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On the number of terms of & power of a polynemial
by

A. SchmnzeL (Warszawa)

To Puul Erdds
with hest wishes on his
75th birthday

The conjecture made by Rényi and first published by Erdds [2], who
supported it('), asserts that if Q, is the least number of non-zero coefficients
of the square of a polynomial with exactly & non-zero complex coefficients
then

lim @, ==~.

k=1
It has been proved by Erdds in the quoted paper that

0, <C, k' ¢
and the values of the positive constants £, and C, have been subsequently
found by Verdenius [9] (see also Freud {3]). He also established a similar
inequality for cubes. It is the principal aim of the present paper to prove
an estimate for the number of non-zero coeflicients, called the number of
terms, of an arbitrary power of a polynomial, which contains as a special
case the ineqguality
loglog &
log2 ~

A

Here is the general result.
Tueorem 1. Let K be a field, fe K[x], le N, fand ! have T2 2 and t
terms, respectively. If either char K =0 or char K > ldeg f then
’ log(T—1)
— ‘ e
tz1+1+(log2)" 'log (i +Hog41—log1)'

Already for I = 2 there is a big gap between the obtained lower bound
and Erdés's upper bound for . Another open question concerns the number

(") Erd&s tells me that he arrived at the conjecture independently from Rényi.
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of terms of F(f(x)), where F is a fixed non-constant polynomial. If Q, (F) is

the minimal number of terms pf F(f(x)), when f runs over all polynomials

with exactly k terms then probably lim O, (F) = cu, but the method of this
k= oo

paper is insufficient to prove it.

If char K is positive the number of terms of f} may remain bounded in
spite of the fact that the number of terms of f, € K [x] tends to infinity with n.
The situation is described by the following

TreoreM 2. Let char K >0, feK[x], IeN, f and ' have T =2 and
t terms, respectively. If

T-1(T?~T+2) <char K
then

log{T—1)
> - -1 —_— ]
rzl+1+{log2)~'log (1+llog4l—logl
On the other hand, if | # (char K)" {(n = 0, 1, 2, ...) there exist polynomials
fe K[x] with T arbitrarily large such rhar <2l

Finally we have

THeOREM 3. Let K be a field and fe K[x]. If in the algebraic closure of
K [ has a zero { of mudiiplicity exactly n then [ has ar least as many termy as
=2

The algebraic closure of K will be denoted by K. The case char K = 0 of
Theorem 3 has been proved by G. Hajds [S]. The special case of Theorem 3
for K= F, and ¢ =1 has been given as a problem in XXVIth International
Mathematical Olympiad. A. Makowski, the head of the Polish delegation
insisted that there should be a common generalization of this problem and of
Hajos’s theorem. Hajos's result, slightly extended serves as the first of the
three lemmata needed for the proof of Theorem 1.

Lemma 1. If g K[x]\ 0] has in the algebraic closure of K a zero & #0
of multiplicity ar least m and either char K =0 or char K > degyg, then g hus at
least m—+1 terms.

Proof. The proof given by Hajés [5] and rediscovered by Montgomery
and Schinzel [6] (Lemma 1) for K = C applies without change o the case
char K =0 or char K > degyg.

LemMa 2. If f(x)e K[x], f(0y# 0, f(x)'e K[x*] then either char K|(!, d)
or fix)e K[x*].
Proof. Let

FX)' =g(x, g0 =y []lx—rp™,

yel

where I' is a subset of K\ {0}. We get
J 00 = po [T (6 =),

yel
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Since for v # 0 the multiplicity of the zeros of x?—+y is either 1 or equal to
the maximal power of char K dividing d, we get either char K|(I, d) or lle(y)
for all yeI. It follows that

S =y [T =9 e K[x].

yel

Since K{x]n K[x*] = K[x‘] we infer that
f(x)e K[x'].

Levwma 3. Let He K[y, z], pe Z. Define the sequence H, = H,(y, =; p}
as follows

dH, aH,
Homﬂs Hn+1=_py+ z.
&y oz
Then we have the following
(n deg, H, < deg H, deg . H,< deg_H;
r dk P B
@ H i p) = ¥ ek, THER TR sy
k=1 dx*

Jor suitable coefficients c(k, nje K,

3) If charKz=! and a polyvnomial G irreducible over K divides
(Hq, Hy, ..., H,_ ), then either G'H or for each term gy"z* of G (g # 0)
pu+f is rhe same modchar K if char K > 0, has rhe same value if char K
=0, briefly G is isobaric modchar K with respect to the weights p, 1.
Proof. Directly from the definition of H, we get

dcngn-i-l = dengn: deg: Hn+1 < deg: Hn
and formulae (1) follow by induction. The same method is used to prove (2)
and (3).
(2) is true for n =1 since
dH (x%, x)

aoH oH
o P Py 7 =
H{x"x;p= o (x?, x) pxP+——(x%, X)x =X .

