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To prove the necessity of the condition suppose that 3ot < o0, Let

n=1

w be any sequence of real numbers. For m=2, 3, ..., denote
F,=card {n < &, 0(ye(n)=o(m—1).
Since
Clrg: 0. =1, m=1) = ] (s 1),
we have i

Li g ]

im_(Fu/0,) > [] (1-07) > 0.
n=2

It follows that the sequence w oy, can not be w.d. mod 1, and so y, has not
swd-property. This completes the proof of the theorem.

of
CoroLLary 4. If 3 ;' <o, then for no sequence w of reals the

=1

sequence ©oOvy is ud. modl.
CoroLrary 5. The sequence (yo(m) @), n=0,1, ..., is wd. mod1 (ud.

. [ce]
mod 1) if and only if @ is irrational and the series Y o7t is divergent,
i n=1 -
We remark that if « and £ are sequences having the swd-property, then
the sequence z o has it also. Using this fact and Theorems 1, 2, 3, 4, and 5,
we may construct other sequences with the swd-property. '
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Zeros of p-adic L-functions
by

Nancy Crinpress (Austin, Tex.) and Rosert Gorp {Columbus, Ohio)

Introduction. In this paper, we study the zeros of the Kubota—Leopoldt
p-adic L-functions. These functions are known to be related to certain formal
power series over Z, defined by Iwasawa, and it is this relationship which
will be exploited to analyze the occurrence of zeros for the L-functions. The
zeros of these power series are better understood (via the Main Conjecture),
and are more readily computed. The assumption that a zero of the Iwasawa
series f,(T) for a Dirichlet character y will yield a corresponding zero of the
L-function L, (s, x} is in general false, however. For instance, in [8], Wagstail
has computed zeros of the Iwasawa series for various fields and has used the
relationship with L,(s, x) to compute values for s which in many cases are
not within the domain of convergence of the L-function, so clearly cannot be
zeros of it. The relationship between zeros of the series f,(T) and those of
L, (s, y) will be given. We then will consider the more general case of p-adic

'L-functions defined over the fields @, constituting the layers of the basic Z,- '

extension of @, and the relationship of their zeros to those of the series f,(T).

The results presented here are based upon material from the first-named
author’s Ph. D, dissertation. The authors would like to thank Warren Sinnott
for many useful conversations and suggestions.

1. p-adic L-functions. Let p be an odd prime. Let Z,, Q, and €, denote
the p-adic integers, the p-adic rationals, and the completion of the algebraic
closure of @, respectively, We use the normalization |p| = p~! for the p-adic
absolute value, Let w be the p-adic Teichmiiller character, defined as follows:
for ae Z3, let w(a) be the unique (p—1)st root of unity in Z, satisfying w(a)
ma(mod p). {Then @ is a Dirichlet character on Z of order p~1 and
conductor p.] Let {a)> = w(a)"'a o

Let 4 be a positive integer prime to p. Assume d 3 2(mod4). Let
gn=p"""d, K,=Q(,), and K, = UOQ(C%), where {, is a g,-th root

n

P2 . .
of unity. Then Gal(K./Q) =G xI, where G=Gal(Ko/@ and I

=Gal(K ,/Ko) = 1+g,Z, =(1 +qo)zf’.. Let x be the isomorphism between I’
and 14¢oZ,. [So 1+4g, is the image, under x, of a topolqgical generator for
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I'] The elements of I fixing K, are just the elements of '™ &= 1-+g¢, Z,. So

we have Gal{K,/Kq) = I/l =T,, and Gal(K,/Q) = G xT,.

Let ¢ be a Dirichlet character of conductor dp/, for some j 2 0. Then ¢
may be regarded as a character of Gal(K,/Q), so that it may be written
uniquely as ¢ = y, with ye G~ and ¢ eI, [4” denotes the character group
of A.] x is called a character of the first kind, and ¥ is called a character of
the second kind. Note that characters of the first kind are associated with K,
= Q({,n and hence have conductors dividing pd, while characters of the
second kind are associated with the subfield of Q(Cp,,ﬂ) of degree p" over Q,
and hence are either trivial or have p~power otder and conductor of the form p/
with j = 2.

