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1. Introduction. The Dedekind sum s(h, k), arising in the theory of the
Dedekind eta function, is defined by '

- 2, (O)(E)

where h is an integer and k is a positive integer and

x—[x]—% if x is not an integer,
(=) = :
- {0 otherwise, :

[x] being the largest integer < X.
The most important property of Dedekind sums is the following
reciprocity theorem. If & and k are coprime positive integers, then

raSTAVEIAR

Dedekind [15] was the fust to give a proof of (1.1) based on his
transformation formula for Log (). At present, there exist several proofs of
(1.1) independent of the theory of the p-function and we refer to the excellent
monograph of H. Rademacher and E. Grosswald [261, Berndt [3], {6], [7]
and U. Dieter [16]. _ .

Apparently, G. H. Hardy [19], in 1905, was the first to give a proof of
the reciprocity theorem for Dedekind sums which does not depend on the
theory of the n-function. In fact, Hardy, using contour integration,proved
some reciprocity theorems in detail and, at the end of the paper, stated
eleven more reciprocity theorems for some similar arithmetical sums. One of
these is the reciprocity theorem for Dedekind sums (cf. [197, eqn. (iii) on p.

wy NI — 1("4"#}.
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122). Also Hardy clearly indicated the necessary modifications in his
foregoing proof to obtain these reciprocity theorems.

In recent years, five of Hardy's reciprocity theorems (capsulized into
four) were found in an interesting way by B. C. Berndt [8], and L. A.
Goldberg [18]. Just as Dedekind deduced (1.1) from his transformation
formula for Log (), Berndt [8] and Goldberg [18] encountered these sums
(in a slightly different notation) and deduced these reciprocity theorems from
Berndt’s transformation formulae [8] for the logarithms of the classical
theta-functions @, (0, ¢), 85 (0, g) and 6, (0, ¢) (cf. [29], Chapter 21). It may be
of interest to note that, in lis introduction, Hardy (cf. [19], p. 94, lines
14-18) observes “...though they are in reality limiting cases of the formulae
of the transformation theory or of formulae deducible from them...”.

L. A. Goldberg [18] showed that these sums also arise in the theory of
r,(n), the number of representations of » as a sum of s integral squares and in
the study of the Fourier coefficients of the reciprocals of 6,(0, g), n =2, 3, 4
while B. C. Berndt and L. A. Goldberg [12] (in the spirit of B. C. Berndt [5])
evaluated certain non-absolutely convergent double series, in closed form, in
terms of these sums. _ ‘

Since Hardy was the first to encounter these sums and formulated these
reciprocity theorems with clear indications of proofs, we will refer io these, in
the sequel, as Hardy sums and Hardy’s reciprocity theorems. :

At the end of his paper, Hardy states ... ] hope on some other occasion
to return to these formulae from an arithmetical point of view...” but it
appears that Hardy never returned to the subject. In recent years, proofs of
Hardy’s reciprocity theorems which do not depend on Berndt's
transformation formulae were given by T. M. Apostol and T. H. Vu [1], B.
C. Berndt and L. A. Goldberg [12], B. C. Berndt and U. Dieter [10], U.
Dieter [16] and B. Davis and the author [14}.

The object of this paper is (a) to give an elementary proof of Dedekind’s
[15] infinite series represemtation for s(h, k), namely that, for (h, k) =1

: ! X cot{mnhr/k)
1-2 e e e s
(1.2) s(h, k) o Eﬁ ey
¥ £0(modk)

{b) to deduce Dedekind’s reciprocity theorem (1.1) from Dedekind’s
representation (1.2) and give elementary proofs, based on (1.2), of P.