0z
Assuming the truth of (2) for a fixed » we get
OH 0H,
Hyy (60, x5 P = (%%, X; ) pX74 (X2, X; ) X
dy dz

dH,(x*, x; p)

= dx

n d*H(x", x;p) ,d" H(x x; p)
o k"l 1 2
—xk;c(k, n) (kx e +x* pTy 5

which implies (2) with » replaced by n+1.
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In order to prove (3) let H = G™U, where U # Omod G. We shall show
by induction on j< m that
my {0G oG v ) ‘
z = j! — — - me 41
(4) Hj(ya~~p’—",]-(j)(aypy+ ﬂZN)G U mod G ,
For j =0 this is obviously true. Assuming it for a fixed j we get upon
differentiation

, o
hiakef P8 -!( )(‘ﬂ? py+- Ez) (m—jGm it -?(-IUmmiG”‘ g
I 1

H, . TG oG v o i G e i
———JEJF(i)(a py+(,)~ )(M"—_,‘)(J i —ﬁ;Umod(: 1,

hence

0H,  @H,
Hi(v.oip = 3 mf+—5"-z

= (j+ 1) (‘jfl)(%gpy (;(j-z) " G™ 4 U mod G774
and the inductive proof of (4) is complete.
Taking there j = m, we get
H (viz;p)=m (%py-l—%gz)m Umod G,
hence if m < [ the assumption G|(Ho, H,, ...
G

, H,_ ) implies

i
py+—agz = Omod G.

aG aG
However the degree ot py-i————z does not exceed the degree of G. Hence

oG oG ,
‘é};P}"*"‘Et_ -—L(J, (EK

and for each term gy*z* {y £ () of G we have
prtf=c,
where both sides are viewed as elements of X, If char K > 0 this means
px+ f = c(mod char K)
and if char K =0
pr+f=c.
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Proof of Theorem 1. We shall prove the following equivalent in-
equality

5) T< 1+(%{’i)

p—I-1_

For T>1 we have r > 1 hence (5} holds for t = 1. For r > 1 let

Ft= Z a;x'
where
a#0, me<m <...<m., (myg—mgy, my—ty,.

We have

ey Mg —Mg) =d.

mg =lord, f = 0mod!,
(Fox "™ Ne k¥, flx"oe#0,

hence by Lemma 2

FaxT"e K[, f(x) = folxh ™"

and
.
(6) folxi=ag+ 3 a;x7,
=1
where n; = (m;—mgl/d. We get

(7 O=ng<n <ny<..<n_,<ldegf, (n,...m-)=1

and since f and f, have the same number of terms it is enough to prove the
inequality (5) for the number of terms of f;.

If t €1+1 we apply Lemma 1. Since char K =0 or char K > n,_; the
lemma is applicable with ¢ = fi, m =1 and it gives r 2 {41, hence ( = I+ .
Every zero ¢ of f{ is of multiplicity >/, hence on differentiation

i
S a(")E=0 (<i<i.
I

!
aU+ Z aj‘;:nj - 07

i=i
Since char K =0 or char K > n,_, we have
.(nj‘) - H

$SiS osgera T
hence a; &Y are uniquely determined by a,. Since a; # 0 and (ny, ..., - y)
=1 there is only one possible value for & Then

foly =c(x—8"*°  ceK, £#0

n,— Hq#o
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and Lemma 1 applies with g = fo, m = Ideg fo. It gives Ideg fo+1 <141,
deg fy = 1, T =2, hence (5).

The further proof proceeds by induction for fields K algebraically closed.
Assume that (5) holds for /th powers with less than 2 /+2 terms and
consider again the conditions (6) and (7).

By Dirichlet’s theorem there exist integers py, Pz, ..., Py such that
1

< (j=1,2,...,1=2)
4le—-1

IR

) -y Pi-a

and

0 <pog S @Y2

The inequality p; <0 or p, > p,—; would imply

1 ; i 1
— — < ,
Pi-1 ey Py Ap,
a contradiction; hence we have
© 0<p<poy SENT2 (G=1.2.,1-D.
Setting
(10) -1 [Hl, Ty n:—]] =1 [Plu rers pl—l]+[r1: sty rl-‘lj
we get from (8)
M1 ,

|rJ|<T (]:1,2,.‘.,1“‘2), I‘Plﬂo.

