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1. Introduction

The total homology [9] began to be applied in the homology theory of
topological spaces for two reasons. The first one (see [3], [5], [10], [11],
[12], [27]) was the desire to define new algebraic invariants for arbitrary
spaces. The second reason (see [13]-[15], [21]-[25]) was the creation of the
strong shape theory and of its invariants. In both cases the aim was to define
homology functors on the full category of topological spaces which satisfy all
Eilenberg-Steenrod axioms [7], including the exactness axiom, so that they
coincide with the Steenrod homology on compact metric spaces.

When constructing such a total homology of a space two methods have
been employed. The first one was to consider the hyperhomology of a certain
cochain complex, whose cohomology was isomorphic to the Alexandrov—
Cech cohomology of the given space ([3], [51, [101-[12)).

In the second method one considers the total homology of the second
type [9) of a certain chain complex ([24], [25], [15]. [23]) or of its
fragments ([13], [14], [21], [22], [27]) associated with the given space. This
approach was related to the appearance of a sequence of strong shape
theories ([1], [2], [6], [13], [16]-[18], [21]-[23]).

For total homologies obtained in the first way the universal coefficient
formula 1s valid which makes possible an easy verification of the Eilenberg—
Steenrod axioms. For the total homologies obtained in the second way this
formula can be false, as is e.g. for the homology functors defined in [15] for
infinite polyhedra. Therefore the direct approach towards the verification of
the Eilenberg-Steenrod axioms can lead here to considerable technical
difficulties.

In [23] Z. P. Miminoshvili has derived two exact sequences for a total
homology he defined earlier. Those sequences, one of which is short, relate
his total homology to its “fragments” as well as to the derived inverse limit
functor when applied to the homology inverse system, which is induced by
some mverse system of polyhedra associated with a given space. In parti-

* This paper is in final form and no version of it will be submitted for publication
elsewhere.
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cular, they allow to prove that this total homology coincides on compacta with
the Steenrod homology. On the other hand, those exact sequences also allow
an easy verificiation of the Eilenberg-Steenrod axioms for arbitrary topo-
logical spaces.

Now a few words concerning the terminology. In [15] a certain total
homology is called “Steenrod-Sitnikov homology”. In our opinion the fact
that this homology is known to be isomorphic to the Steenrod homology for
compact metric spaces is not a sufficient reason for such a name; after all,
the homology defined in [10] has all desired properties and coincides on
compacta with the Steenrod homology, but diflers [rom the homology
defined in [15] on infinite polyhedra. The name “total homology” better
reflects the structure of its construction.

The purpose of this paper is to investigate, in the most general context
of a double complex of abelian groups (modules), the basic properties of the
second type total homology and of its fragments. To achieve this goal, the
horizontal homology of a complex obtained from the vertical homology is
employed. As examples, we consider the homologies defined in [10] and [23].
We also define total homology of a space over a module.

2. Construction of total homology

Let CC be the category, whose objects are chain complexes of abelian
groups (modules)
(1) C*:""_Cn—lgcn'zilCrH‘l('_"'
and morphisms f = | f,}: C,— C, are chain mappings.

Consider a cochain complex in the category CC :

. i—1 . s .
(2) Cr=..CS i

We define the chain complex R¥ = 'R¥, 4,)eCC by RF =[] Ci.;
ick

with the differentials 4, = {4}): R¥ — R | given by 45 = &, +(—1)"d,4,.
It is clear that A,_,4,=0.

The chain complex Ry will be called the cone of the cochain complex
C} and the homology H,(RJ) = H will be called the total homology of
the second kind.

For each pe Z the cone of a cochain complex C¥ in which C\, =0 for
i > p is denoted by RL. The cones R, peZ, and the conical projections
s RE — R2™1 form the inverse system

(3) {RE, sF}.
Each projection s? generates an exact sequence of chain complexes
proj g q P
j4 sP _
(4) 0-CE5SRESREY S0

where 7”7 is a chain mapping ol degree (— p).
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Therefore for each pe Z we have the exact homology sequence
p
(5p) oo Hy p(C0) 5 (RS HY(RLY) = Hpe g1 (CR) =
write K? = Kerw}.
LemMma 1. The composition
P p
Hy(RE ) = Hyy oy (Co) ™ Ha oy (C1Y)
is a trivial homomorphism.
Lemma 2. The composition
_q, 8P 1 p
H,ip(CY )= H,. f(CE)'= H,(RY)
is a trivial homomorphism.