Let ¢ be any primitive Dirichlet character. Then the p-adic L-function

'L,(s, @) is the unique continuous p-adic function Z,— C, such that:

Ly{t=n, ¢) = ~(1=w™"(p)p" ')(B, ,, -d/n)

for every positive integer n. [B, . denotes the generalized Bernoulli nuraber]
Note that if p—1 divides n, then L,{(1—n, ¢) agrees with the classical
Diirichlet L-function except for the Eu]er factor at p, which does not appear.
Also, if ¢ is odd (ie. @(—1)= —1), then L,(s, ¢) is identically zero.

Let ¥ be a non-trivial even Dirichlet character of the first kind ‘associa-
ted to K, a real cyclic extension of Q. Let g =lcm.(f. p), where [ is the
conductor of the character y, and let B; be the jth Bernoulli number.

Then the p-adic L-function, L,(s, ), may be writlen (according to a
formula of Washington, [10]): '

Lyl = g s=1)° z wey @y (7
= =1
(ar, p) 1

Now Iwas.iwa [31, has defined a formdl power series 5MeZ,A[[T]]
connected to L A5, x) via:

)(Q/a)j B;.

Ly(s, )

for every n, where ¢

bt lroy=1) =

#{1 g}

-

where x is defined by 7, (C ,,) —t_,

Eon is a p"th root

of unity, and where Yo I8 a topologlcal generator for Gal(K ,/K}. We may
take x{ys) = 1+4¢, as above. We note that L,(s, ) is then defined and
analytic for [s| < p!~Yr~ 3 Morita, [6], has shown that L,(s, x) cannot be
continued to a single-valued analytic function on any Idrger s-disk. Now the
change of variable T= s (y,)*—1 reldtes zeros of f,(T) with zeros of L,(s, x).
Under this relation, the s-disk, %, = {s: Js| < p! =17~ Y1 maps into the open
unit - T-disk. [A partial inverse is given by s = 10g(1+T/log(1—|—q), where
“]og denotés the p-adic logarithm (see below).] We note that if s 7/, is a
zero of L (s, y), then we have a corresponding 2, = (1+¢)°°—1 in the open
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unit T-disk which is a zero of £,(T). As we will show, however the converse
is not necessarily irue.

The power series f,(T) is known to satisfy the hypothesis of the
Weierstrass Preparation Theorem, [9]. Thus it may be written as a product:

STV = 7D (T U(T)

where U (T) is a unit power series, D,(T) is a distinguished polynomial, 7 is
a prime element above p in the ring Z,[], and gz is a non-negative integer
depending on K and x. We consider f,, as a function on the open unit T-disk.
Then we note that the zeros of f, are exactly the zeros of the distinguished
polynomial D,. In particular, f, has only finitely many zeros. Also, it is
known that for abelian extensions of Q, u =0, so that in our situation,

fx(T) =

2. Zeros of L,(s, y). We first state some general results concerning p-
adic logarithms and exponentials. Define:

D (TU(T)

exp(X

ZX/n'

log {1+ X) = 1)1 X

Z (—

Heel
Then;

1, exp(X) has radius of convergence p~ Y1,
2. log{l+X) may be extended to all of C}, such that logp = 0, and

. log(n)—log x+logy for all x, ye (7.

30 |x < p D then (log{l4x)| =|xl: if I.\clép“”“””, then

log (1 +x) < |x|.

_ {For proofs, see sthmgton [97.

In fact, let D= !x:|x] <p~ /"1 S0 D is ‘an additive group, and
1+ D is a multiplicative group. Then it is well known, [5], that exp:
D= 14D, and log: 1+ D - D are inverse isomorphisms.

LEN;MA L Let | €1, aeC,. Then for all positive neZ, oef’"ED if and
only if (1+2)""—~teD.

Proof. We know:

(127" =1 =" 4. +()’+ o

Each of the terms on the right, except o is of absolute’ value at” most
Ipal < |p| < p=1P=D If 1g"") < p™ P~ a5 well, then (2 + @) — 1| < p~ 7Y,

5 o= Ay Arithmetien XLVIHL]
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Conversely, if (1+a)*"—1eD, then 2®" clearly must also be in D. Hence we
obtain the desired result. =

LemMma 2, Let g be as in Section 1.
< pt VPO and for such s we have

| (14 —1] < p~ e,

Then (1+q) converges for |

Proof. For proof that (1+4g)°=1+.. +( )q +... converges on ||
< ptie- b sen [9], Proposition 5.8. Note that v,(n!) = [n/p]+[n/p2]+

so if p*<n <p"‘“, we have -
y,,(n*!) g n/p+n/p2+...+ﬁ/p"? =(p" 1+ ...+ 1)nfp"
=((p"—=DAp—1)n/p™ < (n—1)f(p—1).
Hence