If max |7 =0, then by {9), (7) and (10)
1€i€(—2

(41)'_2 2Pt = (D1t s Bm g Mo y) Z My,

hence
B 45y =2 a2t ey
retramna st By (Y
Therefore, assume thal
(11) 0< max |r Jh-r o =0
o TR
1€j€r—1

and put

=1

r= min r;, Fly,z)=z"(a+ Y a4y
j=1

1€jsi—1 i=
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By () and the choice of r we have
F{y, 2)eK[y, 2], (F(y,2), ya)=1.

(Note that by (7) and (8) no two terms of F are similar,) By (6) and (8) we
have

(12) Jolx™ W =x"F(x" 1, x).
Let
(13) F(ya3)=Fo(}’aZ)lH(J’=:)§ FO’HEK[ya:]s

where H is not divisible by the lth power of any pelynomual in K[y, zJ\K. It

follows from (12) and (13) that every zero of H (x"71, x) except possibly x
=0 is at least I-tuple. Hence for any ce K\ /0!

ke
ord,. . H(x"" !, x) < lordxméﬁH(x""l, x) (k<)

and by (2) with p=1n,_;
ord,_ H(x"", x} < lotd, o Ho(x" ™%, x3mmy)  (m <)
Also, by (2)
ord, H(x"" !, x} < ord H,, (x" 7%, x; 1-4).
Thus finally
H(x" 1, "L xsmoy) (1€sm<)

and for indeterminates 4y, ..., #—1

i-1
(14) HE LX) Yt Ho (8 x5 1),

m=1

Suppose first that (H, H,, ..., H_,)# 1, where H, stands for

H,(y, z; n,_,). Then by the choice of H and the assertion (3) of Lemma 3
H, hence also F, has a factor G¢ K isobaric modchar K with respect to the
weights n,.;, 1. Since (F, yz) =1 G has at least two terms. Let

M
F/G = Z G;,
i=1
where G, are polynomials isobaric modchar K with respect to the weights
n_y, 1 and n is minimal. Since G is isobaric mod char K with respect to the
weights n,_,, 1

F=3% GG
i=1
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is the corresponding representation of F. Since G has at least two terms, the
same is true for GG hence F has at least two terms with weights congruent
mod char K, if char K > 0, equal if char K = 0. However the weights of the
terms of F are pyn,_+r;—r = p_,m=r (0 <j <1). Since n, are distinct the
equality p—,m—~r=p,_,n;—r with i #j, is impossible. The congruence
Pi-1m—r = py n—r(modchar K) implies p_; = O(modcharK) or
= n;{modchar K). Since char K =0 or char K > n,_, the latier case with
i #j is impossible and we get

O<charK<p _;.

Hence by {9)

~ 4 3 4[1*2 411 at=i—=1.
T@1+%gf<1+wfxssvd%is1+L%w<1+Cf)

and (5} holds.
Suppose now that (H, H,, ..., H;.;) = 1. Then

-1

(H, > u,H})=1.
m=1

-1
Therefore the resultant R of H and Y, u, H., with respect to y is non-zero
me=1

and in view of (14)
H(x" !, x)|R(x).
Now, the degree of R does not exceed
-1 i-1
deg, Hdeg. > u,H, +deg, Hdeg, ¥ u, H}.
m=1 m=1
In virtue of (1) we get
deg R < 2ldeg, H deg, H.
On the other hand, if there is no cancellation in H(x™" ', x) we have
deg H(x" ™" x) > max (n,-, deg, H, deg, H).
it follows that either
(15) deg, H =deg. H =0
or '
m-, € 2ldeg H £ 2ldeg, F < 2l(maxr;—minr) < i,

by (11), a contradiction.

icm
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If there is a cancellation in H(x™ !, x) then deg,H # 0 and’
#., Sdeg, H<deg, F<n_,,
a contradiction again. Thus we have (15), ie HeK and so by (13)
(16} F(y, z) = const Fo(y, 2)';
by (12)
folx™ ™1 = const x" Fo (x" 71, x)%;
Fo(x" 1, x) = const x ™" fy(xP~ 1),

The number of terms of F(y, z) is ¢, the number of terms of Fq(y, z) is
T,z T Let
Tg
o _Br
Foly,z)= 3 by 'z,

=1

{a., B,> all different, b, # 0.

