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On zeros of diagonal forms over p-adic fields
by
Yismaw ALemu {Addis Ababa)

1. Intreduction. Let K be a finite extension of @,, the rational p-adic
field, and Oy be its ring of integers. Assume that e and f are respectively the
ramification index and residue class degree of the extension K/Q, so that n
=¢f =[K:Q,]. Let p be the prime ideal of Oy and = a generator of the
ideal. Unless indicated to the contrary, v denotes the normalized exponential
valuation of K arising from the prime ideal (m).

Half a century ago, Artin conjectured that any homogeneous polynomial
over K of degree k in at least k*+1 variables represents (has a non-trivial)
zero in K. This conjecture has drawn the attention of many authors (for
details see the reference pages of [8], [9] and [10])

Call a field L C; if every form over L of degree k in at least k'+1
variables represents zero in L. Given k, a field L is called C;(k} if every form
over L of degree k in at least k'+1 variables represents zero in L. In
connection with Artin’s conjecture, for any number field L, Ax and Kochen
[2] have shown that:

A(k, Ly = {p| pis a prime ideal of L such that L, is not C5(k}}, L, being
the completion of L under p, is a finite set. In this sense, we can say that
Artin’s conjecture is almost true. On the negative side, the present anthor [1]
has generalized the recent counterexamples to show that K, any finite exten-
sion of @, for any p, is C,,. The counterexamples obtained to Artin’s conjec-
ture have a common feature: the degrees of the forms are divisible by p—1
and powers of p. In view of this and the stiiking tesult of Ax and Kochen, it
seems natural, to study Artin's conjecture in the following form.

CONIECTURE. For a number field L and a natural number k, pe Ak, L)
only if p and p—1 divide k, where p is the characteristic of the residue class

field of L.

Time will tell the validity of this comjecture.

In the present paper, we study the problem of diagonal forms over K, a
finite extension of Q,. Let k ‘%e a natural number. Let I'*(k, m) denote the
least s for which the congruence:

) F=a, ¥t +a5+ ... +a,xf =0 (mod )
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where 4,, a,,..., 4 are arbitrary non-zero p-adic integers, has a non-trivial
solution (i.e. not all x; divisible by =), for any natural number . It is well
known that I'*(k, m) is the minimum number of variables sufficient for F' to
represent zero in K. If v(k) =0, a combination of Chevalley’s theorem on
finite fields and Hensel's Lemma proves that I'*(k, ) < k*+ 1. The difficulty
arises when v(k) > 0, which we assume henceforth. As the case k = 2 is well
known (see [9], p. 126), we also assume that k > 2,

We need to define one more auxiliary function. For a fixed natural
number t, y*(k, #") denotes the least s for which the comgruence

(2) F=a x*4+a, x5+ ... +a,x* =0 (modn')

where, now 4y, as,..., a; are p-adic units, has a non-trivial solution.

If K = (,, Davenport and Lewis [5] bave shown that I'*(k, p) < k*+1
with equality if k+1 = p (for further developments, see [7]). Thus, Artin’s
conjecture for such forms over @, holds. To the best of the author’s
knowledge, Artin’s conmjecture for diagonal forms over K s (,, is neither
proved nor disproved. There are certain difficulties to generalize the
argument of Davenport and Lewis. In the first place one of their crucial
lemmas (Lemma 1) is not in general true. Even in the cases where this lemma
holds, the method does not yield the conjectured bound.

Recently Dodson [8] showed that

I'*(k, m) < 16n*(log kP k¥, n=df.
In the present paper, we prove
THEOREM 1. If p= 3, then

I*(k, m) <

If p==2, then

max {3nk? —nk+1, 2k —k*}.

T*(k, 1) < 4nk* —nk+1.

We use a result of Olson [117 on finite Abelian p-groups and a lemma
of Browkin [4]. The method employed seems more natural, but even in the

p-adic case, it does not yield the best possible bound obtained by Davenport
and Lewis.

