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The set z+1I"y is & closed convex curve, and it intersects with 4 only several
times. We consider one of such intersections of z+/, and 4. This
intersection is an arc of the curve z+1I';. We denote the end points of this
arc ' by z+z,(6,) and z+z,(0y): T'= {z+42,(0,)] 0, <0, <0,). We can
easily show that dist(z+z,(0q), z+z,(0p) €6}? in a similar (in fact,
simpler) way as in the proof of Lemma &. Hence. by: Lemma 9, we have
105—08,] < 83/?, and therefore, & (z) € 64>, Hence, by (9.1}, we obtain -

| Wy (R} — Wy (R)| < 352 < N 770" (lag N)™79"%,

This implies Proposition 2, since the same . estimate holds for
W (R,)— Wy (R). The proof of our theorem 1 thus completed. ‘
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Pisot sequences which satisfy no linear recurrence 1i
by

Davip W. Bovp (Vancouver, B.C) .

Introduction. In this paper we continue our study (_)f' Pisot sequences
begun in [1]. Recall that the Pisot sequence Efay, ay) is the sequenlce Qf
integers defined for 0 < ag, <a by : : :

(1) 2 ‘ "1/2<ar:1+1_.a3/“n-1 <172

In [1] we proved that there are Pisot sequences satisfying n? linee}r
recurrence relation. Our proof made use of an ineqpalllty frorp Plsqt s thesis
[5]. We recently discovered that the constant‘i‘n this inequality 1s incorrect.
Since it is used at three separate points in [1], it would appear that many of
[ ils in [1] need to be modified.

e Cgtl?;ﬂ;rlsl: Il:ugpose here is to show that all the theorems-of [1]'are G(_)rrec.t
as stated and to indicate the necessary changes in the proofs. To do this, we
prove a number of new inequalities for Pisot sequences. Sl'nge these shoqld
be useful in other investigations we give more general versions than needed

i epair the proofs of [1]. .
° Slglglysécgnd purpcr))se is to sketch a simpliﬁed pr?Of Qf the main _T}leorer}}
4 of [17, avoiding the use’of the~Kroneckcr—Wey1 theo‘;em. ComblnF;;%é'tghxs?
proof with results from [2] shows, for example,- thatrnong of E { m,
1782m) satisfy ‘a linear recurrence for any odd m. RN

1. The new inequalities. The notation will be 3s in [1].. L ‘

It la,) = E(ag, ay), write &, = Ay 1/a, and Pu = inf lﬂ'm_:l_ml;: nj
(misprinted in [1] as “sup”). We write O(aO,‘ql},—_—j_ ()= lim 0, .wluch always
exists. We are interested only in 0 > 1 for which it is necessary and sqfﬁcgnt
that aq 2 do+/do/2, according to results of Pisot [5] and Flor [4]. Let l
= lim a,/6" > 0, and define &, = A" —a,.

LevMa L. For all n2 0,

(3} . }8,,' = 1/(2(6— l)((Pnf 1)) :



@
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Proof. By (1} |6,+1— 0. < 1/(24,.,) and clearly
Gyt = 0. B0, 2 0f " a,
Thus
[0=0. < 3, 1/Q206,+,) < 1/(2a,(0,— 1)),
giving (2).

Now write {2) as
[0 07" =8, 070 ) < 670 D)(2( 0, ~ 1)
and sum to obtain
1,071 < 07200 -1 (g, D),
which gives (3).
Remark. In [5], Pisot claims that if ¢, > a0+2\/a~0 then

(4) lgmgnl < 1/(2(an+1_an))'

This 1s a.very plausible result in view of (2) since we can write
a,,ﬂ—a',, = an(gn_l)'

Notice that (2) gives 6, =8+0{#~") and hence

b0 =6+0(07"
However, Pisot’s proof gives only
(5) Fg—gn! < 1/(an+1'—an)'

Although the proof given for (4) is thus faulty, it.is quite conceivable that the
result itself is correct. Our results (8) and (9) come close to.(4), We note that
(9} is true without any assumption on a,, 4, beyond a, > ay.

Lemma 2. Suppose m is an integer and that m < Oy <m+1. Then m < 0,
<m+1 for all n. Also m <0 <m+1 except when m =1 in which ‘case 8§ = 1
is possible.

Proof. (a) If 0y = a,/a, > m then a; » may+ 1. By induction, using (1),
we obtain '

(6) sy = Ma,+m'".

Hence 6, >m and = m
If m>= 2 we wish to show 6 > m. Suppose then that 8 = m and hence
a,/m"~ A > 0. Then {6) gives

G,, 2 m+ma, —~m+1/4 >0,

Pisor sequences 193

a contradiction:
(b) T m <y <m+1 then a, < (m+1)ay—1. Again, by induction,

(7) Oy < (m+Da,~m",

s0 @,y <m+1 and O < m+1.

If & = m+1 then (7) gives a,(0—0,) = m
2{p,— 1= 2m as n— co.

Coroviary 3, If 02 2 then |g,| < 1/2 for all n.

Proof. By Lemma 2, if §,, < 2 for any m, then 8, <2 for all n 2 m and
0 <2 Thus 0 = 2 implies 0,2 2 for all n and hence @, 2 2 for all n. Now
use (3).