Lemsma 3. The diagram
p-'l

Hn+p 1 ﬂ+P ‘|

\/

H(R

is commutative if n is even, and anticommutative if n is odd.

Proof. Lel - be a representative of IreH,,+,,_1(C" ). Then (—=1)"6°P"! -
is a representative of the class wft? " 'hand 6" ' - is a representatlve of the
class 3~ ' h. The lemma is proved.

The cochain complex C§ (2) induces the cochain complex
(6) = HEY S HC) S HE Y
the homology groups of which are denoted by E* = |EF}, ,, where
E?P = |EP} ..z = {KerdZ/Imé2™ 1 4.

LEmMmA 4. We have the exact sequence
Ki— KD ' Ef, .

Proof. Consider the diagram

0
K ————»Kera

l,- ™

R g LAY PN Ly SR
N l P l—
tun W
p-1
H, . lCo L mkerd®  — T wE”  ap

n+p-1 n+p-1 nep-1
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in which the exactness of the middle row is provided by the sequence (s,- ;)
and the exactness of the last row by the definition of the cohomology groups
EfR, ,-1; the exactness of the middle column follows from Lemma 1; the
homomorphisms @ and § are induced by the homomorphisms w? and s?~!
respectively.

Let us consider the composition

%

(8) K25 KE 'S ER,, o,
where
(9) =810 =03

It will be shown that § is an epimorphism. Let xeKer@. Then
rof(s?~ 1) 'i(x) = 0. Taking into consideration the exactness of the last row,
we have 877!y = wf(s"7") "' i(x). Il we take (—1)"veH,,, (CL™"), then
from Lemma 3 it follows that w?t?~'(—1)" y—w"( =1 Vi(x). Let us
define the element z = (i) '[(s? ") 'I(x)—(—1)"tP ' y]eK”?. Since i is a
monomorphism and equality (9) holds, we have 5z = x. The lemma is proved.

LEmMmA 5. We have the exact sequence
-1 -1
ES;l  —KE— KD,

Proof. Let us consider the diagram.

0 0
p-1 N p
En+p—1

N
KI'J

oo

p-1 ¢ -1 - -
Hopt (€T [ mel ——H (RT) —2 e k7 —
p
l.: (wn lw
3 3
0 n+n 1(C )/K np1 Hn+p-'|(c )_—>Hn¢p 1(C )/ImanAp'I-—»O

|

0

The exactness of the left column follows from the definition of E,,+,, i
=Kerdi;,)_/Imdr;2_; the exactness of the last row from the iso-
morphism  H,,,_,(CZ)/Kerdh,,_, ~ImédZ;}_,. Let us prove the
exactness of the middle row. From Lemma 2 it follows that the homo-
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morphism t"~': H,,,_;(C4 '} = H,(R%™") induces the homomorphism t.
The exactness of the middle row follows from the sequence (5,-,) and the
commutative diagram

HypoilCo ) — = Kers® —= 0
(10) y /F
2
n-.p1(c )/l 6[) o2=1

The homomorphisms f and w are induced by the homomorphisms ¢ and
wh, respectively.

Let us prove that the composition

Efpo i~ K25 KL,

where §=s""'-i, is exact. Let xeKer5 The existence of
veH,., (CL"Y)/Iméss 7, such that r(y)=i(x) follows from the ex-
actness of the middle row. Since wir(y) =0, using Lemma 3 and the
monomorphism &, we have (y) = 0. The exactness of the left column ensures
the existence of 7eE,,+p_1 such that ir(z) = 1T(z) = t(y) = i(x). Since i is a
monomorphism, t(z) = x. The lemma is proved.