Subrahmanyam’s identity [28] and M. I. Knopp's: theorem [20] for

Dedekind - sums (c) to express, using elementary arguments, each one of
Hardy sums explicitly in terms of Dedekind sums (d) to deduce, elementarily,
Hardy’s reciprocity theorems from our explicit formulae and (1.1) and (e) to
deduce B. C. Berndt and L. A. Goldberg’s [12] and L. A. Goldberg’s [18]
analogues, for Hardy sums, of certain results due to Dedekind, Rademacher,
* Subrahmanyam and Knopp. We believe that our explicit formulae will be
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useful in the study of congruence properties of Hardy sums and construction
of tables for Hardy sums.
The reader of Hardy’s paper should note that Hardy uses
— 1)
£y for {( )

if x is not an integer and
0 otherwise and

[x] for ((x+3)
where [x] and ({x-+4) appearing on the right of above are in the notation of
this paper. :

The author is highly thankful to Prof, D. FL. Lehmer, Prof. E. Grosswald
and Prof M. I. Knopp for their encouragement and criticism and to Prof. T.
M. Apostol, Prof..Bruce C. Berndt and Dr. L. A. Goldberg for making
available various of their works. Finally, the author wishes to thank the
referee for a critical reading and useful advices.

2. Dedekind’s representation. In this section, using finite Fourier series,
we prove Dedekind’s infinite series representation (1.2} for s(k, k). For
another proof, we refer to B. C. Bérndt (cf [6], Lemma 2.1) which uses
Fourier series. Using finite Fourier series, H. Rademacher (cf. [24] and [25],
p. 18) proved that for (h, k) =1

h, k) = L5 t(ﬁr ot(ﬂi
(2.1 s(h, )_Z‘Erﬂco 7 )° i

and thus (1.2) is equivalent to

.&  cot(nhrik)  mk) r (grh_r
Z - -ﬁgmlcot 3 cot )

r=1
r £0(mod k)

This follows readily from the following more general
Lemma 2.1. Let f(r), —oo <r <o, be a complex valued periodic
sequence of a period k and be odd. Then

oo, M _ ik—l _TE—)‘_)
rz_:l = rZ‘If(r}cot (k )

i

r

Prool Following D. H. Lehmer [21], we define the Euler constant
v(r, k), associated with the arithmetical progression r, r+&, r+2k, ...,
1<r<k by . .

: ' 11 '

=1 | )

’P(r, k) ;11-13:0( 0-;;;&::-" k o x)
n =ri{medk)
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Using finite Fourier series, D. H. Lehmer [21] proved that

(2.2) plk—r, k) = y(r, k)—-gcot%r, 1<r<k—1
and also that if g(r), —oo <r < oo, is any complex valued sequence of
period k, then

] k
23) s =320 = 3 g0yvie,

k
provided ) g(r) =

r=1
convergence of S(g).

0; which i3 a necessary and sufficient condition for

To prove Lemma 2.1, we note that f (k)= 0 and Z fr) ==

is odd and has a period k. Hence by (2.3) and (2. 2)

0 since f(r)

f(r) Zk:

S(f): = (r)y(r. k)

-1
= Z} F@yylr, k) = Z f Ay k—r, k)

,; (y(r k) — —cot (’:’))

= —S(f}—|—%’:\;if(r)cot (’%)

and the lemma follows.

Remark 2.1. For a different formulation of Lemma 2.1, we refer to
B. C. Berndt [9]. His proof is based on an interesting techmque in
contour integration. Probably Lemma 2.1 is an old result.

3. Dedekind’s reciprocity. theorem. In this section, we give a proof of the
reciprocity theorem for Dedekind sums based on Dedekind’s representation
(1.2) for s(h, k). For another proof of (1.1), based on (1.2), we refer to B, C.
Berndt [6] who however used contour mtegrauon in the spirit of G, H.
Hardy [19]. ‘ - :

For positive integers h, k let

P —

n=1 m»—-lm k
mh#mk

B(h, k) =
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Then it is known (cf. [4], p. 556) that for (h, k) =1

(1l k 1
(3.1) Bh, k) = (Z—Tz—}zﬂ24hk+s(h k)
However we, using Dedekind’s representation (1.2), prove that for {(h, k) =1
w/ h 1
-2 Bk, k=5 (12k +oanke S ® h))

