- icm
- [3] J. P. Bühler, Icosahedral Galois Representations, Lecture Notes in Math. 654, Springer Verlag, 1978.
- [4] P. Cartier, Sur une généralisation des symboles de Legendre-Jacobi, L'enseignement mathématique, II^e série, tome XVI, fasc. 1 (1970), p. 31-48.
- [5] L. E. Dickson, History of the theory of numbers, Vol. I, reprinted by Chelsea, 1952.
- [6] D. M. Dribin, Quartic fields with the symetric groups, Ann. of Math. 38 (3) (1937), p. 739 749.
- [7] H. Hasse, Arithmetische Theorie der Kubischen Zahlkörper auf Zahlkorpertheoretischer Grundlage, Math. Z. 31 (1930), p. 565-582.
- [8] G. Kientega, Sur les corps algébriques du quatrième degré, Thèse de 3ème cycle, Publications de l'Université de Paris VI, 1980.
- [9] J. P. Serre, Corps locaux, 2ème édition, Hermann, Paris 1968.
- [10] G. E. Wahlin, The factorisation of the rational primes in a cubic domain, Amer. J. Math. 44 (1922), p. 191-203.
- [11] E. Weiss, Algebraic Number Theory, Mc Graw-Hill Book Company Inc., New-York, San Francisco, Toronto, London 1963.

Reçu le 28. 6. 1985 et dans la forme modifiée le 30. 9. 1985 (1526) ACTA ARITHMETICA XLVIII (1987)

An integral involving the remainder term in the Piltz divisor problem

ţ

R. SITARAMACHANDRARAO* (Toledo, Ohio)

1. Introduction. Let $\tau_k(n)$ denote the number of ordered k-tuples $(x_1, x_2, ..., x_k)$ of positive integers such that $x_1 x_2 ... x_k = n$ and

(1.1)
$$\sum_{n \leq x} \tau_k(n) = x P_k(\log x) + \Delta_k(x)$$

where $xP_k(\log x)$ is the residue of $\zeta^k(s)x^s/s$ at s=1. Further let

$$P_k(\log x) = a_{k-1}^{(k)}(\log x)^{k-1} + \ldots + a_1^{(k)}(\log x) + a_0^{(k)},$$

$$I_k = \int\limits_1^{\infty} \frac{\Delta_k(u)}{u^2} du,$$

$$\gamma_n = \frac{(-1)^n}{n!} \lim_{M \to \infty} \left[\sum_{1 \le m \le M} \frac{(\log m)^n}{m} - \frac{(\log M)^{n+1}}{n+1} \right]$$

and

$$\beta_n^{(k)} = (-1)^n \left[1 + \sum_{r=1}^n (-1)^r \sum_{s=1}^r {k \choose s} \sum_{\substack{i_1, i_2, \dots, i_s \geqslant 0 \\ i_1 + i_2 + \dots + i_s = r - s}} \gamma_{i_1} \gamma_{i_2} \dots \gamma_{i_s} \right]$$

Recently, A. F. Lavrik, M. I. Israilov and Z. Edgorov [4] proved that for $k \ge 1$

(1.2)
$$I_{k} = a_{0}^{(k+1)} - \sum_{m=0}^{k-1} m! \, \gamma_{m} \, a_{m}^{(k)}$$

and also expressed I_k , $1 \le k \le 5$, explicitly in terms of γ_k 's; $0 \le n \le 4$ using Lavrik's [3] representation (in a slightly different notation)

(1.3)
$$a_j^{(k)} = \frac{\beta_{k-1-j}^{(k)}}{j!}, \quad 0 \le j \le k-1.$$

^{*} On leave from Andhra University, Waltair, India.

The aim of this note is to give simple proofs of (1.2) and (1.3) and to express I_k explicitly in terms of γ_n 's, namely

$$I_{k} = \beta_{k}^{(k)}.$$

We also prove the following alternate form of (1.4):

(1.5)
$$I_k = \sum_{i=0}^k (-1)^i B_{k-i}^{(k)}$$

where the numbers $B_n^{(k)}$ are defined recursively by

$$B_0^{(k)}=1,$$

$$nB_n^{(k)} = \sum_{i=0}^{n-1} ((i+1)(k+1)-n)\gamma_i B_{n-i-1}^{(k)}, \quad n \ge 1, \ k \ge 1.$$

2. Proofs of (1.2)-(1.5). By partial summation and (1.1) we have for Res > 1

(2.1)
$$\sum_{n \leq x} \tau_k(n) n^{-s} = \left(\sum_{n \leq x} \tau_k(n) \right) x^{-s} + s \int_{-\infty}^{x} \frac{u P_x(\log u) + \Delta_k(u)}{u^{s+1}} du.$$