LemMma 6. We have the exact sequence
Kiii—Efi;- — K]
Proof. We consider the commutative diagram

p-2
-2, S p-2

Hn”(R' )'—'.'K,,ﬂ
W P
r p-1 t P
(1 1) Kerdn+p 1 En+p-1 Kn
J T i
18 1 r 1 g7 1
o- p- o- p-
HypalCy V) —H,_ ,1C, )/I 6mn1—-Hn(R, ==K =~ —=0

Assume xeKert. Since r is an epimorphism, yeKerd2; +p 1 such that
r(y) = x can be found. From diagram (10) it follows that t°~ Lo i(y) = toj(y)
= ttr(y) = tt(x) = it(x) = 0. Since jw? ' =wfi! and Kert’”! = Imw?f;},
by virtue of the exactness of the sequence (5,-,), there exists ze H,, ; (R %)
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such that w” '(z) = y. Since rw?~' = @s"~ %, we have a&(s?” *(z)) = x. The
lemma is proved.
From Lemmas 4, 5 and 6 follows

THEOREM 1. We have the exact sequence
(12) e KT S BT KT S KPS BT
LemMMAa 7. We have the isomorphism
Ry = lim R
2

LemMma 8. We have the exact sequence

0— lim" H,,(R}) - H,(R]) — lim H,(R}) — 0.
- -
I4

P
CoROLLARY 1. We have the exact sequence

0—1lm"K?, , - H,(RF)— limK?— 0.
2 2

Proof. From sequence (Sp) we have Imsf = K? and from Proposition
2.21X [4] we have the isomorphism

lim®”Ims? =~ limY H,(R2), i=0,1.
— —
P P

Using Lemma 8, we obtain the required statement.

CoroLLARY 2. (a) Let n and p be fixed integers. If E,,, = E\\! =0 for
1= p, then

H, [ (RY))=lmK,_,

and the sequence

0— imMK',, —» H,(R¥) » KZ -0

is exact;
(b) If condition (a) is fulfilled and E,,,., =0 for 1 > p, then

H,(Ry) = K,
for all t =2 p.

The complex C% (2) will be called restricted from the left (right) il C,
=0 when i < p (i > p), for some fixed p.

The complex C} (2) will be called restricted from below (above), if C¥
=0 when j <gqg (j > q), for some fixed q.
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LEmma 9. (a) If the complex«C¥ is restricted from the left, then we have
the isomorphism

p+1
En+p_' Kn

for all neZ:
(b) If the complex C¥ is restricted from below, then we have the isomor-

phism
g—n g—ntl
EI""> K}

for all neZ.
CoroLLARY 3. (8) If the complex C¥ is restricted from the left and E; =0
for all t > p' > p and qe Z, then for all ne Z we have the finite exact sequence

+1 +2 +2 +3 +2
0 B2 — K2 By~ ESTR ) — KET = K2
+ ‘ ® :
—’Eﬁ+p+1——" _’Kn+s+1_'Eg+p+1‘_'Hn+s_’K|‘:+s_'0:

where s=p+1—p
In particular, if p' = p+1, we have the exact sequence

0— En+p+1_'H _'En+p_'0'

(b) If the complex C} is restricted from below and EP =0 for all
r>4q >q and peZ, then for all nec Z, we have gq'—q exact sequences

”_’Eq n—l_'Eq n+1 Kﬂ-n+2__'Eg—n_'Eg:rll+2__'Kg_T+3

o KT S BN s HY  KE T S BV L HY S KT
In particular, if ¢ =q+1, then we have the exdct sequence
_’EgAn-l . Eg:rll+l . H:} . Eg—n_’Eg;;IH-Z N I_]ﬂ_1 __’Eg—n+1 —_
(c) If the complex C¥ is restricted from the right, then for all ne Z we
have the exact sequence
.o KF i - ER, ,—+H? - KE—0.

Let f* = |f"): C¥— C* be a mapping between two cochain complexes
of the type (2), where f': C\, — C is a chain mapping. It is clear that f*
induces the commutative diagrams

-1 P

Y —-—Km.‘ —»E —PK K = £ oo
7p-2 =p-1 DT "D
(13[1) fnﬂ fq l l
—p-2 = p-1 = - -
e —bKnp”-——b_Eq —n-K —-K —h—E:—----

where p=¢g—n+1, and



352 L. D. MDZINARISHVILI

o - i r
D—bm Kn+'|——"Hn—-'HEKn_"0
r r

M- - -
lim f f lim f

-— -

o M=r —~m
00— lim K,

—-— -—
r r

Y
Yy
5
o

CoroLLARY 4. If f is an isomorphism for n and n+1 and any r = p, then
1% is an isomorphism.