It is clear that the reciprocity theorem for Dedekind sums follows on
comparing (3.1) with (3.2).
To prove (3.2), we write for u >0

i 1
Bu =
W= 3
mEuy
and note that
i T . . .
—5—z-cot mu if u is not an integer,
2u*  2u
B(u) = 3
— otherwise.
4u

In fact, the first part is well known. For the second part, we have for an
integer u > 0

i 1 v 1 & 1 1
B(u) = —- Zl (u m u+m)+£mzz,,:ﬂ(m-—u_m+u)

1 1 11 1y 1 1 1
=zt o e L2

2u 2 o 2u) 2u 2 2u
BE
. T4yt
Now, by (1.2),
Bk =y ,.; mz (nk/h)Z
m#nkih

fl

—_— ot i
R I e A PY
n £ 0{modir) r=0(mod h)

1 x ( h* mth njnk) 1 = 3h?

TC2 1 nz 2
=12k (1—?) et W+ e

which is (3.2) and this completes the proof of Dedekind’s reciprocity theorem.
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Remark 3.1. B. C. Berndt [4], using (1.1) and (3.1), proved that
(3.3) Bih, k) + B(k, h) = n*/(4hk)

for (h, k) = 1. Tt is clear that (3.3) follows from (1.1) and (3.2) and that the
double series defining B(h, k} is conditionally convergent. It may be of
interest to note that the double series defining B(l, 1} was originally
considered by G. H. Hardy who also proved that B(1, 1) = n%/8 and for the
details we refer to T. J. I'. A. Bromwich (cf. [13], p. 101, problem 12).

4. Subrahmanyam’s identity and Knopp’s theorem. As further applications
of Dedekind’s representation (12), we prove, in this section, an identity dve to
P. Subrahmanyam [28] and a result due to M. I. Knopp [20] (which was in
part conjectured by H. Petersson).

Generalizing a result due to Dedekind (cf. [15], Theorem 3,
P. Subrahmanyam [28] proved the following

TueoreM 4.1. For any positive integer d

S s(h+bk, dk) = Y u(c)she, k)a(d)

b{modd) eld
where p denotes the Mbius function and o(n) =Y. d.
din
Theorem 4.1 in case d = p, a prime, is due to Dedekind. M. 1. Knopp
[20] generalized Dedekind’s result in a different way and proved
THrOREM 4.2. '

D s(ah+bk k) = a (n) s(h, k).

ad = n, blmodd)
d>0

I. A. Goldberg [17] noted that one can deduce Knopp's theorem, in an
elementary way, from Subrahmanyam’s identity. However, the following
inversion formula shows that Theorems 4.1 and 4.2 could be deduced from
one another by elementary arguments.

Lemma 4.1 (Inversion Formula). Let f(m, n) and g(m, n) be two complex
valued sequences defined for positive integers m and n. Then

4.1) flm,m)=7% g(md, &) for all m and n
dé=n

i

4.2) glm,my= 3 p(df(md,8) for all m and n.

Tdé=n

Proof. Assume (4.1). Then _
L #@fmd, 5= 5 u@ % glmda, b)

_d&n . ... ddwn
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i

2. wldgimda, b)= Y g(mc, b) 2 p(d)

dab=n ch=n
= g(m, n)
which is (4.2). The proof of the second part is similar.
Now on taking

fh,n=c@msh, k) and g n= Y s(h+bk, dk)

b{mod n)

in the above inversion formula, we see that Subrahmanyam’s identity implies
and is implied by, in an elementary way, Knopp’s thecrem.

Remark 4.1. Our inversion formula, given in Lemma 4.1, has similar

applications in the works of T. M. Apostol and T. H. Vu [2] and L. A.
Parson and K. H. Rosen [22].
Now we deduce Theorem 4.1 from (1.2).

Lemma 4.2, Let (h, k) =1 and r % O(mod dk). Then

nrh  mrb nrh
ot = d cot .
P (dk * ) e (k(r, d))

Proof. It is well known (cf. [26], p. 18, Lemma 3) that for non-inte-

gral x
i cot (m +x
m=1 k

Hence on writing (r, d) =u, r =ur,, d =ud, with (d,,r;) =1, we have

m‘h n:rb) ; ('ﬂr1 h mry b)
cot — = cot +
wrih  mh ‘ (nrl h
=u cot +— } = ud, cot
b(médl) (d1 ko dy ) ! k

Lemma 4.3, For (h, k) =1, we have

'."C) == k cot(nx).

and the lemma follows.