- f(p~ 1—-1/(p— —1{p—
pm Wip ”(p e 1))n=pn L{p—1)

()=

“HE D) which gives

So ‘(Z) "

I(1+gy—

1] smax{
nzl

Sy n —1fp-1)
<
(n)q} p-
as desired. =

Now let [x] < 1, xe C,, and suppose log(1+x) = 0. Then we may choose
an integer n such that x*"eD. By Lemma 1, (1+x)"e1+D. But log (1 +x)*"
= p"log(1+x) = 0, so (1+x)*" = 1. [Since log is an isomorphism on 1+D, it
will have trivial kernel there.] So L+x is a p"th root of unity.

Lemma 3. Let |of <1, aeC,, and s, =log(1+a)/log(l+q). If |s,p™
<p U, then (14 = e~ (L+o)"" for some p-power root of unity o,
which:is uniquely determined by |(1+x)?" —g| < p~ e~ 1),

a

Proof. Note that log(1+x)"" = log(i+4)™ , and that Lemma 2 gives

(144 e 1+D. Thus log[(1+2)”/(1+4*""] =0, and (1+a)™/(1 4"

may be written as 1+x for |x| < 1. Thus (1 +a)?"/(1 +q)s°‘p = p for some p-
power root of unity g, by the remark above.

Now, since (I+_q)“” —1eD, we have ¢"'(1+a)"~1eD. So
I(14+2)" —of < p~tHe=1),
Suppose @1, Q2 are p-power roots of unity, and

T+ " —g | <p~ =D for jam=1,2.
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Then
loa=e1) = (L +2)”" ~ 0, )~ ((1+ 2™ —g)|
< max [1+a)"" —g|} < p~ M1,
J=1,2
So _
o7 g1l < p P70, |
Now g; '@, is a p-power root of unity, say of order p". Thus

lo7 ! @2 —1) = p~ oMo < p e,
So p""Y(p—1) < p—1, and hence n=0. Henee ¢, =0, w
Now let i be a Dirichlet character of the second kind for the prime p.
Such characters are in bijective correspondence with the p-power roots of
unity via:
i corresponds to ¢ if and only if ¥ (ye)™ ' =¢.
Write . for the character of the second kind associated to {. Then:

L,(s, xy2) =fx(CV~ (yol — 1)

where y is a character of the first kind, as in Section L.

Because of this relationship, it is natural to consider lL (s, xt,(/,; for ¢
ranging through the p-power roots of unity. We study the question of when a
zero of f,(T) corresponds to a zero of any one of these related L-series.

THEOREM 4. Let o be a zero of [,(T), and let s, = log(1+a)/log(l +4g). If
st < pt ™M, then L,(s,, xift,) = O for some p-power vool of unity g.

Proof We. know g < 1. Since {s,| <p'~'r~1 we take m=0 in

Lemma 3 to get (1+g)* = Q"{1+u) for some p-power root of unity o. So:
Ly(5ar 1) = fy(o(L+a@* = 1) = flee™ (1 +0)=1) = fy() = 0
In fact, Lemma 3 gives us a characterization of the p-power root of

unity g, i.e. g is the unique root of unity which satisfies |1+x—g < p™ /71

TueoREM 5. Let « be a zero of £,(T), and let 5. = log(l+a)/log{1+q). If
8, is a zero of at least one of {L,(s, xy;)} then there is a (necessarily unique)
p-power root of unity @ such that

frt 1 —gl < p e,

Conversely, tf le+1—g| < p~ Y=Y for some p-power root of unity g, then
Lp{srn xlﬁa) =

Proof. Say L, (s, xW:) =0 for some p-power root of unity {. Then
since L,(s,, x\#:) is deﬁned we must have |s,} < p!~ 1"~V Lemma 3 gives
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{L+¢)* = ¢~ '(1+2) for some p-power root of unity . And Lemma 2 gives
(1+q*—1eD. So we have g '(1+a)—1eD, ie. [l+a—p| < p~ D,

w

Conversely, say there is a p-power root of unity g, such that |x-+1—g|
<p V®7H Then ¢ '(I+2)el+D, so that log(e '(1-+x)eD, ie.