LemMma 10. (a) If the complexes C¥ and C¥* are restricted from the left and
j;’: E, — E, are isomorphisms for all t 2 p and qe Z, then [,* is an isomorphism
for all neZ.

(b) If the complexes C* and C* are restricted from below and f;P: EF — EF
are isomorphisms for all t 2 q and peZ, then [, is an isomorphism, nc Z.

Proof. (a) From statement (a) of Lemma 9, diagram (13q) for g =n+p
+1 and condition (a) of the lemma it follows that in the diagram

p+1 p+2 pt+2
0 o Ern-pt‘l e Kn - Enop_> En+p+'|
= pe2
0—»E” er'z 'E —»E‘”Z — e e

ne po'l n+p+l

the homomorphism f£*? is an isomorphism for all ne Z.
For g = n+p+2 diagram (13¢g) has the form

= p*2 —

. E n+p+2

—PE

-] p+2 p+3 p+2 p+3
n+p+
pt+1

Aepet nopt? K
p¢3 ‘_p'z
—K
since Ef, ., = K?+1 (Lemma 9 (a)).

Using condition (a) of the lemma, the isomorphism f?*? and the five
lemma, we conclude that f7*3 is an isomorphism for all ne Z. Continuing by
induction, for all ¢4 = n+t+1 and t = p+2 [rom diagram (13g), and condi-
tion (a) of the lemma it can be deduced that f! 2 is an isomorphism, t > p
+2. Applying now Corollary 4, we obtain the required statement.

(b) From statement (b) of Lemma 9, diagram (13(g+ 1)) and condition
(b) of the lemma it follows that in the diagram
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g-n-1 g-n+1 g-n+2 g-n+2
ase _-.Eq —}Eqﬂ —)Kn —)E —‘.EQH —_—
fq-n+2
-n- =g-n+1 -g- -
Eqn 1 E;7+.:+ K:n+2 Eqn Eqn+2 ces

the homomorphism f¢ ""? is an isomorphism for all ne Z.

Using condition (b) of the lemma, the isomorphism f47"*2 and fo/*!
and the five lemma, from diagram (13(g+2)) we deduce that f97"*? is an
isomorphism for all ne Z. Continuing by induction, it can be proved that
fa=n*tis an isomorphism for all t >4 and ne Z. Using now Corollary 4, we
obtain the required statement.

Let f* =[], g* = {g'}: C¥— C%. The g-th components of the map-
pings f*. ¢' will be denoted by fi, gi: Ci— Ci.

By a homotopy (s, s,): f* ~g* connecting the mappings f* g* Ck
— C¥, we mean a pair of homomorphisms s, = {s}], s, = {s}}: C*—»C*
where s7: C, — C, is a homomorphism of degree (+1) and sy: C), — C'

a homomorphism of the O-th degree; their g-th components are 5‘1.91 C;
— Chey. Sh,t Cy— €Y, respectively such that for all i, geZ we have
7+1 s 2t q-1 a' +(—1)! 5;_1 5‘:7..4‘*‘(— l)q_"sizfql 5; = g;—f;,
$;0 =08;, 0{sy+8,0=0.

For the cones RY and RY of the corresponding cochain complexes C¥
and C?* the homotopy (s, s,) defines the homomorphism s = {s"}: R® — R}
of degree (+1), where s": R® — RY,, is given by the equality s" = {s| ,,,}
+ {SiZ.n+i}'

Lemma 11. The homomorphism s is a homotopy connecting the induced
mappings [*, g*: RY — RY.

Lemma 12. If (sy, s;) is a homotopy connecting the mappings f*, g*: C}
— Cx, then

T = g% K RE.