5’5 cot{mrh/k) — 2y i) sihe, k)‘

r=1,(rd)=t r cd
r #0(mod k}

Proof By (1.2), we have

X cot(nrh/k > cot(mrh/k
y oUwWh_ oy O e
Lirdy=1 r =1 ¥ _ , _
(modk) . r #Hmadk) cld

a*E
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% cot(mhse/k)

=ypl@ X o
ol sc ;'fssl)m(n}odk)
nshefk, ©)
CCES _tw
o s,*_o(sm_ocluc )) *

(0 k
— L= S((k, 9 & c))

=21y u(c)s(he, k)fe
cld
wherein the last step we used the fact that s(gh, gk) =s(h, k) for any
positive integer g (cf. [27], Theorem 1).
To prove Subrahmanyam’s identity, we have by (1.2) and Lemma 4.2

1 it nrh  wrb
S sthrbk,d=o- ¥ Ly ¢ ( +T)

B(mod d) r=1 ¥ bmedd)
r # O{moddk)

1 > d mrh
% X COt(k(r d))

r=1
r #0{moddk)

On writing (r, d) =s, r =ts5, d = us where (¢, u) = 1, this reduces to

X 0, (T[th) 1 o (Tcth)
_ —Cot|—— == ) u eot
2 - 1};‘_ t k 2n uszza = 1,?,;",=1 k
1 #0(mod k) .

t £ 0(mod uk}
it

;L(m s(hm, k)

=Xu ) —

us=d mn=u

= 3, u(m)s(hm, k)Xén

mld <
=Y u(m)s(hm, k) o (d/m)
m|d

wherein the above we used Lemma 4.3. This proves Theorern 4.1 (and as
“noted earlier Theorem 4.2 also).

5. Hardy sums in terms of Dedekind sums. In this section, we express
each one of Hardy sums explicitly in terms of s{k, k). In stating Hardy sums
and Hardy’s reciprocity theorems we will use the notation of B. C. Berndt
" and L. A, Goldberg-[12]. If h and k are integers with k> 0, the Hardy sums
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are defined by

S(h, k)= kz (= 1)J+1+W/'=1 -

j=1

S () = El (— 1)t (&)),
s, (h, k) = J; (-1 ((I;TJ)) ((%) ) ’
feo(()

k—1

Z (__ 1)[hj/k]’

J=1

gl § = 3 (— 1y ((sz))
j=1

TaeoreM 5.1 (Explicit Formulae). Let (h, k) = 1. Then
{5.1) S(h, k) =8s(h, 2k)+8s(2h, kj—20s(h, k) - if h+kis odd,
(5.2) 51 (h, k) = 2s(h, k)—4s(h, 2k} if his even,
(53)  sy(h k) = —s(h, K)+25(2h, k) | ‘
(
(

83 (h’ k)

S4 (h: k) =

if kis even,
if kis odd,
if his odd,
if h+k is even

54)  ss(h, k) = 2s(h, K)—4s(2h, )
55)  sa(h, K) = —ds(h, K)+8s(h, 20)
(5.6) 55 (h, k) = —10s(h, k) +4s{2h, k)+4s(h, 2K)
and '

(57) Each one of S(h, k) (h+k even), sy(h, k} (h odd), s;(h, k) (k oddj,.
53 (h, k) (k even), s4(h, k) (h even) and s5(h, k) (h+k odd) is zero.

Proof. The proof depends on some simple properties of ((x)}, s{h, k),
some well-known results due to H. Rademacher and A. L. Whiteman [27] .
(who used only elementary arguments) and the following basic observation

(5.8) (=1 = 2((x))— 4(( )) if  x is not an integer.

