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A note on a result of ErdGs, Sdrkézy and Sés
by

R. BaLASUBRAMANIAN (Bombay)

L. Introduction. Let A be an infinite sequence of positive integers
a; <da; <day <. Let

Rn= Y 1, R(n= Y I, Ryn)= DR & ANy= Y 1.

:xi+aj=n ni+aj=n ai+aj= "o asA
R e <N
i<j i ax

Then the following three theorems are due to Erdds, Sdrkdzy and Sés [1]
(our notation is different from their notation; they use R,, R, and R, instead
of our R, R, and R,).

Tueorem 1. If R(n-1} = R(n) for all large n, then A(N}= N+0(l).

Tueorem 2. If Ry (n41} 2 R, (n) for all large n, then A(N) = Q(N/log N)
(and a similar result for R,(n).

Taeorem 3. For a suitable sequence A, we have, R, (n+1) = R, (n) for all
large n and A(N) < N-—cNY? for infinitely many N and for a suitable ¢ > 0.

The authors in [1] state that probably a theorem analogous to Theorem 3
holds for R,(n) also. :

In this note, we give (what we believe) a simple proof of Theorem 1;
slightly improve Theorem 2 and disprove their conjecture (?) about a result
analogous to Theorem 3 for R,(n). More precisely we prove

THeorem 4. If Ry(n+1) = Ry(n) for all large n, then
A(N) = N+ O{logN).

THeOREM 5. If Ry(n+1) = Ry(n) for all large n, then
Y. e7“"» NflogN.

aed

2. Notation. In the seqdel, a, a; denoie the generic elements of A4:

f@)=(Z ;

agA
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consequently

= Z Rim:z"
=1

Let @ be a real number, 0 <« < I, and a is close to 1;
g(z) = z Z bn“ '

1 if n=2a, or 2a0,~1,
£, =
" 10 otherwise;

5 1 if ne=2q,
o otherwise;

Ay =Rin+41)—R(n}—¢,.
We write 4( z) B(z) to denote that A(z)—B(z) is a polynomial in z.

3. Proof of Theorem 1.

Lemma 1. (a) We have R{n) < 24((n+1)/2) for all n.
(b) We have ) &,z 24(m/2) for all m.

nsm
(c) R(2ay) is odd; R(2a,+1) and R(2a,—1) are even.
Proof We have

Rin= Y 1<2 ¥ 1<2 ¥ 1=24 (i’_f_l_)
atu=n a;Sa; aSin+1)2 2
e ta;=an

and this proves 1 (a); Lemma 1 (b) follows from the definition of ¢,: to prove

1 {c}, note that all the solutions (4, &) of g +¢; =n can be pcured as {w, @)

and (a;, ;) except when n is of the form 2a,, in whlch case, we have one
extra sclution (g, a,).

Lemma 2. We have 4, = 0 for all large n,
Proof. This follows from the monotonicity of R(n) and Lemma 1 (c).
Lemma 3. We have 3 A, is bounded above for all lurge n,

nsm

Proof. We have
Yode= Y (R(n+1)—R(n)—sg,) = R(m+1)—R(1)~ Y ¢,
nEm 1snsm

and the lemma follows from Lemmas 1 (a) and (b).

Lemma 4. We have A, =0 for large n.

Proof, This follows from Lemmas 2 and 3.

LemMma 5. We have (f(z))z(l —~2) = (142z) [ (z%)+ p(z) for a suitable poly-
nomial p(z).
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Proof. From Lemma 4, we have ¥ 4,2""! £ 0. Hence
Y(R(n+1)=R(m—g)zt £
Hence
(ERm:Y(1—zp EY g,z
Hence

(F@ (1= L N 2 (14T 2 (142 1(22).
LemMa 6. We have {g(2))* = g(z3+p(z) (1 —2).
Proof. This follows from Lemma 5 and the definition of g{(z).
LemMAa 7. We have b, =0 for all large n.
Proof. From Lemma 6, we have

[ lg@Pdz < | lg(z®dz+0(1)

<O [ lg@ENPd=)"( | 14" v o).

lzl=2 lz]=x

Hence, allowing z —~ 1, we have

¥ b2 < (X Ib)Y v 00).
n=1

Consequently 3 |5,/ = O(1). Hence the lemma.