LemMa 13. If (s,, s;) is a homotopy connecting the mappings f*, g*: C}

— 6:, then
J?p — gp E“’ -, E”

3. Applications

Let . be an abelian category with a sufficient supply of injective
objects, Ab the category of abelian groups, T: # — Ab a left-exact additive
covariant functor and T®: ¥ — Ab the right derivatives of the functor T,
i>0. It is clear that T =T

23} -~ Buanach Cenler Publications
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Consider a chain complex in the category %:

n+|

i‘fl ‘: -
K,=..«K, (<K, < Ky ..

The conditions imposed on the category .# ensure the existence of the
resolvent I(K,) of the complex K,:

0—*K*—’12—r1l—r...—»1i7l—lrl‘:‘—r...,

where I§ are chain complexes, p = 0.

Denote Kerd,, Imé,.,, Z,/B, by Z,, B,, H,, respectively, and their
resolvents by I(Z,). I(B,), I1(H,), respectively.

Applying the functor T to the injective resolvent 1(K,), we obtain the
cochain complex ol the type (2) restricted from the left.

(14) TIOTI, - ... TI S TID - TIRY -

ThiOREM 2. For cochain complex (14) and any ne Z we have the exact
sequence

0— T(UHn+1—-’K,2,—?TH,,—> T(Z'H,,+1_’K3 -*K;2,—1”’T(3)Hn+1_’"'

n—1

Proof. Since the functor T is lelt exact, [rom the commutative diagrams

0 0 0
0 —78, ——» 72, ——TH,

N

O0——=TIH{B)—»TI(Z)—»TI(H]—>0

and
0 0 0

oo

0T, —> TK, ,—— T8,

v

Q—TIlZ ) —=TlK

it ey — > T71(8,) —=0

it follows that for all ne Z we have the isomorphism
H,(TI1%) =~ TI?(H,).
Therefore for p > 0 we have the isomorphism
EZSTPH,

Using Lemma 9 (a) and Theorem 1, we obtain the required exact sequence.
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Denote by Ko the cone of the cochain complex TI(K,).

CoROLLARY 5. If for a chain complex K, e X the condition T" H, =0 is
Julfilled for all neZ and i = 2, then we have the exact sequence

0—TYH,,, »H (K> TH,—0.

Let K, and K, be two chain complexes and f,: K, — K, a chain
mapping in the category 1"

CoroLiary 6. If ‘the chain mapping f, induces the isomorphism
f*: H(K,)> H(K,), then for all neZ the induced homorphism

17 Hy(K§)— Hy(K])

is an isomorphism.

CoroLLARY 7. If chain mappings f,, g,: K, — K, are chain homotopic,
then for all ne Z we have

[ =ax Ho(KQ) — Ho(K)),
ff=g4 Ki— K,
f?=ge: Ef—EP.
Remark 1. From Corollary 7 it follows, in particular, that for any chain

complex K the groups H,(K}) and K[, n, peZ, are uniquely defined,
independent of the choice of the injective resolvent [(K,).

THeorem 3. If the functor T is exact, then we have the isomorphism
H,(TK,)= H,(KJ)
for all neZ.

Proof. Since the functor T is exact, it follows that T'” H, (K,) =0, p > 0.
Using Theorem 2, we obtain the isomorphism

(15n) TH, > K},

for all neZ and t = 2.

Since in the inverse system {K}. }, the projections are isomorphisms,
lim" K¢, , = 0. By virtue of Corollary 1 and the isomorphism (15n), we have
(_

(16) TH,~ K2~ limK', ~ H,(KZ).
«—
On the other hand, since T is exact, we have

KerTo, = TKerd,=TZ

n»

ImTé,,, = TImé,,, = TB,.
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Therefore
(17) H,(TK,) =Ker To/Im T¢,,, = TZ,/TB, = TH,,

The required statement follows from the isomorphisms (16) and (17). The
theorem is proved.

A category # will be called “good” if in the category of chain complexes
generated by it total homologies of the second kind can be defined.

CoroLLArY 8. If a category X is “‘good”, then we have the isomorphism
H,(K,) ~ H,(R2(I(K,))-

Write Z? =Kerd,, BP =Imd,,,, HP =Z2/BF = H,(RZ(I(K,)))
where 4, is a differential in the chain complex RY(I(K,)).