Since

$$\sum_{n=1}^{\infty} \tau_k(n) n^{-s} = \zeta^k(s), \quad \sum_{n \leq x} \tau_k(n) \ll_k x^{1+\varepsilon} \quad \text{for each } \varepsilon > 0$$

and

$$\int_{1}^{\infty} (\log u)^{i} u^{-s} du = i! (s-1)^{-i-1} \quad \text{for} \quad i \in \mathbb{Z}^{(0)},$$

we have, on letting $x \to \infty$ in (2.1)

(2.2)
$$\int_{1}^{\infty} \frac{\Delta_{k}(u)}{u^{s+1}} du = \frac{\zeta^{k}(s)}{s} - \sum_{i=0}^{k-1} a_{i}^{(k)} \frac{i!}{(s-1)^{i+1}}.$$

By elementary arguments (cf. [5], Chapter 12), we have $\Delta_k(x) \ll x^{1-1/k}$. Hence $\int_1^\infty \Delta_k(u) u^{-s-1} du$ converges uniformly and absolutely on every compact subset of the half-plane Re s > 1 - 1/k and thus defines an analytic function, say $f_k(s)$, there. Thus (2.2) is valid (at least) in the half-plane Re s > 1 - 1/k and I_k (= $f_k(1)$) equals the constant term in the Laurent expansion of $\zeta^k(s)/s$ at s = 1. To find this, let $\alpha_0 = 1$ and $\alpha_n = \gamma_{n-1}$ for $n \ge 1$. It is well known, due to Stieltjes (cf. [1], p. 155), that

$$\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \gamma_n (s-1)^n$$

where $y_0 = y$ is the Euler's constant. Hence for |s-1| < 1

(2.3)
$$\frac{\zeta^{k}(s)}{s} = \left(1 + \sum_{n=0}^{\infty} \gamma_{n}(s-1)^{n+1}\right)^{k} \left\{1 + (s-1)\right\}^{-1} (s-1)^{-k}$$
$$= \left(\sum_{n=0}^{\infty} \alpha_{n}(s-1)^{n}\right)^{k} \left(\sum_{n=0}^{\infty} (-1)^{n}(s-1)^{n}\right) (s-1)^{-k}$$

and consequently

em

$$I_{k} = f_{k}(1) = \sum_{\substack{l+i_{1}+\ldots+i_{k}=k\\i,i_{j} \geqslant 0}} (-1)^{i} \alpha_{l_{1}} \ldots \alpha_{l_{k}} = \sum_{r=0}^{k} (-1)^{k-r} \sum_{\substack{l_{1}+\ldots+i_{k}=r\\i_{j} \geqslant 0}} \alpha_{i_{1}} \ldots \alpha_{i_{k}}$$

$$= (-1)^{k} + \sum_{r=1}^{k} (-1)^{k-r} \sum_{\substack{1 \leq s \leq r\\i_{1}+\ldots+i_{s}=r, i_{j} \geqslant 1}} {k \choose s} \gamma_{i_{1}-1} \gamma_{i_{2}-1} \ldots \gamma_{i_{s}-1}$$

$$= \beta_{k}^{(k)}$$

which is (1.4).

To prove (1.3), we have by (2.3)

(2.4)
$$\frac{\zeta^{k}(s)}{s} = \left(\sum_{n=0}^{\infty} \beta_{n}^{(k)}(s-1)^{n}\right)(s-1)^{-k}$$

so that

$$P_k(\log x) = \operatorname{Res}_{s=1}^{\frac{\zeta^k(s) x^{s-1}}{s}}$$

$$= \operatorname{Res}_{s=1}^{\sum_{n=0}^{\infty} \beta_n^{(k)} (s-1)^n \sum_{n=0}^{\infty} \frac{(\log x)^n}{n!} (s-1)^n}{(s-1)^k}$$

$$= \sum_{j=0}^{k-1} \frac{\beta_{k-1-j}^{(k)} (\log x)^j}{j!}.$$

Now (1.3) follows in view of $P_k(\log x) = \sum_{i=0}^{k-1} a_i^{(k)}(\log x)^i$.

