A POLYNOMIAL CHARACTERIZATION OF AFFINE SPACES OVER GF(3)

BY

J. DUDEK (WROCŁAW)

1. Introduction. We adopt here the definitions and notation from Grätzer [10] and Marczewski [14]. In particular we denote by $p_n(\mathfrak{A})$ the number of all essentially *n*-ary polynomials of an algebra \mathfrak{A} .

An identity f = g is said to be regular [15] if the sets of variables occurring in both sides are equal.

If E is a set of identities, then by E^* we shall denote the variety of all algebras satisfying all identities of E.

The identity f = g is called *nontrivial for the class* E^* if the class $(E \cup \{f = g\})^*$ is properly contained in E^* and is different from the class $\{x = y\}^*$.

Let $f = f(x_1, ..., x_n)$ be a function on a set A. We say that f admits a permutation $\sigma \in S_n$ of its variables if $f = f^{\sigma}$, where for a permutation $\sigma \in S_n$ we shall write $f^{\sigma}(x_1, ..., x_n) = f(x_{\sigma 1}, ..., x_{\sigma n})$. By G(f) we denote the group of all admissible permutations of f. The group G(f) is called the admissible group of the function f (see [13]).

Let f be an n-ary polynomial. Then a permutation $\sigma \in S_n$ is said to be trivial for f (with respect to a set of identities E) if the identity $f = f^{\sigma}$ is an identity in E^* .

For a given groupoid
$$(G, \cdot)$$
 we write $x_1 \dots x_n$ instead of $(\dots((x_1 x_2) \dots) x_{n-1}) x_n$

and xy^n will stand for the expression (...(xy)...y)y where x occurs once and y occurs n times $(n \ge 1)$. The variety of all idempotent and commutative groupoids (G, \cdot) will be denoted by $V(\cdot)$ and by $M(\cdot)$ we denote the subvariety of $V(\cdot)$ of all medial groupoids. Recall that a groupoid (G, \cdot) is medial if it satisfies the medial law (xy)(uv) = (xu)(yv). For a given $n \ge 1$, $V_n(\cdot)$ denotes the subvariety of $V(\cdot)$ of all groupoids (G, \cdot) satisfying $xy^n = x$. We put $M_n(\cdot) = M(\cdot) \cap V_n(\cdot)$.

Let (G, +) be an abelian group of an odd exponent m. Denote by G(m) the groupoid $\left(G, \frac{m+1}{2}(x+y)\right)$. If p is prime, then G(p) is called an affine

groupoid. Using the main result of [16] we infer that G(p) is equivalent to an affine space over the Galois field GF(p), i.e., G(p) = (G, I(G, +)), where $I(\mathfrak{A})$ denotes the full idempotent reduct of an algebra \mathfrak{A} .

Using the formula from [1] (or from [11]) we get for the groupoid G = G(3) the following equality:

(*)
$$p_n(G) = \frac{2^n - (-1)^n}{3}$$
 for all n .

Thus $p_4(G) = 5$ and every groupoid G with (*) is, of course, an idempotent groupoid.

In this paper we prove the following

THEOREM. Let (G, \cdot) be an idempotent groupoid (card G > 1). Then (G, \cdot) is an affine space over GF(3) if and only if $p_4(G, \cdot) = 5$.

Previously G. Grätzer and R. Padmanabhan [12] proved the same assertion under the assumption that (*) holds for n = 2, 3 and 4.

2. Now we state without proof a result concerning binary algebras, used in this paper.

THEOREM ([2], th. 2.1, see also [4]). Let $\mathfrak A$ be an algebra containing two essentially binary idempotent polynomials + and \cdot , where + is commutative and \cdot is noncommutative. Then

$$p_n(\mathfrak{A}) \geqslant 2^n - 1$$
 for all n .

3. Proof of the theorem. The proof splits into two cases: (G, \cdot) is noncommutative and (G, \cdot) is commutative.

3.1. Noncommutative case. Some lemmas are needed.

LEMMA 1. Let \mathfrak{A} be an idempotent algebra containing an essentially binary noncommutative polynomial, say, xy. Suppose that there exists a 4-ary polynomial $f = f(x_1, x_2, x_3, x_4)$ admitting a cycle of all its variables. Then $p_1(\mathfrak{A}) \geq 2^n - 1$ for all n.

Proof. Let f be a 4-ary polynomial. If $f = f^{\sigma}$ for a cycle σ of order 4, then $(13)(24) \in G(f)$, i.e., $f(x_1, x_2, x_3, x_4) = f(x_3, x_4, x_1, x_2)$ and hence by putting $x_1 = x_2 = x$ and $x_3 = x_4 = y$ and denoting x + y = f(x, x, y, y) we get x + y = y + x. Thus the polynomial x + y is idempotent, commutative and essentially binary (since xy is essentially binary). Therefore $\mathfrak A$ satisfies the assumption of the quoted theorem, and we get $p_n(\mathfrak A) \geqslant 2^n - 1$ for all n.