CoroLLARY 9. If a category A is “good” and a functor T commutes with
direct products and T®(p®): TP ZF¥ — TP HF is a direct sum, then we have
the exact sequence

.- T H,,, »TVH - H (KX~ TH, - T?H ., — ...
(see [20]).

4. Examples

ExampLE 1. Let K = Inv®? be the category of inverse systems of abelian
groups with the same directed set of indexes Q= (¢} and let TV

= lim"”: Inv®? — Ab be the derivatives of the functor of inverse limit lim,
— —

p=0.
Consider an arbitrary chain complex

(18) K,=..«K, |« K, <Ky ...

from the category Inv?
Since in the chain complex (18) the chain complex

Ki=.. K «Kj<Kj;;—...

is given for each aef, its homologies form the inverse system H,
= IHi}elnv? and H_ (K,) = H,.

By virtue of Theorem 2, for the chain complex (18) we have the exact
sequence

19 00— li+r_n‘”f_f..+1 — K2 — lim H, — li‘r_n”) HY, —K;
- K&_l - ]im(a)H"+1 - ...
‘_

For a given chain complex (18) we will define the homology groups H,,
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t=90,1,2, ..., and also ﬁ*(lj*), using for this purpose the derivatives lim®,

p = 0 constructed, as was suggested by Roos [26], lor the inverse system A
= {A,} elnv? as the cochain complex cohomology

® _
!5 i IlAa_’ |I Aalaz_' II Aala213_’---a
xef? a2y <ay ay <apy<ay

where A4 = A, 4 <ay <...<a, [26].

X)Xy

Taking into account Remark 1, it can be shown that H ~ K.,
t=1,2,..., ﬁ,, (Ke) = H, (E*) and also that the sequence [ 19] is isomorphic to
the sequence from Theorem 1 [23].

ExaMpLE 2. Let S =g .# be the category of (left) modules over a given
ring R and Extj(—, G): g # — Ab the right derived functors of the functor
Hompg(—, G), n 2 0. In what follows the symbol R will be omitted in the
notation Extk(—, G).

Consider an arbitrary cochain complex
Kt=. K VS g g,

from the category g.#, cohomology modules of which will be denoted by
H(K*) = H*.

By virtue of Theorem 2, for the cochain complex K* we have the exact
sequence
(200 O0—Ext(H"*!, C)— K? - Hom(H", G) — Ext?(H"**, G)

—PK:_I —»K:_l —?Exta(H"+l’ G)—’
We denote by H;(K*) the homologies of the cochain complex

Hom(P, K*, G), where P, K* is the projective resolvent of the complex K*.
We have the exact sequence

(21) 0-—»lim‘”K';,+, —»H,,(K*)—'lim Ki,—.O.
s &

If R=Z, then the conditions of Corollary S are fulfilled and we have
0— Ext(H"*!, G)—» H®*(K*)— Hom(H", G) = 0.

ExamprLE 3. Let X be a topological space, C*. the category of abelian
group bundles over X and I'p: C*¥ — Ab the functor, such that is ',(F) the
group ol sections of the bundle F over X with carriers from the family
o [8].

As is known [8], the cohomology H"(X, F) of the space X with values
in the bundle F is defined as the n-th right derived functor of the functor
Iy
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In the category C* we consider a chain complex

L,=..«L,_«L,«L,, ..

the homology of which will be denoted by #(L,} = #,. Applying the
functor Iy to the injective resolvent 1*(L,), we obtain the cochain complex
I'yI*(L,). The homology of the cochain complex cone 1“01*(L*) will be
denoted by H, (X, L,).

By virtue of Theorem 2, for the chain complex L, we have the exact
sequence

0—- H' (X, #,.)—K; - HY (X, #)=>H* (X, #_.)
- K[;'—l —*K§-1 - HJ(Xs ”f‘qi'l)"—’

.« vy

where H*(X, ) is the cohomology of the space X with values in the
" bundle.

Moreover, we have the exact sequence

— 0.

i
P q

0—lim " Kj,, — Hy(X, L)~ limK

Using Examples | and 2, exact homology theories can be constructed
for arbitrary topological spaces with coefficients in an abelian group or in a
module.