log{1+2)eD. So |s,| < p* "~V and Lemma 3 gives (1+¢)™ = ¢~ (1 +2).
As in Theorem 4, we obtain L,(s,, x,) =0. =

Note that the umqueness of ¢ does not imply that L,(s, yi,) is the only
member of [L,(s, xi)} having s, as a zero. For example, if both z and
(l+x)y—1 are zeros of fy» then s, could be a zero of both L',,(s, %) and
L, (s, yb:). However, we do have the following:

CoroLLArY 6. Suppose o is a zero of f, and g is a p-power root of unity
such that |a+1—g <p~'=2 Ler ¢ be any p-power root of unity, and
s, = log(14+2)flog(1+¢q). Then:

Ly(se ) =0 if and only i f({g™(1+%)~1) = 0.

‘Proof. By Lemma 3, (1+¢)™ = ¢~ '(1+2), so

Lo(se ) = L,C(1+q)* = 1) = f{fo~ " (1 +o)—1). =

. L-functions over the totally real fields, Q,. Suppose now thut v is
a zero' of f,, but that s, is outside the domain of the L-function, ie.
i 2 p' 7M™, This seems to occur quite frequently, Using Washington's
formula, W.:Lgstaﬂ' [8], has computed approximations for the zeros of L(T)
for 7 a real quadratic character and p=3,5 For example, for 7 of
conductor 181 ‘and p =3 we find D, to be an irreducible (over Q;) quad-
ratic which has zeros a = 2055 ;l:647-{3)”2(m0d 37). He  determines s,
=711048(3)""*(mod3”), each of which has absolute value 32
= p*~ M@= (For further such examples, see Kobayashi, [4]) In this section
we provide an interpretation for these values of s, which do not fall inside
the domain of L,(s. ).

Define %, = !s: |s| < p"* !~ o= n for each non- negative ne Z. Let {,
be a primitive p"*'-th root of unity, and let Q, be the unique subfield of
Q(Lo) which is cyclic of degree p™ over @ fi.e. the mth field in the tower
constituting the basic Z,-extension of ). Then, for 8, &y, We have
L (8.0 2, Q,), the p-adic L-functmn defined over @,, with ¥ now considered
as a character of Gal(K,,/Q,). For a detailed definition of these functions,
see Deligne—Ribet, [2], and Ribet, [7].

We note that, for se &y, Ly(s, z, Q,,,)—HL (s, x¥), where ¢ runs

through a]l p-power roots of unity of order dividing p™.

Moreover,
L (s X, Q) is Iwasawa analytic-on &,,. S
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Corresponding to L,(s, xi.) is the Iwasawa series f, ({(1+ T)—1). So
[TLsts, xi¥;} corresponds to fo(§(1+ T—1), ie

Se ffo

1L, x!!/)—l—[f“rfu" 1) for

Coleman, [17, bas shown that H f{(1+T)—1) can be written as a power

series g ((1+Ty" —1). | |
Let h,(T) be the Iwasawa series associated to L,(s, x, Q,), iec.
Ly(s, 2, Qu) =R, (% (y.)*—1), where y, is a topological generator for
Gd](Km/Km] We may take p, = y4" and x(y,) = 1+g¢, $0 that '
L (s 2 Q) = h,((1+g0*"~1), Tfor
‘Now for se %,, we have

b ((L+g0P"—1) =

S€ -

Lp(sv X Qm) = :[;[ Lp(s'l X‘f’;)
=1 &0 +ar-1) =

If g(T)—h,(T) is not identically zero, then the Weierstrass Preparation
Theorem implies that it has finitely many zeros is the open nnit T-disk, But;

g((1+qr™" 1),

for all Te [(1+gy""—1: s&%,) =8, this fanction is zero and S is an infinite
set. So g(T}—hy(T) = 0 for all T in the open. umt T—dlsk Le. '

gl +gp ~_1)_ h ((1+q)w"‘m'1)

We consider characters of the second kind. For se %, and é
root of umty, we know (R]bet [7]), that

L (S Xlﬁ:s Qm) — ( (1+q)sp )

Analogues of ‘the results of the previous section are now ‘possible.

THEOREM 7. Let o be a zero of f,(T), and s, = log(1+a)/log(1+4). Say
m=min {n: s, 7,}. Then s, is a zero of one of [L,(s, g, Ou}}, where ¢
runs through all p-powélr roots of unity.