Now h, = y{m—y(n—1) where y is the characteristic function of the
sequence A. Since A is an infinite sequence, y(n) =1 for mﬁmtely many n
and hence for large n. Hence Theorem 1 follows.

4. Proof of Theorem 4.
Lemma 8. We have

red < i o

Proof. We put z = —a in the relation (f(z})* =Y R(n)z" to get
0<(f(—nf =S Rm(—1ra" =3 (R2n)x>—R(2n+1)a? 1),
This yields, using R{n) = 2R, (n)~d(n),
0<2Y (Ra(2n)—Ry(2n+ 1)} 1 2% R,y (2 (2 — 2™
~S@En-d(2m+ 1) =2, +E,+Z; say.
Since R,(2n)— R, (2n+1) < 0 for all large n, X, is bounded above. From the
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definition of 4(n) it follows that
Iy=-) ok ~{f {?).
Further
Iy =2) Ry(2n)@™ —a® ) = 2{1~a) Y Ry (Zn) "
<(1-0)) (R 2n)+ R, (2n+ 1))e® + 0 (1)

*___Z( 2"—|-R2(7f’!+1)0!"”1)+0(])
W_WZR (Ma"+0(1) < ———ZRn)a'*+o (13
1—a,
— (@) +o

and the lemma follows.
Lemua 9. Define W{N) = fle” '™, Then
(¥ (N)) = IN¥(N/2)+ 0 (N).

Proof. We put o = e~ "% note that f(a
Then

1 —
= (1+o 1/N).
4
Hence the result follows from Lemma 8.

5. Proof of Theorem 4 {continwed). In this section, we assume, as we
may, that

YNy - as N-—m,

Lemma 10. We have

i 12f
i ()5 et
=1\

Proof. The power of N in the left side is easily seen 1o be 1—(1/2%).
The power of 2 appearing in the denominator

P(N) and [(e?) = ¥ (N/2).
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Lemma 11. We have
(A—d)? 2 1~2dy, if 0<d, <1/2; dy >0.
Proof We have

2 3
(—log((t—d,)"™) = —d;log(1—dy) = d, (d1+dg +d3 e )

< dy(dy+di+di+..) < 2d, d,.
Hence (1—d)** 2 e "2 2 124, d,.
Lemma 12. For a suitable constant ¢ > 0,
(N = NP(N/D2N  for all N2c,.
Proof. Since ¥(N)— =, both inequalities follow from Lemma 9.

Lemma 13. We have W(N) » N.
From Lemma 12,

W(N) > N2 (R(N/2)? if N is large.
W(N/2) = (N2Y2 (e (N4 if N is large.
Hence

¥ (N) = NY2(N/)V4 (@ (N/4)? if N is large.

Proceeding similarly and choosing 4 such that
e, € N/2A*L £ 2,
we have
WN) = NUR(ND (N2 (e ()
Since Y(N/2**!) > [ (Lemma 12), we are through.
Levma 14, For a suitable constant c,,

(F(N)) = 2NW(N/2)(1 —cof N).

Proof. This follows from Lemmas ¢ and 13. In the sequel, we assume,
as we may, that ¢; = ¢
Levma 15, We have

¥(N) = N+0(logN).
Proof From Lemma 14, we have
W(N) = (2N) (2 (N/2) 7 (1 - ea/N)2,
W(N/2) = (VY2 (F (N (1= 20,/ N)2.

4 — Acta Arithmetica XLIX.1
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Hence
W(N) 2 (2N)Y2 N (BN (1= ey NP2 (1 — ¢/ N4
and using Lemma 11,

' 2
N) 3 NN (V) iN)

Proceeding similarly and choosing 4 such that

N
100 < AT < 200,

2

we have

NS N VN et [ ¢
12 a7 o . o2
YN} = (2N)V2 N (2) ...(QH) (I‘V(za)) (1 i N)

Now using ¥(N/2*) =1 and Lemma 10, we have

IP(N)>N1‘”2*(1—1-53 A
4N

and hence the lemma.
To prove Theorem 4, observe that, if x(n) is the characteristic function
of the set A4, then from Lemma 15, we have