ExampLE 4. Let Top, be the category ol pairs of arbitrary topological
spaces. For each object (X, A)eTop, we will consider the inverse system
(X,, A,)], consisting ol pairs of simplicial complexes (X,. A,). This inverse
system can consist either of nerves of coverings, whose refinement induces
the unique simplicial mapping between the nerves or ol Vietoris complexes
[19]. Applying Example 1 to the inverse system [C,(X,. A4,, G)! of chain
complexes C,(X,, 4,, G) over the coefficient group G, we can define the

x.

homology groups H (X, 4, G) = H* C (X, A;, G)] of the pair (X, A) over
the coefficient group G, satisfying all Eilenberg-Steenrod axioms [23].

ExampLE 5. Let (X, A)e Top,, R be a ring with unity and C*(X, 4, R)
the Alexander-Kolmogorov cochain complex of the pair (X, 4) [28]
Applying Example 2 to the cochain complex C*(X, 4, R), we define the
homology H,(X, 4, G) of the pair (X, A) over the module G as
HY(C*(X, A, R)). It will be shown that the homology defined in this
manner satisfies all Eilenberg-Steenrod axioms.

To an exact sequence of cochain complexes

0-C*(X,A, R - C*(X,R)—C*(4, R) =0
there corresponds an exact sequence of projective resolvents
0—P,C*(X, A, R)— P, C*(X, R)— P, C*(A, R)— 0.
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Then the sequence of complexes
0~ Hom (P, C*(A, R), G)-» Hom (P, C*(X, R), G)
— Hom(P,C*(X, A, R), G)— 0
1s exact and so 1s the corresponding sequence of cones
0— Ri(A)— RS (X)— R;(X, A)—0.

The exactness axiom for the homology H, (X. A, G) follows.

The remaining axioms (homotopy, excision and dimension) will be
proved, using exaclt sequences (20) and (21).

Since for any neZ and p>= 1 we have the exact sequence

Ext”(H"*"(X, A, R). G)— KI"' = Kl - Ext** ' (H"*" X, A, R), G)

and the cohomology H* (X, A, R) satisfies the dimension axiom, for the one-
point space X we have

H,(X.G)x K; ¥ Hom(H"(X, R), G).

Let j: (X—U, A-U)— (X, A) be the excision mapping, where U 1s an
open subset in X such that U < Int A. Since j induces the isomorphism
*: H¥(X, A, R)— H¥*(X-U, A—U, R), Corollary 5 gives us the excision
axiom for the homology H,(X. A, G). Let us have mappings go. ¢g;: (X. A)
— (X, A) x1I, where go(x) =(x,0), g,(x) =(x, 1) and p: (X, A)xI — (X, A),
where p(x, t) = x. The mapping p induces the cohomology isomorphism
H*(X. A, Ry— H*((X, A) x1, R). Using Corollary 5, we obtain the isomor-
phism p,: H (X, A) xI,G)— H_(X, A, G). On the other hand, we have
Jox P« = Y14 Py~ Hence i1t follows that go, = g,,.

If R=Z then the homology H, (X, A, G) of the pair (X, A), with
coefficients in the abelian group G, coincides with the homology introduced
in [10].

As 1s known [28], there exists a canonical isomorphism

C*(X, A) > lim [C* (V. V).

where C*(X, A) are the integral Alexander Kolmogorov cochains of the pair
(X, A) and C*(V,, V) are the integral cochains of the pair of Vietoris
complexes (V,, V), corresponding to an open covering (U,, U;) of the pair
(X, A). Obviously, there exists a free resolvent [F*] of the direct spectrum
{C*(V,, V) such that lim [F?} is a free resolvent for C* (X, A). Since for all

n >0 we have

RZ (X, A) = Hom(lim F5", G)+ Hom(lim F{"* ', G)

~ Hom (lim(F§"+ Fi"*" 1), G),



360 L. D. MDZINARISHVILI

the conditions of Theorem B [20] are fulfilled, and for the homology
H,(X, A, G) we have the exact sequence

L im® A, , - imY AR, - H (X, A, G)— lim A% - im® H2, |, — ...
- — —

—

where H,(V,, V,, G) = H,(Hom(F*, G)) = HS.
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