To prove (1.2), we have by (2.4)

$$\sum_{n=0}^{\infty} \beta_n^{(k+1)} (s-1)^n = \frac{\left((s-1) \zeta(s) \right)^{k+1}}{s} = \frac{\left((s-1) \zeta(s) \right)^k}{s} \left((s-1) \zeta(s) \right)$$
$$= \left(\sum_{n=0}^{\infty} \beta_n^{(k)} (s-1)^n \right) \left(\sum_{n=0}^{\infty} \alpha_n (s-1)^n \right).$$

Hence

$$\beta_n^{(k+1)} = \sum_{i=0}^{n} \alpha_i \, \beta_{n-i}^{(k)} = \beta_n^{(k)} + \sum_{i=0}^{n-1} \gamma_i \, \beta_{n-i-1}^{(k)}$$

and consequently by (1.4) and (1.3)

$$I_{k} = \beta_{k}^{(k)} = \beta_{k}^{(k+1)} - \sum_{i=0}^{k-1} \gamma_{i} \beta_{k-i-1}^{(k)} = a_{0}^{(k+1)} - \sum_{i=0}^{k-1} i! \gamma_{i} a_{i}^{(k)}$$

which is (1.2).

Finally (1.5) follows from (2.3) and Euler's multinominal formula [2] which states that if $b_0 \neq 0$ and s is any real number, then

$$\left(\sum_{n=0}^{\infty} b_n (z-a)^n\right)^s = \sum_{n=0}^{\infty} B_n^{(s)} (z-a)^n$$

where

$$B_0^{(s)} = b_0^s$$
 and $B_n^{(s)} = \frac{1}{nb_0} \sum_{i=1}^n (i(s+1) - n)b_i B_{n-i}^{(s)}$ for $n \ge 1$.

Remark. We note that the numbers $B_n^{(k)}$ and $\beta_n^{(k)}$ are related by

$$\beta_n^{(k)} = (-1)^n \sum_{i=0}^n (-1)^i B_i^{(k)}.$$

and that $B_n^{(k)}$'s satisfy the recurrence formula

$$B_n^{(k)} = \sum_{i=0}^n \alpha_i B_{n-i}^{(k-1)} = B_n^{(k-1)} + \sum_{i=0}^{n-1} \gamma_i B_{n-i-1}^{(k-1)}.$$

References

- [1] B. Baillaud and H. Bourget, Correspondence d'Hermite et de Stielijes, Tome I, Gauthier-Villars, Paris 1905.
- [2] H. W. Gould, Coefficient identities for powers of Taylor and Dirichlet series, Amer. Math. Monthly 8 (1974), pp. 3-14.
- [3] A. F. Lavrik, On the main term in the problem of divisors and the power series coefficients of Riemann zeta-function in a neighbourhood of its pole (Russian), Trudy Math. Inst. Acad. Sci. USSR 142 (1976), pp. 165-173.
- [4] A. F. Lavrik, M. I. Israilov and Z. Edgorov, On an integral containing the remainder term in divisor problems (Russian), Acta Arith. 37 (1980), pp. 381-389.
- [5] E. C. Titchmarsh, The theory of the Riemann zeta function, Clarendon Press, Oxford 1951.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF TOLEDO Toledo, Ohio 43606 U.S.A.

Received on 26, 7, 1985

On sum-free sequences

by

H. L. Abbott (Edmonton, Canada)

A sequence $A: a_1 < a_2 < a_3 \dots$ of positive integers is said to be *sum-free* if no member of A is the sum of two or more other members of A. P. Erdős [1] proved a number of results concerning sum-free sequences. One of these is that for any such sequence

$$\sum (1/a_i) < 103.$$

This leads one to define ϱ by

$$\varrho = \sup_{A} \left\{ \sum_{a \in A} 1/a \right\}$$

where the supremum is taken over all sum-free sequences A. The powers of 2 form a sum-free sequence so that $2 \le \varrho < 103$. Levine and O'Sullivan [2] considerably improved on Erdős' upper bound by showing that $\varrho < 3.97$ and they constructed an example which shows $\varrho > 2.0351$.

The object of this note is to exhibit an example of a sum-free sequence which establishes $\varrho > 2.0648$. The construction is fairly elaborate. The relatively modest improvement over the result of Levine and O'Sullivan can perhaps be considered as evidence supporting their conjecture that ϱ is much closer to 2 than to 4. The construction is given in the following theorem.

THEOREM. Let A be a (finite) sum-free set. Let $s = \sum_{a \in A} a$ and let t be an integer exceeding s. Define integers l, m, n, r and p as follows:

$$l = {\binom{t-s+2}{2}}, \quad m = {\binom{t-s+1}{2}},$$

$$n = {\binom{l-1+s}{t}}, \quad r = l-nt-1,$$

$$p = {\binom{l+1}{2}} - {\binom{r+1}{2}} + n.$$