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(5'4) ao“faz =, ay =b(1*l): as :b(1+1)>
where be Z. Further, (2.13) gives

(5.5) 0= dg az+a1 53""02 §4+a3 6-1:5 = Ay 52—50 az-—4ib2,
so that

(3.6) g = |agl* +ay)? +lazl* +|as)* = 46 +|agl* +]as|* = ¢* + 802,
since
¢? = (ag—iaz}(Fo +idy) = |aol® + |ag|* +i(ag @y — g ay) = |agl® +aa{* —4b?,

by (5.5).

Thus g, which initially appeared to be expressed as a sum of eight
squares, turns out to be expressible as a real binary quadratic form. As an
illustration, we have for g = 17,

a0:—1w2f, alm_1+i, a2=—~2-2i, a3‘-:—1_i,

giving b= —1, ¢ = —3.
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On two analytic functions
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K. Mamxr (Canberra)

1. Denote by U: |z < 1 the open unit disk in the complex z-plane, and
by Tan arbitrary closed subsct of U, Next let ¢ 2 2 be a fixed integer, and
let n run over all non-negalive integers, Finally let

plz) = potpezt ..+ pezt,
where d 2 1, be a polynomial with complex coefficients satislying.
PO = py==1 and p(l) =0,
Hence p(z) is divisible by 1z, say of the form

plz) = {1 =2)g(z),

where
gle) = qotq s+ gy 2]

is a second polynomial with complex coefficients such that
q (0) = qn hisd 1.
We shall use the notations

ol + g1 | - - o+ ga— 1|

P=lpol+lpdt. ot pl  and Q=

for the sums of the absolute values of the coefficients of p(z) and g(z),
respectively.
It is then abvious that

pE-1gP-1 and |g@|<Q for el

In these inequalities = may be replaced by =" since with z also 2% belongs to
the disk U. In fact, the lollowing stronger inequality

P 1< (P—1)]al"

holds if ze U, and n is any non-negative integer.
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2. The power series

ow

P

n=0
CONVErges absolutely for ze U, and it converges uniformly in z for ze T
This implies that the infinite product

z) = fl p(z"")

likewise converges absolutely for ze U and uniformly in z for ze T Therefore
the function f (z) is analytic and regular at all points of U and hence can on
this disk be written as a convergent power series

@0
f@) =3 fiz" where fo=1

n=10
We shall later decide whether this function can be continued into a larger
region.

3. We first study the behaviour of f(z) on the positive real axis as :z
tends to 1, Denote by Z a real variable such that

—Z

z=e¢ where 0<Z<1and Z-0,

and associate with Z the integer

N = [{log(1/2}}/{logg}].
Here [x] denotes as usual the integral part of x. As Z tends to zero, N tends
to infinity.
Now put

Si(z) = and  fz(z)

N-1
T ey ﬂ piz),
n=0

so that

&) =11(2) f2(2)

Here by the factorisation of p(z), and by the relation between z and Z,

N-1
fild) =TT {(1—e ) g(e" ")}
n=0
Further for 0 < Z < 1,
e 21-g"Z, hence O<l—e 2 giI—(1—g"Z)=g"2Z

icm
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so that
N—-1 a N-1
0< T (1=e"") < [ ("2) = g~ 12 28 < g2z

n=90 =10

For the product of the factors ¢ we use the trivial estimate

N-1

[T late™") < Q.

n=0
it follows that

fi () < g"* 12z Q.
Here by the definition of N,

g" < exp {(logg) {log(1/Z)}flogg)} = 1/Z.
Therefore finally,
@) < Q2% for 0<Z<1.

4. As a partial product of the convergent preduct f(z) also f;(z)

converges for ze U. An upper estimate for f5(z) as function of Z is obtained
as follows.

From the upper estimate for |p(z)—1|,

L@ =11 e < [] (1+(P-1)e"2) = ] (1+{P—1)e~s"s"2).
n=N n=nN m=0
Here
" Z <1,
It follows then that
/2 62) < H (1+(P—1)e™?")

where the infinite product on the right-hand side does not depend on z or Z
and is convergent. Its value is a certain positive constant R, and therefore

[f2lz)) <R for 0<Z<1.

On combining this estimate with that for f (z), we arrive at the final
result that

If{z) <(Q*Z)"*R for 0<Z<1.

By the relation between Z and N it implies the following result.

THEOREM 1. White z = e~ % and allow Z to tend to O along the positive
real axis 0 < Z < 1. Then, if ¢ = 01is an arbitrarily large constant, there exists

2 — Acta Arithmetica XLIX.{
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u second consiant C > O such thar
f@=C-Z° as Z-—0.
5. By definition,

o

f@= ] p(z"

n=0

and therefore

7@ = piay f(=9).

It follows that for all positive integers a,
n—1

(1 fi@) =1 T pieth.
h=0

Denote by Uy: |z| = 1 the unit circle which is the frontier of the unit
disk U. Let further E be the set of all g"th roots of unity &, where n runs
over the positive integers; this set E is everywhere dense on &/,.

Theotem 1 implies that if = tends to © along the positive real axis, then
f(z) tends to 0. Hence it follows from the functional equatien (1) that more
generally f(z) tends to 0 if z tends to any clement ¢ of E along the radius of
Uy from z =0 to z=¢ This property of f(z) allows to deduce that this
function cannot be regular at any point of U,. For otherwise f(z) would also
be regular on a whole sufficiently small arc 4 of U/;,. But this arc 4 contains
a dense set of points z =& of Uy, and at all these points f(z) would have
the value 0. Hence f(z) would necessarily be identically equal to 0. contrary
to f(0)=1.