2. Basic lemmas. We first need to generalize Hensel's

denote LL]-F 1.
r—1

LeMma 1. Let M be a non-negative integer. Assume that J)e0g(x] is
of degree k and {a,)%, is a sequence given by
fla)
pr 1 = j (U )

lemmma. Let @

icm
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satisfying:
(2.1) fag) = 0 (mod 7% 3),
and for any n=0,1,2,...:
2.2) f¥(a,) = 0 (mod =M),
{2.3) fa) £ 0(mod =M%, i=1,2,3,...,k
Then there exists £eOy such thar
E=ay(mod n%) and [f{&=0.
Proof. For any ae Oy, let
700 = f @+ @0+ e+ . 4D e

where k = degree of f, be the Taylor’s expansion of f at a.
Foreachn=0,1, 2,..., let r, = M +2+n. We shall first prove that for
each integer n,

(2.4) fla,) =0 (modx'™")
and )
(2.3) Gy = a, (mod 1" 1),

By éssumption, {2.4) is true for n= 0. Hence, we can proceed to prove
(2.4) by induction on n. Using the Taylor's expansion of f and the definition
of the sequence {a,} %, we have

f('\J (an 1}

f(an) = f('an— 1)+f’ (anml)(an—an— 1)+ k! ( n T Gy 1)k
' _f(an— 1) f(k](an—i) (_f(a‘n—l})k
st e (G e (GRS
_I" (@) (wf(an_l))l SO) (wf(a,,_l))
- 21 f’(an—l) o k] [(an 1)
Using (2.2), (2.3) and the 1nduct1on assumption on f{a,-,), for any
iel2, 3,... k],

a0 (—f (age)\ o iesl)
v( i 1 (f(a,, 1;));]\4—{-1({"“1——]\/’) e o1

where s(i) is the sum of the digits of i when i is written in base p w1th respect
to the least residue system mod p. To prove (24) for n, 1t suffices to show
that, for any ie{2,3,..., k}, :

(2.6) M'l‘l(t" 1



264 Y. Alemu

But this last inequality is equivalent to
i—s(D)

fa—1 >M+€’m.

Since s(i) = 1, it is evident that

i—s(i) e "

e- -
(p—-1)(i~1) " p—1

and as 1, , =ty = M-+¢€ the inequality (2.6) holds. The inductive proof
verifies the assertion in (2.4).

The proof of (2.5} is now immediate from the definition of the sequence,
(2.3) and (24).

Since we are working with a Cauchy sequence in a complete field and f
is continuous, we have

0= lim f{a,) = [/ (lim a,) = f(5)

LiRud= 3 H =X

and ¢ = ap (mod 7). This completes the proof of Lemma 1.

Remark 1. Let k= p™k,, with (p,k;) =1, and recall the notions
introduced in the introduction. Suppose that

(3) flxh=byx*+bye0g[x]
with v{b;) =0. Assume that there exists aocOy such that b, af+b,

=0 (mod 7*"*%) and v(ay) =0. It is clear that for any ce Oy,

SPc)=0(mod =) for i=1,2,...,k,

and
f'(c) # 0 (mod =*™*1)

provided v(c) = 0; in particular for any element of the sequence {a,}=, as
defined in Lemma 1 using a,. Hence by the lemma, f has a non-trivial zero,
When working with a diagonal form over Oy, to assert the existence of
a non-trivial zero of the form, it evidently suffices to construct a polynomial
of type (3) from the given form.
We need to formulate a group theoretic lemma. Suppose that G is a
finite Abelian group, written additively. Define

§=3(()

to be the smallest positive integer such that every sequence in G with at least -

s clements has a non-empty subsequence whose sum equals 0, the identity of
the group. It is clear that s(G) < [G|, with equality if G is cyclic. In general
the explicit value of s(G) is not known but for p-groups, Olson [11] (see also
[13]), obtained the following:

icm
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LEmMMA 2. Let G be a finite Abelian p-group with invariants p°?,
p% ..., p". Then

s(G) =1+ 3 (p"—1).
i=1
3. Different bounds for I'* (k, n). With our standing notations, let F be a
diagonal form over Oy of degree k. F can be normalized as

@) F=Fy+nF+ ... +2*7 1 F_,,

where F; is a diagonal form of degree k in r; variables whose coefficients are
units of Ok, F; and F; (i # j) do not have common variables so that s =y
+ ... +re—y, the number of variables of F, There are other possible
normalizations that can further be applied to F, but for the moment, we

evidently can assume that ro2vr, i=0,1,2,..., k—1.
Recall that
k=p"ko, with (p, kg)=1and m=z=1,
We have defined -* (k, n¢"*9 as the least number of variables of F ¢ such that
Fy =0 (mod n*"*#) .

has a non-trivial zero; which by Lemma 1 is equivalent to saying that F,
represents zero in K.