Remark. Lemma 1 and Corollary 3 comprise Lemma 1 of [1]. In order
for (2) to be useful when 0, < 2, we need a lower bound for @,. One such
result is the following:

Lemma 4. Let a,., = a,,+. /2a,. Then @, =\, > 1 where v, is the larger
root of

"2 1 which contradicts (2) since

(b= 1)(0x =) = 1/24,).

Proof. Clearly 0, = ¥, +1/(2a,(,— 1)) > ¥,. We claim that 9, >\, for
m 2 n. The proof is by induction on m. Assume then that O >, for
n< k< mand then, as in the proof of (2),

|9k+1—6}k' = 1/(2ak+1) < 1/(2&,,!//:_"+1), n“<-k'€- .
Summing over k, we have
0ns1—8, < 1/(2a W,—1)) = 6,—,
which proves Qm,h 1 >\, completing the induction. Thus g, = inf {6,
Z n,« lll . .

CoroLLARY 5. If 6, = 3/2+1/a,, then
(8} 0 ~0,] < 1/(2(ay41—a,—1)).

Proof. Let P{x) = (x—0,)(x—1)+1/(2a,). so P(,) =0 and P(0,—1/a,)
<0 hence W, > 0,~1/a, Thus ale,—1)2 a,0f,—1) > a,0,—1~1/a,)
=d,—a,—1. Now apply (2).

Lemma 6. Suppose 0, <o and B =ea+a/2a,, (@—1)) then 0 < f.

Proof If 0 <a then certainly 6 < §.

On the other hand, if § > « then there is a largest m > » so that 0, <«
but 8, > o if k>m.

As in the proof of Lemma 1,

m_gml < OC/(2dm+1(ot— 1)) £ 0(/(2&"+1 (‘1"‘1))

which proves the lemma since 0, <«



CoroLLARY 7. For any 0 <ap <d;,
{9 00, < /(2@ —ad)-

Proof. Take & =6, in Lemma 6.

CoroLLARY 8. Suppose 03 1.6 and a, > 15. Then 0,2 0—1/10 and
led < 5/3 for all n. o

Proof. If 8, < #—1/10 = « then Lemma 6 gives {0 < 0—1/10-+3/2d,+1)
which implies a; < a,,, <15, contrary to assumption. Now use (3) and ¢,
> 0—1/10 2 3/2 and 8—1 2 3/5 to prove e < 5/3.

3. Cérrections to the proofs of [1]. The unproved (4) was used in three
places in [1]. Two of these are in the proof of Lemma 1 of [1] and, as
already mentioned, are handled by Lemma i and Corollary 3 of Section 1.

The third use of (4) is in the final paragraph of the proof of Theorem 1.
This is avoided by the use of Corollary 8. Note that a, 2413/ —0-1)
and 0 <2 imply a, > 15, explaining the peculiar choice of constants in

" Corollary 8. ' :

3. A new proof of the main theorem of [1]. We use the following
criterion for Trecurrence which differs slightly from that stated in Theorem 3
of [1]. The same techniques as used there give this result if one uses the
improved inequalities of Section 1. : _

LEMMA 9. If E(ag, a,) satisfies a pure T-recurrence then
(10) llag (g + az)/ayll < (1+6)(20%) + Loy .

Turorem. The set of limits 0(ag, a,) corresponding to non-recurrent E-
sequences is dense in [z, o0), where T = (\/3+1)/2.

Proof. Let (x, f) be an interval .in the complement of the Pisot
numbers, and let p/q be any rational number in this interval with p even and
g odd. Let m be an odd multiple of p/2. Consider E(aq, a;) with 4o = myg,
ay =mpq and hence a, = mp*.

Then ‘ ‘

' aglag + ag)fe, = mg(g*+p?)p = 1/2 (mod 1).

But 1/2 > (1+0)/(20%)+ 1/, if 0 > and m is sufficiently large.

Theorem 1 of [1] and Lemma 9 thus show that E(ag, ap) 18 not T-
recurrent for large m. Since 8(aq, a;) — p/g¢8 as m- oo, E{ag, ay) is not S-
vecurrent for large m either, hence is non-recurrent. The set of rationals
considered is dense in [z, c¢), which completes the proof. '

CoroLLAry 10. E(1089m, 1782m) = E(9-11%-m, 2-9%-11-m) does not
satisfy a linear recurrence relation for any odd m. '

Prool. As in the proof-of the theorem, a; = 4-9%-m and

apy (an +a2}/a1_ = 1/2 (mOd 1).
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The nearest Pisot numbers to ), = 1

o = 1.6326907332 with minimal golyni/rillia?r_fé (Sz-[jil)m(vz—l and

f = 1.6407279391 with minimal polynomial (=® zzmz—l)—I)/("—l—)l‘)in‘
a =05 and f=0g in the terminology of [37). ’ o

By Corollary 3, |8 —0,| < 1/(1384in) showing that

a<f<f if m>S5.

For m=1,3 and 5 this can be verified b i (
, : £ y caleulation of @ .
g¢8S 50 Efay, a;) is not S-recurrent for any m. o @) Henee
Since a, 2 24+ 13/(62—0~1) and

g (o +daz)fayl] = 1/2 > (1 +a)(2a?) + Vay > (1+0)/(20%) + /a,
Efug., ay) is not Trecurrent either,
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