The following result has thus been established.

TueorEmM 2. The unit circle Uy is the natural boundary of the function

f{.

6. Now denote by « an arbitrary positive parameter and by s = a+1i,
where ¢ and t are real numbers, a second complex variable. Associate with
the power series

.
fiey=3% fz
n= 0
the formal Dirichlet series
oslay= 3. fula+n)~*
n=0

with the same coefficients f,. However, it remains uncertain under which
conditions on the polynomial p(z) this Dirichlet series has a region of
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convergence. We shall therefore define ¢ (sla) by a definite integral for which
the convergence can be established.

For this purpose we apply Euler's integral for the gamma function in
the form

r(s)(a_i_n,)*s — "‘ev(m“n]ZZsfle.
0

As is well known, this integral converges if a+# is real and positive and the
real part ¢ of 5 is positive.
By a purely formal calculation,

I(s)p(sla) = T'E""Z(i fue )2 dZ.
0

n=0
We therefore define from now on @(sla) by the equation

x

{2) Fisye(sla) = [e™*f(e" 5 2°" 1 dZ,
Q
which certainly converges for ¢ > 0 and.o > 0.

The condition for a will be left unchanged, but it will now be shown
that the restriction on s may be omitted.

It is clear that the integrand in (2) is regular for finite positive Z and
that the integrability may be disturbed only at the two points Z =0 and
Z =2,

As Z tends to O, the factor e ** remains regular. Under the same
assumption for Z, by Theorem |,

Ef(ewz')zsf l| < CZc.ZG—l’

where we may take for ¢ so large a positive number that ¢c+o—1 > 0. Thus
the integrand of (2) is integrable at Z = 0 since it tends to 0.

Finally, as Z tends to oo, f (¢7%) tends to £ (0) = 1, while e"*¢ Z*~ ! tends
to 0 for every value of s. Hence the integration to oo is valid.

Let now s be restricted to a bounded closed region in the complex
s-plane, and let a be restricted to a finite interval on the real positive axis.
Then the iﬁtegration is uniform in both s and «. We obtain therefore the
following result; '

THEOREM 3. Let a be a positive real parameter and s a complex variable.
Then the function I(s)o{s|la) and hence also the function p(sla) is entire in 5
and continuous in a.

Here the gamma function has poles at all the non-positive integers. It
follows therefore that the entire function @(sla} has zeros at all the points
s=0,-1,-2,...

7. In its dependence on a, the function ¢{s|a) satisfies a simple functio-
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nal equation which can be derived from the functional equation for f(z), as
follows.
By definition,
f(2)=p@)f ), where p(z)=po+piz+..+p2,
hence
fle ) =potpre ?+pre 4. +pe” ) fle™).

Therefore

oo

Ts)p(sla) = [e™“fle™)(po+pre "+ . . +pe ") 2271 dZ
o

@

d
=3 p e “f (e ) e 27 1 dZ.
=0 0

Here replace gZ by the new variable {. Then this formula becomes

ath

I'(s)p(sla) = Z Pr je Tt f (e (gy  dl/g
a+h)

g

a-i—h)

)

On differentiating the integral for I'(s) @(sia) partially with respect to «,
we obtain the further identity

Z pg T S)GD(

Hence ¢(s/a) satisfies the functional equation

(3) @(sta) = Zp;.g (P(

h=

@ 2 ook = ~ (s 1)
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prime divisors of an integer
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ALEXSANDAR vic (Belgrade)

Dedicated to Professor Paul Erdds
on the occasion of his 75th birthday

1. Introduction and statement of results. Let as usual Q(n) and win)
denote the number of all prime factors of n 2 1 and the number of distinct
prime factors of n, respectively. Further let P(n) denote the largest prime
factor of n=2, and let P(l)=1. The functions Q(n), w(n and P(m
determine to a large extent the distribution of prime divisors of n. In many
problems involving P(n} one often encounters the function
(1.1} vix, )= 3 1,

ngx,P{m<y

which represents the number of positive integers < x all of whose prime
factors are < y. An extensive literature on ¥ (x, y) exists, and recently (see
[7], [8)) important developments in this field have been made. The new
results on ¥ (x, y) are likely to find many applications, and in [11] they were
used to obtain information about local densities of a certain class of
arithmetical functions over integers with small prime factors. Several results
concerning the local behaviour of i (x, y) were derived in [11], and some of
these will be needed in the proof of

Treorem 1. Let y < x, log y/loglogx — oo as x — o, and let p denote
prime numbers. Then we have uniformly

_ 1 log log x 13
(1.2) néx!;msy(ﬂ(n)—w(n)) = (x, y) (% pz—p_+0 ( Tos s ))

Asymptotic estimates of sums involving Q(n), w(n) and reciprocals of
P(n) elucidate the distribution of prime factors of n, and they were studied in
[51, [6], and [10]. In particular, it was proved in {6] that

Qnm—-wn (loglog x)™/2 1
3 2P ‘{”0( log 7 x )}Z'ﬁfij

holds for a suitable constant ¢ > 0, and that, as x — o0,