3.1. Some known bounds of y*(k, n°"*%) and I'* (k, n). It is obvious that

(5) I*(k, m) < (y* k, m" ")~ 1)k + 1.
Since '

IOK/nem+e“'OK| — pefm-f-fe"
if ro2p¥m™/% by using {4y, ay+ds,..., ay+a;+ ... +a,} where ay,
Ogseeey Gy AIE the coefficients of F;, the well-known box argument
guarantees that ' '

Fy =0 (mod 7%

has a solution with some x; = 1. Hence,

')’*(k ,nem+9) @ pefm+f€‘

CLAIM? p"f’"”é’ < k%,
Indeed,
pem+‘é' < k2e
since when p#2, €<e so that
pem+é" < keke'/m < RZE;
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and when p =2, E=e+.1 and k = 2™, 50 that
pem-l-i." = 2a(m+ 1}+1 S, ke,2e+1 S kz::_

Hence
pefm-}-f‘f < kZUf

and the claim is established.
Using +* (k, n°"t8  pf™*/% and the above claim, we have
g I ‘

I*(k, @) < (Pt e k41 S K2 —k+ 1 = k2" ek 1

Observe this bound when K = Q,. The above upper bound for I'*{k, n)
is better than 4k*"*34 1 which was given by Peck [12]. Actually the recent
result of Dodson [8] shows that:

I*(k, m) < 16n*(logk)* k%

Indeed, the often large exponent of k that appears in the estimate of
Peck can actually be made a factor. If n is large compared to the degree, the
bounds we obtain are better than the result given by Dodson. However, [
have been unable to give a reasonably good bound of ™ (k, x) which only
depends on k. Birch [3] has shown that

I*(k, m) < (2m+ 302k, d=(k p 1)

but this seems very far from the truth for large k.

3.2. The additive structure of Oy/n' O and its consequence. Let ¢ be any
natural number and put

t=get+r, 0O0<r<e.

Assume that w,, w,,...,w, is an integral basis of the maximal
unramified subfield of K. It is well known that

(6) B=lwnl: 1<i<f0gj<e}

is an integral basis of K over Q,.
To determine the additive structure of the p-group, G, = Oy/n' O, we
distinguish two cases: .

Case 1. r = 0. In this case, it is easy to see that each of the elements of
B is of order p?. Moreover, if we denote the cyclic group generated by w; 7/
by Cij, since B is an integral basis of K/Q,, the group
- Gl o @ CU'
18i€f
0%j<e
Hence G, is a direct sum of ef cyclic groups of order p2. .
Case 2. Assume that r>0. In this case, the rf elements of
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fwiw: 1<i<f, 0<j<r} are each of order p**' while the elements of
fwinh 1<i< f,r<j<e} are each of order p?. Hence, with a similar
reasoning as above, G, is a direct sum of rf cyclic groups of order p?*' and
(e—r) f cyclic groups or order p%

For an easier reference, we document the above as

Levma 3. G, is isomorphic to a direct sum of rf cyclic groups of order
Pt and (e—r) [ eyelic groups of order pt. Moreover,

8 =s(G) =1fpt(p—D+ef (PP 1)+ 1.

Let us particularize Lemma 3 for ¢ =em-+2. If p=2 then
(7 s = fle+1)2m"t—e)+ 1,
Otherwise, it is easy to see that

o (p"t—-1)+1

CREES KA
Unless stated to the contrary, in the discussions to follow s, denotes 5.1 4
em = v(k), as explicitly given by (7) or (8).

CoroLLARY 1. y*(k, n°"" 9 < 5,.