To prove this, observe that if x is not an integer, then

z@m ((«;‘3)) =2(x-pa-5 -4 G—E]— )

= 1—2[x]+.4[-’25]= 1—2[x]+4[¥]_
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1- 2[x]+4£§1 if  [x]is even
1—2[ ]_,,4([sz-1) s odd
= (_ 1)[x]_
Now to prove (5.1), we have, for (h, k) =1 and A+k odd, by (5.8)
kol [k
(5.9 Sh,k)= Y (-1
j=t

)
5 (52)

However by H. Rademacher and A. L. Whiteman (cf [27], eqnms. {5.61), (6.1)

and (4.31)) :
(kR 1))=*"1(((h+k)j))
(.10 Z(( % 3))7 2\
_ 5 i_l))(((”“‘)j))_ Bk, 2
‘El((zk 2 % s(h+k, 20

i=1
= s(2h+ 2k, 2k)~s(h+k, 2k)—s(h+k, 2k)
=3s(h, k)—2s(h+k, 2Kk).
Now it is known due to Dedekind (cf. [27], Theorem 2, p = 2) that
(5.11) sth+k, 2k) = 3s(h, k) —s(2h, k)—s(h, 2k)

and thus (5.1) follows from (59), (5.10) and (5.11).
To prove (5.2), we have, for (h, k) =1 and h even, by (5.8)

51 (b ) = kg (— 1yom ( (i‘ ))
Sz (E)E)-EGHG)

=25(h, K)—as(hy2, k) = 25 (h, k) ~4s(h, 2K).

- To prove (5.3), we have, for k even

£ () E)0)

Jeven

s2(h, ) =

icm
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()0 £ E)6)

Jeven

=L))o

= 25, k/2)—s(h, k) = 25(2h, K)—s(h, k).

Note that (k, k) =1 is not used in the proof of (5.3).
To prove (54), we have, for k odd by H. Rademacher and A. L.
Whiteman (cf. [27], eqns. (6.1) and (4.4)

o= E () Eoe ()
e
o ()

= 2{s{h, k)—5(2h, k))—25(2h, k) = 2s(h, k)—4s(2h, k).

To prove (5.5), we have, for h odd, by (5.8) and H. Rademacher and A.
L. Whiteman (cf. [27], eqn. (64))

Wb 03 z( 1M = Z (( ))""4:21 ((h—zi))
-5 ()

= —4s(h, k)+8s(h, 2k).
To prove (5.6), we have by (5.8)

won=giem()
S (C N
W4S( ;",

Now (5.11) completes the proof.
To prove (5.7), we have

—4(s(2h, 2k)—2s(h, 2K))

= 2s(h, K) k)=2s(h, k)~ 4s(h+k, 2k).

S(h, k) = k)—::l (— 1y tivihim = kil (— 1)k—j+1+[h(k~«j)lk3 .
J=1 i=1
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C k-1 _
— Z (_1)k—j+1+h~[hjfk]—-1 =(ml)h+k_1S(h, k).
=1 :

Since h+k is even, this proves that S(k, k) = 0. The proofs of the remaining
assertions in {5.7) are similar. This completes the proof of Theorem 5.1.

6. Hardy’s reciprocity theorems. As mentioned in the introduction, G. H.
Hardy [197] proved some reciprocity theorems in detail and stated, at the end
of his paper, 11 more reciprocity theorems with clear indications of proofs.
. In this section, we give elementary proofs of 5 reciprocity theorems due to
Hardy (capsulized into 4), using the notation of Section 5.

Tueorem 6.1. Let h and k be coprime positive integers. Then

6.1) - S(h, b+ S(K, W=1 if h+kis odd,
1, 171 k .. ,
(6.2) 5 (h, k)~2s8,{k, h) = E—MZ-(E?}—E) if h s even,
. \ _
(6.3) 255 (h, k) —s (k. ) =1 % if ks odd,
; 1 )
(6.4) ss(h, K)+ss(k, b) = 3T if hand k are odd.

