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1. Introduction. We adopt here the definitions and notation from
Gratzer [10] and Marczewski [14]. In particular we denote by p,(2) the
number of all essentially n-ary polynomials of an algebra .

An identity f =g is said to be regular [15] if the sets of variables
occurring in both sides are equal.

If E is a set of identities, then by E* we shall denote the variety of all
algebras satisfying all identities of E.

The identity f =g is called nontrivial for the class E* if the class
(Eu {f =g)})* is properly contained in E* and is different from the class
(x = p)*.

I):étf = f (x4, ..., X,) be a function on a set 4. We say that f admits a
permutation o€ S, of its variables if f = f?, where for a permutation g€ S, we
shall write f7(x,, ..., x,) =f (X515 -.-» Xqn). By G(f) we denote the group of
all admissible permutations of f. The group G(f) is called the admissible
group of the function f (see [13]).

Let f be an n-ary polynomial. Then a permutation o¢S, is said to be
trivial for f (with respect to a set of identities E) if the identity f =f° is an
identity in E*.

For a given groupoid (G, ') we write x, ... x, instead of

(c (g X2) -o) Xpm 1) Xa

and xy" will stand for the expression (...(xy) ... y)y where x occurs once and
y occurs n times (n = 1). The variety of all idempotent and commutative
groupoids (G, ‘) will be denoted by V(-) and by M(-) we denote the
subvariety of V(-) of all medial groupoids. Recall that a groupoid (G, -) is
medial if it satisfies the medial law (xy)(uv) = (xu)(yv). For a given n > 1,
V.(-) denotes the subvariety of V() of all groupoids (G, ) satisfying x)" = x.
We put M,(-)=M()n V(")

Let (G, +) be an abelian group of an odd exponent m. Denote by G (m)

1
the groupoid (G, m;

(x+ y)). If p is prime, then G(p) is called an affine
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groupoid. Using the main result of [16] we infer that G(p) is equivalent to an
affine space over the Galois field GF (p), i.e., G(p) = (G, I(G, +)), where I(2)
denotes the full idempotent reduct of an algebra .

Using the formula from [1] (or from [11]) we get for the groupoid
G = G(3) the following equality:

2n_(_ l)n

3 for all n.

(*) pn(G) =

Thus p,(G) =5 and every groupoid G with (#) is, of course, an idempotent
groupoid.

In this paper we prove the following

THEOREM. Let (G, -) be an idempotent groupoid (card G > 1). Then (G, -)
is an affine space over GF (3) if and only if p,(G, -) =5.

Previously G. Gritzer and R. Padmanabhan [12] proved the same
assertion under the assumption that (x) holds for n =2, 3 and 4.

2. Now we state without proof a result concerning binary algebras, used
in this paper.

THEOREM ([2], th. 2.1, see also [4]). Let A be an algebra containing two
essentially binary idempotent polynomials + and -, where + is commutatire
and - is noncommutative. Then

p, (W =2"—1  for all n.

3. Proof of the theorem. The proof splits into two cases: (G, ‘) is
noncommutative and (G, -) is commutative.

3.1. Noncommutative case. Some lemmas are needed.

Lemma 1. Let U be an idempotent algebra containing an essentially binary
noncommutative polynomial. say. xy. Suppose ihat there exists a 4-ary
polynomial | = f(x,, X3, X3, X3) admitting a cycle of all its variables. Then
p.(A) = 2"—1 for all n.

Proof. Let f be a 4-ary polynomial. If f = f° for a cycle ¢ of order 4,
then (13(24)e G (), ie., f(x,, x;, X3, X3) =f(x3, X4, X;, X,) and hence by
putting x, = x, =x and x; = x, =y and denoting x+y =f(x, x, y, y) we
get x+y = y+x. Thus the polynomial x+ y is idempotent, commutative and
essentially binary (since xy is essentially binary). Therefore 2 satisfies the
assumption of the quoted theorem, and we get p,(2) = 2"—1 for all n.

LEMMA 2. Let A be an idempotent algebra having an essentially binary
nonconmnutative polvnomial and let p,(N) < 15. Then for every 4-ary
polynomial . f = f(x,, x,, X3, X;) over N the polynomials f(x,, X5, X3, X3),
S (x2, x5, X4, X4), f(X3, X3, Xy, X3) civd f (x4, Xy, X, X3) are different.
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Proof. It follows from Lemma 1 and the quoted theorem (in the case
if, e.g, f(xy, X3, X3, Xg) =f(x3, X4, Xy, X))

LeEMMA 3. There is no idempotent noncommutative groupoid (G, ) for
which p,(G, ) =>5.