Proof. Let {4y, az,..., g} be the coefficients of Fg with ry = s,. By
Lemma 3 and Lemma 2, there exists a subsequence, say &, di,s..» &, such
that

ife=1or (p=23 and e = 2),
otherwise,

> @, =0 (mod nem e,
j=1

1
%= 0

and let x be the ro-tuple whose coordinates are ('s and 1's as chosen above.
Then

Put

, o .
if ge iy, dzseeny in)s
otherwise

Folx) =0 (mod 7" *9).

An application of Lemma 1, completes the proof of the corollary.

It is now immediale from (5), the normalization of F as (4) and Corol-
lary 1, that
(9 I*(k, n) < (5, — 1Yk-+1.

In general, the bound (y* (k, 7ot —1)k+1 for I'*(k, n) is far from the
value of '™ (k, ). This is obviously so since one does not essentially use the
variables in F;, i 1, when giving this bound for 'k, n). Xf e =k+§
Theorem 2 below gives a bound for I'*(k, ) better than that qf (9).
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Let k+em+e—1=gqge+r, 05r<e.

Lemma 4. If F is a diagonal form of degree k in s variables and
s2rfplp—~1+(e—nf{p?~1)+1, then F represents zero in Oy,

Proof. Using Lemma 3, .
S(Og/m* "= Op) = tfp!(p=~ 1)+ (e~ 1) f (1= 1)+ 1.

From the hypothesis on the number of variables of F and Lemma 2, there is
a subset of the set of coefficients of F, say {a;,, dpy,..., ¢, Such that

n .
¥ @, = 0 (mod m**em*eml),

j=1

Set
. 1 if geliy, iy ..., 0y,
|0 otherwise

and let x be the s-tuple whose coordinates are ('s and 1's as chosen above.
Then

F(x) = 0 {mod m**temter1),

We note that Ogv(a,-j)sk—nl for j=1,2,...,n Hence for any
ijEEilriZ:“-ain}:

oF
——(x) # 0 (mod n**¢m).
axij
Moreover,
oF wia )+ em
—x})=0(modn ¥ )
Ebc,-j

with k+em+€—1—v(a,-}.)»—em?- € for each jefiy,..., i,).

Lemma 1 shows that F represents zerc in Oy.
TueoreMm 2. If k+& < e, then

Ik, m) < (k+8=1) fp™(p— 1) +(e—~k—8+1) £ (p" — 1)+ 1.
Proof In Lemma 4, '
k+z—-1 7

where [x] is the largest integer not exceeding x.

If k4+&<e, then [k'*"e_l

+_m J =m. Hence it is immediate from the
lemma that '
I*(k, n)s,(k—!—E—l)fp'"('p—'l)+(e—k—~é+1)f(p'"——1)+1.
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This bound can be shown to be better than that of (9).

As is well known, when k is odd, the number of variables sufficient for F
to represent zero is much less. The usuval estimate for I'™*(k, ) is based on
the inequality (3} but it is more effective to argue directly as follows.

Traeorem 3. If k is odd and m = 1, then

"k e—1
fk+e+e )logk]+2_

*(k <
(k, =) [ log2

Proof. Let F be a diagonal form of type

8
Z a; x{‘
=1
with

flk+e+e—-1)logk
sz
log2

}f~2 and O<v{ag)=sk-1,i=1,2,...,5.

Evidently it suffices 1o show that F =0 (mod #***"**~1) has a non-
trivial solution. For this, consider all possible sums of non-empty subsets of
A=/lay, a5,...,a). We have 22—1 such subsets. If one of these sums is
0 (mod #***m*4- 1 we work with il.- Otherwise if

2.1 > |OK/ﬁk+em+E'—10K| — pf(k+em+§—l)’

by the box principle, there exist two different subsets B, and B, of A such
that

Z b= Z b (mod mk¥em+e- 1)-3%*'

bely beBy
If necessary by eliminating elements of By and B, with the same indices, we can

assume that B, and B, are disjoint (in the sense that their elements have
different indices). -

Put
1 if i 15 an index of an element in By,
x;=+<—1 if jis an index of an element in By,
0 otherwise.
Then