Remark 6.1. The reciprocity theorems (6.1) through (64) appear in
Hardy’s [19] list respectively as equations (viii), (vii), (vip{vi) and (ix) on
pages 122-123. B. C. Berndt [8] deduced (6.1), (6.2) and (6.3) and L. A.
Goldberg [18] deduced (6.4) from Berndt’s transformation formulae [8]. For
various proofs of Theorem 6.1, which do not -depend on transformation
theory, we refer to B. C. Berndt and L. A. Goldberg [12], U. Dieter [16], B.
Davis and the author [3], T. M. Apostol and T. H. Vu [1] and B. C. Berndt
and U. Dieter [10]. Also, all the reciprocity theorems (6.1}-(6.4) are, in fact,
special cases of “three-term relations” that have been discovered by L. A,
Goldberg [18]. For elementary proofs of these “three-term relations”, we
‘refer to M. Pettet and the author [23]. Finally, the other reciprocity
theorems of Hardy were deduced by L. A. Goldberg [18] from Berndt’s
transformation formulae and the reciprocity theorem for generalized
Dedekind sums [251. ’ :

Proof of Theorem 6.1. Since s(gh, gk) = s(h, k) for any positive
integer g, we have, by (1.1), for arbitrary positive integers » and k

1 1 /(h k47
(6.5) sth, k) +s(k, h) = 4+ 3 (k+ h+hk)
where d = (h, k). : . .

Now (6.1) follows from (5.1) and (6.5). The proofs of (6.2) through (6.4)
are similar. o : _

icm

Dedekind and Hardy surns 337

7. Series representations for Hardy sums. In this section, we give
elementary proofs of infinite and finite series representations for Hardy sums
which are originally due to B. C. Berndt and L. A. Goldberg [12].

Tueorem 7.1. Let (h, k) = 1. Then

: _i“" 1 Th(2r—1)
(1) S(h’k)“n,;zr—ltan( % )

e h{2r—1 r—
z}c-_zltan(n(r ))cot(n(r 1)) if h+k is odd,

2k k

=1

2r— lr?F.O(madk)
Th(2r— 1) 7(2r—1)
( - )cot (_zk

if h is even and k is odd,

1 k! )
cot

2k rg:l

re(k+1)/2

1 2 1 hr
7.3 (b, k) = — ~tan [—
(1.3) 85 (h, k) 5 ;1 ran(k)
2r % 0(modk)

| Rk Tthr r
U t —_— o,
4kr§1 an(k )cot_(k) |

. if his odd and k is even,
(74) s3(h, k) = - > %tan(ﬂ) .

: 1 k=1 h
=m2-]-c-r=ltan (Ek—r)cot (%) if.k is odd,

42 1 mh(2r—1)
7.5 h k’ — e
75 shk=2YF °°t( % )

142} mh(2r—1) (2r—1)

-1 ¢ oy
Y <o ( 5 )cot( 5 ) if his odd,

2 @ 1 h(2r—1
76  sshR=> % 2r_1tan(“ (;k ))

2r— 1 £0(modk)

_ 1 kot nth(2r—1) -n(2r'—1j
=55 E‘ tan( 5 )cot( o )

1
r Ak 1))2

=~
~
I
-

if h and k are odd.
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Proof. To prove the first part of (7.1), we first note that by (5.11)
(1.7 S¢h, k) =4s(h, k)—8s(h+k, 2k)
if (h, k) =1 and h+k is odd. Hence by Dedekind’s representatlon (1.2)
4/ & collnhr/k) = cot(n(htk)r/Zk
(hk)z(z———zz u ),

T\ =y . F r=t. r
r# Olmod k) r E0({mod 2k)

Now on splitting the second series on the right into two according as r is
even or odd, we obtain the assertion (since we do not have absolute
convergence, a limiting argument is necessary). The second part of (7.1)

follows from our basic Lemma 2.1. The proofs of (7.2} through (7.6) are -

similar.

8. Subrahmanyam’s and Knopp’s results for Hardy ssms. Qur explicit
formulae for Hardy sums combined with Subrahmanyam’s identity yield
the following

TueoreM B8.1. Let (h,k)=1 and b be an odd posztwe integdr. Then

(8.1) bilS(h+zmk, bk) = Z,u(d)S(hd k)a() if hik is o’d.