Proof. Assume to the contrary that such a groupoid (G, -) exists. Then,
of course, (G, ) is not a diagonal semigroup (see [17]) since for such
semigroups we have p, = 0. Using Lemma 3 of [3] we infer that at least one
of the polynomials x, x, x3 x, and x, (x,(x; X4)) is essentially 4-ary, say, the
first one. Then using Lemma 2 we infer that the polynomials:

(**) X| X3 X3 Xy, Xy X3 Xg Xq, X3 X4 Xy X2p and X4 X1 X9 X3

are different and essentially 4-ary. By the assumption p,(G, ‘) =15 there
exists one more essentially 4-ary polynomial g = g(x,, x,, X3, x,) such that g
is different from the polynomials (xx) and all polynomials g(x,, x,, x3, X,),
g(xa, X3, X4, Xy), g(x3, X4, Xy, X3), g(x4, X1, X3, X3) are essentially 4-ary and
different by Lemma 2. It is easy to see that none of g’s is equal to the
polynomials from (x*) because if g =f* where o, t belong to the cyclic
group C, generated by (1, 2, 3, 4), then g=f"’_l and t¢~'eC,. Thus
p4(G, *) = 8, a contradiction. The proof of the lemma is completed.

3.2. Commutative case.

LEMMA 4. Ler (G,-)eV(-). Then the polynomial s,(x,, X;, X3, X4)
= X; X3 X3 X4 is essentially 4-ary iff card G > 2.

Proof. If s, depends on all its variables, then card G > 2. The converse
implication follows from the idempotency and the commutativity of xy and
the fact that xy is essentially binary on G if and only if card G > 2.

LemMa 5. If (G, )eV ('), cardG =2 and s, admits only rrivial
permutations of its variables, then p,(G, -) = 12.

Proof. By Lemma 4 we infer that s, is essentially 4-ary. Now
permuting variables in this polynomial we get 12 different and essentially 4-
ary polynomials over (G, ‘) since the only trivial permutations for s, are the
identity permutation and the transposition (1, 2).

LEMMA 6. Let (G, -)e V(*) and assume that it is not a semilattice. Suppose
that s, admits a nontrivial permutation of its variables. Then the groupoid
(G, -) satisfies the following identity:

(+) Xy X3 X3 X4 = X4X3X3X).

Proof. Since (G, -) i$ not a semilattice we infer that the polynomial
X; X5 x3 does not admit any nontrivial permutation of its variables. Now
applying Theorem 1 of [5] we get our assertion.

LemMma 7. Every affine groupoid G(p) is medial.
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Proof. The medial law follows immediately from the definition of G(p).

LemMA 8. If a groupoid (G, -) from V(-) satisfies the identity (+), then
(G, *) is medial.

Proof. Using Theorem 3 of [S] we infer that the groupoid (G, -) is a
Plonka sum of affine groupoids G(3), i.e., groupoids from the variety M,(-).
Now, using Lemma 7 and Theorem 1 of [15], we infer that the groupoid
(G, -) 1s medial since the medial law is regular.

LemMma 9. If (G, -)e M(+) and the polynomial xy* is commutative, then
(G, -) is a semilattice. Moreover the assertion is also true if (G, -)e V(-) and it
is distributive (i.e. z(xy) = (zx)(zy)).

Proof. First of all observe that if (G, -)eV(-), then the medial
law implies the distributive law. Let now xy2 = yx2 Then we have
xy? = (xy?) (yx?) = ((x3) ) (r%) x) = ((x0) Y)((xy) x) = (xp) (px) = (x) (xy) = x.
Using the identity xy = xy? and the distributive law we get (xy)z = (xz)(yz)
= (x(y2))(z(y2)) = (x(y2))((¥2) 2) = (x(y2))(y2) = x(yz). Hence (xy)z = x(yz)
and (G, -) is a semilattice.

LemMma 10. If (G, -)e M(-), cardG = 2 and the polynomial xy* is not
essentially binary, then xy* = x, ie., (G, )e M,(-).

Proof. Let xy?>=y. Then we have xy=yx=(xp?)x =((xy)y)x
= ((xy) x)(yx) = ((yx) x)(yx) = x(yx) = x, a contradiction. Therefore xy> = x
and hence (G, ")e M,(").

We should mention here that this lemma is generalized in [7] (see
Theorem 1)..

Lemma 11. If (G, -)e V(") and xy* is essentially binary and noncom-
mutative, then p,(G, ) = 15.

Proof. It follows from the quoted theorem, taking xy instead of x+y
and xy? instead of xy.

It is worth to add that in [9] we prove for such groupoids even more,
namely, p,(G, ) =>3"""! for all n> 1.

Lemma 12. If (G, -)e V() and p,(G, ) =5, then (G, *) is an affine space
over GF(3).

Proof. Since p,(G, -) =5 we infer by Lemma 4 that the polynomial
S4 = Xy X3 X3 X4 1S essentially 4-ary and by Lemma 5 the polynomial s,
admits a nontrivial permutation of its variables. Using Lemmas 6 and 8 we
infer that (G, -)e M(-). Again by the assumption p,(G, -) =5 we infer that
(G, -) is not a semilattice. Then the polynomial xy? is noncommutative by
Lemma 9, and is not essentially binary by Lemma 11, therefore in view of
Lemma 10, (G, ‘)e M, (). But every groupoid from M,(-) is an aftine space
over GF(3) (see [12] or [6], [8]).

3.3. Proof of the theorem. If (G, -) is an affine space over GF (3),
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then using () we have p,(G, -)=S5. Let now (G, ) be idempotent and
p4(G, -) = 5. Using Lemma 3 we infer that (G, ) is commutative. Now the
proof follows from Lemma 12. The proof of the theorem is completed.
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