X

le(n)e“"’” > N+0(log N).
Hence

i (1—x(m)e ™" = O (log N).
Hence

> {1—z(n) = O(log N)

ns N
and this proves Theorem 4,

6. Praof of Theorem 5. The proofs of Lemmas 16, 17, 1§ and 19 are
already contained in [1], and we give them for the sake of completeness.
Lemma 16. We have

I i R, (n)znl < ()((CC))Z(I —2)+0{1)

T on the circle |z =a.
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Proof.
(2 Ri(mz")(1=2) =Y (R, (W)~ R, (n—1)) =
<) (R (m-R —1))1"+O(1}

= R (ma")( 1-~0f)-|—0(])

< (¥ R(ma") (1 —a)+ 0(1)

={f @) (1 -ay+0).
Lemma 17. We have, on the circle |z| = a,

' 2
s <2V G ]

Proofl. We observe that

() =3 R(mz"=2Y R (n:z"+3 5,z"
and the result follows from Lemma 16,
Lemma 18. We have

S < {(f @) (1—2)+0(1) 10g1—12+(j'(sc“‘))”2~

=23 R, (mz"+f(z}

Prool. We integrate the relation in Lemma 17 on |z| = x. We note that
{ 1fiaitdz =} o™ = fi?),
|z| =« acA
dz 1
< log———
IZI'r 2 [1=2]
f fEde<( [ 1f(2?

lz]=a lzl=a aeA

2 dz) (fldzl) < (3 o)™,

LEMMa 19, We have

9

1
fle?) < ((f(oc))z(l-—a)+0(l))log1—_; as o—1.

Proof. Since f{«*) < f(¢? and f{z*
right of Lemma 17 could be dropped. Putting 2 = ¢~

Lemma 20.
NY ()
'!’(E)é( N +O(1))10gN.

Lemma 21. We have

) — > as a — 1, the last term on the
UN we have

N\ ()
T(?)é————N log N.
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Proof. We observe that
23 Rim= 3 (RM=sm)= Y ¥ 1-A(N)

nEN nEN néNa,--I-aj=n

ai+z!i$.N SN

Since A(N)— w0, it follows that Y R (n)— cc. Hence R, (m =1 for
nEN
infinitely many n. But R, (n) is monotonic. Hence R, (n) = | for all large n.

Hence } R;(n) » N. Using this lower bound in the above inequality it
HEN
follows that 47(N) » N. Hence A(N)» NY2. Hence ¥(N)» NY2. In par-
ticular ¥(N/2) » N2
Therefore from Lemma 20,

'((*P(an

N

Hence ¥(N) » N**flog N)"/*. Consequently
()’

vy
B +0(1) <« N

—i—O(l))log N> ¥(N/2) » N2,

Hence Lemma 21 follows from Lemma 20.

Now Theorem 5 could be completed as in Theorem 4. From Theorem 5,
one can deduce that

A(N) = Q(N/log N).

If not, then
. 2N
AP N) = or all i 1.
(2 N) O(_logN) for all j> 1
Then
Y(Ny= Y e =¥ Y e aiN
aeA I 2iN <ag2itly
asd

iy waif PN :
<Te® ¥ 1sYe 2"(-‘-—“—--) for a suitably small £> 0,
J

log N

as2/ Ty J
ned

Hence W(N) < ce

N
Tog N for an absolute constant ¢, which contradicts

Theorem 5.
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Y 1AM (T 1) —AN) < AXN)-A(N),
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Dr. S. Srinivasan kindly pointed out the following result which is
equivalent to Theorem 1.
Let 1 =ag <a, <a, <... be an infinite sequence. Define
6. (n) = %1 if n—a,elay;, a;;.,) for some j,
r 0  otherwise.
Then the function f(n) = > (—1)"¢,(n) changes sign infinitely often.

Added in proof. We observe that the method of proof of Theorem 4 actually yields the
following stronger theorem (compare with Theorem 2 of Problems und results on additive
properties of general sequences, V by P. Erd@s, A. Sirkdzy and V. T. Sos):

THEOREM. If

n—A(Mn
m
o 10N

then

fimsup T (Ry(20~ R (2k+ 1) = oo,
k€N
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