=0 dlb

Further if y;=2 or 1 according as i =1, 4,5 0r 2, 3 and h euenforz—l k
even for i =2, k odd for i = 3, hoddforkm-4andbothhamikoddjor1~5
then

b1

(8.2) Y si{htyimk, bK) = o(n)s;(h, k) for

=0

1€igs.

The identity (8.1) is due to L. A. Goldberg (cf. [18], Chapter 6).
. Theorem 8.1 combined with our inversion formula given in Lemma 4.1
gives the following result due to L. A Goldberg (cf. [18], Chapter 8).

TueorseM 8.2. Under the notation of Theorem 4.1, we have

d-1
Y Y S(ah+2rk, dk) = o (n) S (h, k)
| #
and
> % si(ah+yrk, dk) =c(ms(h, k) for 1<i<5.
ad=n r=0
d>»0 :

9. A remark on Dedekind-Rademacher sams. L. A. Goldberg (cf. [18],
Theorem 8.1), while discussing the other reciprocity theorems of Hardy,
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considered the Dedekind-Rademacher sum s{h, k; x, y) [25] defined by

s(h, ks x, y) = Mém ((h(#;y) +x)>((¥))

Using Berndt’s transformation formulae, Goldberg expressed s(h, k; 4, ), in
case (k, k} =1, explicitly in terms of Hardy sums.

It may be of interest to note that, by a simple elementary argument, we
have, for any two positive integers h and k, the following curious result

9.1) s(h, ks 4, %) = 25(h, k) —s(h, 2k)—s(2h, k).
In fact, by the well-known resuit ((x-+3)) = ((2x)—((x)) (cf. [27], eqn.

(241}), we have
1/2) 1 +1/2
FEER-)5)
u{madk) 2

S5 (““”)))((3‘22—1))
2l 2"")) ENE)
ZAE-GEG))

= s(2h, 2k} —s(h, 2k)—(s(2h, k)—s(h, k)
which gives at once (3.1).

I
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On unit solutions of the equation xyz =x+y+z
in the ring of integers of a quadratic field

by

R. A. Mowrun (Calgary), C. SmaLL (Kingston),
K. Varaparalaw (Calgary) and P. G. Warsu (Calgary) ®

1. Introduction. This work was inspired by a study of the equation xyz
= x-+y+z = 1 which is known to have no solutions in the rational number
field O (see [17, [2] and [3]). In [4] this equation is studied over finite fields,
and a precise count is given therein of the number of solutions in the finite
fields. It is natural to ask the more general question: What are the solutions

- of xyz = x+y-+z =u where 4 is a unit in the ring of integers of a mumber

field? Equivalently; what are the solutions of xyz = x+y+z where X, y, Z are
units in the ring of integers of a number field? It is the purpose of this paper
to completely solve this problem in the quadratic number field case.

2. Results. In what follows Uy denotes the units of the ring of integers of

K= Q(\/;i), where d is a square-free rational integer.
TueoreM. There exist solutions to:

(*) u1u2u3:u1+u2+u3

where u,e Uy for i=1,2,3 if and only if d = —1, 2 or 5.

A complete classification of the selutions for each d is given in Table 4
following the proof of the theorem.

Proof. First we consider the case d < Q. If d# —1 or —3 then Uy
= |+ 1} and the equation (#) is clearly not solvable. If d = — 3 then we claim
there are no solutions. Let w denote a primitive 6th root of unity. Then v
= w" where 0 <[, <5. If any two of the I’s are equal, say [, = I, without
‘ Uty gt Byl

2. However for

. . 1+

foss of generality, then w implies w'!
I;—1

whence w'! ?—w3 " =2 and
I -1

0l €5wegetwi—w '=0or

* The first thres authors research is supperted by N.SER.C. Canada, and the fourth
author was a senior undergraduate mathematics student at The Umversuty of Calgary at the

time this paper was written.

i -1
so wiwl-w Y=
—3, which yields a contradiction in