Proof We know lo} < 1. Since |s, p"| < p*

get: (14" = ¢~ (1 + )" for some p-power root of unity g. Let
p-th root of g. Then:

L (sa’ XU”;: an) - hx( 1"‘“‘]) ) hx(:ggh
= k(142" =1)=0. u |
0, und let s, = Iog(1+oc/10g(1+q) Ifs‘ isa

for all sev

a p-power

=1 we yse Lemma 3 to
& be any

L+ —1)

THEOREM 8. Suppme fx(z)
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zero of L,(s, xe, Qu) for some p-power root of unity ¢, then there is «
{necessurily unique} p-power root of unity @ such that.
(o)™ —gf < p~ e,

Conversely, if [(1+x)"" —~p| < p~ Y=Y for some p-power root of unity g,
then

Lp(Su:- x&/’:: Qm} = 0

Jor & any p™-th root of o.

Proof. Say L,(sa, Xz Q) = 0 for some p-power root of unity £. Then,
since L, (s,, xi;, On) is defined, we must thE |5 <p"'+1 =1 je. s, p"|
< p'"”“’”‘” Lemma 3 gives (1+¢q) o g Y1 +a)"" for some p-power root

of unity g. And Lemma 2 gives (1+q)5”‘p —1eD. So we have g~ ' (1 +2)"

—1eD, ie.
N1 +2) ] < p7 e

Conversely, say thcre i§ a p-power root of unity ¢, such that

()" —

Then ¢~ '(1+a)"e1+D, so that log{e™ ' (1+2)")eD, ie. log(l +a)"eD.

So (s, p™ < p'” .

Qi < p" Hp— “‘

p=1} and Lemma 3 gives
L+ = 07" (14+a)”
As in Theorem 7, we obtain L,(s,, x¥¢, Qn) =
roots of ¢g. =
- Furthermore, we have a result analogous to Corollary 6.

COROLLARY 9. Say « is a zero of f, [so thar (1 +a)"" —1 is a zero of k.,
and ¢ is a_p-power root of unity such that [(1+a)™" —g < p~ =D Let { be
any p-power root of unity, and s, = log(1+a)/log(l+¢q). Then:

p (Ses ch; Qm) "—*.

0, where £ is any of the p™th

if and only if
| b e 1+ ~1)=0. =

At this point, we note a result of Morita, [6], which providcs a “multi-
valued analytic continuation” of L,(s, x) to any of the disks &,,, defined as
follows:

There exists a poiynomial CX)=X"+a,(s X" .. -+ d,m(s), which

is irreducible over the quotient field of the ring of all Krasner analytic

functions that converge on %, with a;(s) Krasner analytic on %,,, and any

root of C(X) = 0 for se %, has the form L,(s, x¥;) for some p-power root
of unity { of order dividing p™
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So sg is a zero of the multi-valued analytic continuation if and only if
one of the zeros of CIO(X)=Xf'm+al(so)Xpm'1+...+apm(sg) is X=0,

which occurs precisely when a, o (Sg) = = HL (s, xifed

= L,(s, x, @), and since a ,(s) and L,{s, x, @,) are both Krasner analytic
on 7, we must have a,m (-;) Ly(s, x. Q) on @,,. So sy is a zero of the
mutti-valued analytic continuation if and only il L,(ss, ¥, @) =

Theorem 7 gives L,(s,, x¥¢ Q) =0 for some ¢, a p-power root of
unity. Say the order of ¢ is p" > p™ For se &, L,{s, x¥., @, divides
L,(s, x, ), but each is analytic on %,,. Hence L,(s,, x, @,) = 0, and this
gives s, as a zero of the multi-valued analytic continuation of L, (s, x) to %,.

Returning to our example from Wagstaff, we see that L,(s,, x, Q) is
defined for both values of a. So, for each &, L,(s,, xtbs, @) = O for some p-
power root of unity £. Using Theorem 8, we seek a p-power root of unity ¢
such that (1+&)?—p| <p™ P~ p=1 is seen to satisfy this for either a.
Hence L,(s,, x, @,) = 0 for both values s,. Alternatively, by the above, we
may say that the multi-valued analytic continuation of L,{s, x), to the disk
&,, has a zero at s, for each a.

0. But, on g, a (s
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