LEMMA 2. Let \mathfrak{A} be an idempotent algebra having an essentially binary noncommutative polynomial and let $p_4(\mathfrak{A}) < 15$. Then for every 4-ary polynomial $f = f(x_1, x_2, x_3, x_4)$ over \mathfrak{A} the polynomials $f(x_1, x_2, x_3, x_4)$, $f(x_2, x_3, x_4, x_1)$, $f(x_3, x_4, x_1, x_2)$ and $f(x_4, x_1, x_2, x_3)$ are different.

Proof. It follows from Lemma 1 and the quoted theorem (in the case if, e.g., $f(x_1, x_2, x_3, x_4) = f(x_3, x_4, x_1, x_2)$).

LEMMA 3. There is no idempotent noncommutative groupoid (G, \cdot) for which $p_+(G, \cdot) = 5$.

Proof. Assume to the contrary that such a groupoid (G, \cdot) exists. Then, of course, (G, \cdot) is not a diagonal semigroup (see [17]) since for such semigroups we have $p_4 = 0$. Using Lemma 3 of [3] we infer that at least one of the polynomials $x_1 x_2 x_3 x_4$ and $x_1 (x_2 (x_3 x_4))$ is essentially 4-ary, say, the first one. Then using Lemma 2 we infer that the polynomials:

$$(**)$$
 $x_1 x_2 x_3 x_4, x_2 x_3 x_4 x_1, x_3 x_4 x_1 x_2$ and $x_4 x_1 x_2 x_3$

are different and essentially 4-ary. By the assumption $p_4(G, \cdot) = 5$ there exists one more essentially 4-ary polynomial $g = g(x_1, x_2, x_3, x_4)$ such that g is different from the polynomials (**) and all polynomials $g(x_1, x_2, x_3, x_4)$, $g(x_2, x_3, x_4, x_1)$, $g(x_3, x_4, x_1, x_2)$, $g(x_4, x_1, x_2, x_3)$ are essentially 4-ary and different by Lemma 2. It is easy to see that none of g's is equal to the polynomials from (**) because if $g^{\sigma} = f^{\tau}$ where σ , τ belong to the cyclic group C_4 generated by (1, 2, 3, 4), then $g = f^{\tau \sigma^{-1}}$ and $\tau \sigma^{-1} \in C_4$. Thus $p_4(G, \cdot) \geq 8$, a contradiction. The proof of the lemma is completed.

3.2. Commutative case.

LEMMA 4. Let $(G, \cdot) \in V(\cdot)$. Then the polynomial $s_4(x_1, x_2, x_3, x_4) = x_1 x_2 x_3 x_4$ is essentially 4-ary iff card $G \ge 2$.

Proof. If s_4 depends on all its variables, then card $G \ge 2$. The converse implication follows from the idempotency and the commutativity of xy and the fact that xy is essentially binary on G if and only if card $G \ge 2$.

LEMMA 5. If $(G, \cdot) \in V(\cdot)$, card $G \ge 2$ and s_4 admits only trivial permutations of its variables, then $p_4(G, \cdot) \ge 12$.

Proof. By Lemma 4 we infer that s_4 is essentially 4-ary. Now permuting variables in this polynomial we get 12 different and essentially 4-ary polynomials over (G, \cdot) since the only trivial permutations for s_4 are the identity permutation and the transposition (1, 2).

LEMMA 6. Let $(G, \cdot) \in V(\cdot)$ and assume that it is not a semilattice. Suppose that s_4 admits a nontrivial permutation of its variables. Then the groupoid (G, \cdot) satisfies the following identity:

$$(+) x_1 x_2 x_3 x_4 = x_4 x_2 x_3 x_1.$$

Proof. Since (G, \cdot) is not a semilattice we infer that the polynomial $x_1 x_2 x_3$ does not admit any nontrivial permutation of its variables. Now applying Theorem 1 of [5] we get our assertion.

LEMMA 7. Every affine groupoid G(p) is medial.

Proof. The medial law follows immediately from the definition of G(p). LEMMA 8. If a groupoid (G, \cdot) from $V(\cdot)$ satisfies the identity (+), then (G, \cdot) is medial.

Proof. Using Theorem 3 of [5] we infer that the groupoid (G, \cdot) is a Płonka sum of affine groupoids G(3), i.e., groupoids from the variety $M_2(\cdot)$. Now, using Lemma 7 and Theorem 1 of [15], we infer that the groupoid (G, \cdot) is medial since the medial law is regular.

LEMMA 9. If $(G, \cdot) \in M(\cdot)$ and the polynomial xy^2 is commutative, then (G, \cdot) is a semilattice. Moreover the assertion is also true if $(G, \cdot) \in V(\cdot)$ and it is distributive (i.e. z(xy) = (zx)(zy)).