F(x)= Y b~y b=0(mod z*Tem* ),

b@Bl bﬁBZ .
Hence F represents zero provided 2°—1 2 p/®*em*¢=1 Qn the other hand
¥olz pf(k+evn+¢?- 1) '
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holds if

flk—em+ie— 1}10gp+1_
log 2

s =
Hence

k&, %)<

f (k+em+e~ 1)10gp:|+2
L log?2

f (k-+em+E—1)logk
I

m

)

log 2

f (k+e+—1)logk
2
L log2 *

5

as asserted in the theorem. _
Another bound of I'* (k, n) is obtainable from the following lemma, due
to Browkin [4] and whose generalization will be discussed elsewhere,

LEMMA 5. Let FeOp[x(. X;3,..., X,] be a form of degree k and let
kt, fir=<e,
S>{ke(1+p+p2+ e P 4 k(e " Mt e,
where t—1 =me+e, and 05 e, <e. Then the congruence
F(xy, %qg,..., x5 =0 (mod =)

has a non-trivial solution.
Now if F is a diagonal form of degree k whose coefficients are units of
Oy and t = em+& em = v(k), the lemma guarantees that the congruence

F = 0 (mod ™9

has a non-trivial solution provided
Hence, if p = 2,

and from (5), we get

(10) r*(e, m <k (Q%Trﬂ’p’f)*l, p#2
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If p=2, however, we get

(11) I*(k, ;) < k*((e+1) p™* 1 —e)+1.
CoroLLARYy 2. If p =3,
F*M,n)g(&+hk3—E§Tkz+l.
Proof. From (10)

ke
< S
(e+ 1)k k—1+1
as asserted.

4. Proof of Theorem 1 and concluding remarks. We are now ready to
give the proof of :

Treorem 1. If p = 3,
I*(k, m) < max D3nk?—nk+ 1, 2k* =K%},
Ifp=2 .
T*ik, m) < dnk®*—nk+1.
‘Proof We appeai to the results in Corollary 1, the relations in (5) and
(10). '

Consider the case p = 3. Il ¢ 2 p—1, using Corollary 1, the refation in
(5) and (10), we have

T*(k, m) < (&p" (p—1)+ of (P"— D)k+ 1

=4
s((1+ﬁ_1)ﬁ w—1r+q1p—-u)k+1

=((p—1+e) f"+ef (" 1))k +1
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Hence, if ez p—1,

(12) T*(k, 7) < 3efp™k—efk+1 < 3nk* —nk+ 1.
If e < p—1, using (10), we get

(13) I*{k, =) < k* (e%_—?—ll-’r-ép’“)—i-l

< k*(p"—1+4p™ < 2k>— k>, '

It now remains to study the case p = 2. Using (7) and the relation in (5),

we get

Pk, 7)< f (e+1) Pl 1) k+1,

It can be shown that
(e+)p"'1—1 < dek—e.

Consequently, we have
(14) I*(k, m) < defl2—efk-+1 = dnk? —nk+1.

The proof of the theorem follows from (12), (13) and (14).

Concluding remarks, 1. Suppose that for any x # 0 (mod n), x*
=1 (mod n°"*%. Since the lemma of Olson is best possible, we have
v¥(k, 1 %% =5, t = em+2&. From this, when k = p™(p/ —1) it might seem
that s, can be made large enough so that I'*(k, n) > k? by taking a large
value of e (since f is otherwise insignificant for such an cbjective). Quite to
the contrary, if x2 0 (mod 7), x* =1 (mod n®"*?), then e cannot be large as

well, If x = 147, for instance, and e = p, then x"* =V =1 (mod =?) bul not

mod 7**1, More generally, it can be shown that if x”"® =1 = 1 (mod n"*?)
for all x # 0 (mod n) then e < p—1. I still believe that Artin's conjecture is
highly probable for diagonal forms.

2. In Theorem 2, a better bound than (y*(k, n°™*®—1) k1 for I™(k, n)
was obtained under the assumption ¢ = k-+& Actually, such a better bound

of I'*(k, m) can also be obtained even if ¢ < k+& This will be discussed
elsewhere,

I am grateful to Doc. J. Browkin for valuable discussion in the
preparat:on of this paper. I also thank a referee who pointed out a mistake

in an earlier version of Lemma 1 and for detailed comments and suggestions
on the manuscript.
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