belongs to an interval
(@nx—ani+1)- In this case the variation on that interval is less than (a,, .,
—a,,)? which is in turn less than both (a,,—a,)? and (b,—da,,.,)> and thus
less than h2. Thus (F (x+h)— H(x + h))/h approaches 0 as h — 0 and F is also
differentiable at all xe U.

ProBLEm 2. (P 1291) Let N, = |x| F,, does not exist]. If F is
continuous and satisfies (N) and N,,nU =@, must F be ACG?

The following example shows that the condition in Theorem 4 is not
necessary for membership in (AC, 4).

ExampLE 2. Let F(x) satisfy the following: for each natural number n,
F(x)=0if xe[(2n+1)"2 (2n)~ 2], 0 < F(x) < x%, F(x) is differentiable and
Var(F; [(2n+2)"2%, (2n+1)"%]) = 1. Let G be defined as follows: G(0) =0,
G(x)=0if xe[(2n+2)"2% 2n+1)"2], G(x) =x if x =§((2n+1)"2+(2n)"2).
Then G(x) is defined to be linear on all remaining intervals so that it is
continuous on [0, 1]. Let H = F+G. Then H’'(0) does not exist and H is not
of bounded variation in any neighborhood of 0. But Fe4 and Ge AC. This
same behavior could clearly be created on any closed nowhere dense set.
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Tolstov [4] showed that the Perron integral can be defined using
majorants which are everywhere differentiable in the extended sense.
However, if h is Perron integrable and h has differentiable majorant F (i,
F'(x) = h a.e.), then F'—h is nonnegative and is therefore Lebesgue integrable
and has an AC primitive G. Then F—G is a primitive for h and hence h has
a primitive in (AC, 4).
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