Proof. First of all observe that if $(G, \cdot) \in V(\cdot)$, then the medial law implies the distributive law. Let now $xy^2 = yx^2$. Then we have $xy^2 = (xy^2)(yx^2) = ((xy)y)((yx)x) = ((xy)y)((xy)x) = (xy)(yx) = (xy)(xy) = xy$. Using the identity $xy = xy^2$ and the distributive law we get (xy)z = (xz)(yz) = (x(yz))(z(yz)) = (x(yz))((yz)z) = (x(yz))(yz) = x(yz). Hence (xy)z = x(yz) and (G, \cdot) is a semilattice.

LEMMA 10. If $(G, \cdot) \in M(\cdot)$, card $G \ge 2$ and the polynomial xy^2 is not essentially binary, then $xy^2 = x$, i.e., $(G, \cdot) \in M_2(\cdot)$.

Proof. Let $xy^2 = y$. Then we have $xy = yx = (xy^2)x = ((xy)y)x = ((xy)x)(yx) = ((yx)x)(yx) = x(yx) = x$, a contradiction. Therefore $xy^2 = x$ and hence $(G, \cdot) \in M_2(\cdot)$.

We should mention here that this lemma is generalized in [7] (see Theorem 1).

LEMMA 11. If $(G, \cdot) \in V(\cdot)$ and xy^2 is essentially binary and noncommutative, then $p_4(G, \cdot) \ge 15$.

Proof. It follows from the quoted theorem, taking xy instead of x+y and xy^2 instead of xy.

It is worth to add that in [9] we prove for such groupoids even more, namely, $p_n(G, \cdot) \ge 3^{n-1}$ for all $n \ge 1$.

LEMMA 12. If $(G, \cdot) \in V(\cdot)$ and $p_4(G, \cdot) = 5$, then (G, \cdot) is an affine space over GF(3).

Proof. Since $p_4(G, \cdot) = 5$ we infer by Lemma 4 that the polynomial $s_4 = x_1 x_2 x_3 x_4$ is essentially 4-ary and by Lemma 5 the polynomial s_4 admits a nontrivial permutation of its variables. Using Lemmas 6 and 8 we infer that $(G, \cdot) \in M(\cdot)$. Again by the assumption $p_4(G, \cdot) = 5$ we infer that (G, \cdot) is not a semilattice. Then the polynomial xy^2 is noncommutative by Lemma 9, and is not essentially binary by Lemma 11, therefore in view of Lemma 10, $(G, \cdot) \in M_2(\cdot)$. But every groupoid from $M_2(\cdot)$ is an affine space over GF(3) (see [12] or [6], [8]).

3.3. Proof of the theorem. If (G, \cdot) is an affine space over GF(3),

then using (*) we have $p_4(G, \cdot) = 5$. Let now (G, \cdot) be idempotent and $p_4(G, \cdot) = 5$. Using Lemma 3 we infer that (G, \cdot) is commutative. Now the proof follows from Lemma 12. The proof of the theorem is completed.

REFERENCES

- [1] B. Csákány, On affine spaces over prime fields, Acta Scientiarum Mathematicarum 37 (1975), p. 33-36.
- [2] J. Dudek, O pewnych własnościach grupoidów idempotentnych i niektórych innych algebr binarnych, Ph. D. Thesis, University of Wrocław, Wrocław (1970).
- [3] The number of algebraic operations in idempotent groupoids, Colloquium Mathematicum 21 (1970), p. 169-177.
- [4] Binary minimal algebras, Acta Facultatis Rerum Naturalium Universitatis Comenianae Mathematica-Mimoriadne Čislo (1971), p. 21-22.
- [5] A characterization of some idempotent abelian groupoids, Colloquium Mathematicum 30 (1974), p. 219-223.
- [6] Medial groupoids and Mersenne numbers, Fundamenta Mathematicae 114 (1981), p. 109 112.
- [7] On binary polynomials in idempotent commutative groupoids, ibidem 120 (1984),
 p. 187-191.
- [8] Varieties of idempotent commutative groupoids, ibidem 120 (1984), p. 193–204.
- [9] Polynomials in idempotent commutative groupoids, submitted for Dissertationes Mathematicae.
- [10] G. Grätzer, Universal Algebra, Springer-Verlag, 1979.
- [11] Composition of function. Proceedings of Conference on Universal Algebra, Queen's University, Kingston, Ontario, 1970, p. 1-106.
- [12] G. Grätzer and R. Padmanabhan, On idempotent, commutative and nonassociative groupoids, Proceedings of the American Mathematical Society 28 (1971), p. 75-80.
- [13] G. Grätzer and J. Płonka, On the number of polynomials of an idempotent algebra I, Pacific Journal of Mathematics 32 (1970), p. 697-709.
- [14] E. Marczewski, Independence in abstract algebras, results and problems, Colloquium Mathematicum 14 (1966), p. 169-188.
- [15] J. Płonka, On a method of construction of abstract algebras, Fundamenta Mathematicae 61 (1968), p. 183-189.
- [16] On the arity of idempotent reducts of groups, Colloquium Mathematicum 21 (1970), p. 35-37.
- [17] Diagonal algebras, Fundamenta Mathematicae 58 (1966), p. 309-321.

Reçu par la Rédaction le 7. 08. 1981