By (11) there exists an index i <t~-1 such that

P P-1
Fi hi-y

=Pt # 0’

hence

TE) = card { <atri_ﬁrpis a:r:-l_ﬁrplklx TS TO}'

Now, for j=1ior 1—1 let

T, =card {1~ fopit 1< Tyl
Clearly T, T,_, 2 Tp. hence for a suitable ke |i, t—1]
(7 L'z T

Now, let us choose elements #, { of K such that all non-empty sums

¢

o7 B
Y byl
g~ fepy = const

. (TR
are non-zero. Then T, is the number of terms of Fy(nx ktx ™. Let

s=ord, Folpx™ {x ™), G(x)= xS Fo(nx®, (" ™M e K[x].

We have by (16)
(13) G(x) = constx 5 F(nx™, {x™ ™)

-1
— pRr—Is; Pjr; Pk TPk
=const{ " x™* ag+ 3 an i x )
j=1

i=

and the number of terms of G{x}' is at most r—1 since two terms in the
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parenthesis on the right hand side of (18), namely a, and a, nok Lk x”k”k“rm,
coalesce. Moreover we have
Pt by = for all j <t

Di-1 (P; H—H; )

thus
G x" e K(x").
Since G(0) # 0 we get from (18) and the above

(19) min (p;ry—r;p) < Is—pr = 0(mod p,,),

1)1
hence
G(x)eK[x" 17,

In virtue of Lemma 2

GldeK[x" '], G0 =Go(x"™"). GoeK[yl.

(x
The number of terms of G4(x)' is the same as that of G', hence at most
t—1. Moreover by (18), (19), (9) and (11)

ldch 1
ldeg G, = (max (pyre—r;p)— min (p;r,— rjpk))
D Pr 1 L€j< 1€j<t
4n, .
Pchd € n,., <charKk,

4

unless char K = 0. The inductive assumption applies and since the number of
terms of G, is equal to that of G we get

41 a-I-2_
e

Hence by (17)

at—i—2_4 Nz l=1. 3 TR Ll Sl SN
e {8 g

and the inductive proof is complete. The assumption that K is algebraically
closed does not diminish the generality.

Lemma 4. Let K bhe any field, U a finite
PeK[i, ..., t,]\O}. The equation P(t;,...,t)=
deg P(card Uy ™! solutions (t,, ..., t,)eU".

Proof This is Lemma 8 in [8], p. 302,

subset
0 has no

of K and
more than

Lemma 5. Ler p be a prime, N = ). ¢, p’, where O
v=10

< ¢, < p. The number

R
non-divisible by p equals [] (c,+1).
=0

of coefficients of (x+1)"

icm
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Proof. This is an immediate consequence of a theorem of Lucas about
binomial coefficients (see [1], p. 114).

Proof of Theorem 2. Put

z N
=3 A;x,
j=1

N; all different, 4; #0 (1 <j< T)
and let us assign two vectors [iy, iy, ..., ii], Uy, ja. .-, il€d1, 2, ..o, TV to
the same class if
I !
Z Nu = z\: NJ;'
A=1 A=1
Let €, C,, ..., C, be all distinct classes, so that
iL,2,..,TV= Ul C,.
We have
i $ ZINI.J. !
IS YD WP L §
r=1 [i]dg,aileC, i=1
Since f(x)' has 7 terms we have for all but ¢ classes C,, say for all r >/
| EI Nig
(20) > =TT 4, =0.
[l'l,iz,‘.‘,l‘I]Ef,, i=1

Let us consider the system of linear equations

t {
(21) Z xu = z xJ')‘ for [ilv iy ij], Ul’ ...,jl]EC,.
i=1

and all »r<s

This system with T unknowns has at least twa linearly independent
solutions namely [1, 1, ..., 1] and [Ny, ..., Ny]. Hence the matrix M of the
system is of rank ¢ < T—2 The Imedr space of solutions has a basis
consisting of T—g vectors: vy, v, ..., oy, the components of which are
minors of M of order ¢ (see R. Fricke [4], p. 81). Since in each row of the
matrix M the sum of the positive elements and the sum of the negative
elements is at most /, by the result of [7] the minors in question are in
absolute value at most /2. Hence

(22) 0 = [Uiq, Uiz -oos Uir ks

Since every solution of (21} is a linear combination of vy, ...,
for suitable u’e Q@ (1 i< T—9)
T-¢

0
NJ: Z u; U‘-f
i=1]

T—g).

vr-, we have

where i<l (1€i<

(1<j<T)

3 — Acta Arithmetica XLIX.1
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and since N, are distinct ‘L Moreover by (26) and (20)
T-a ,’ !
15 utu—vy) #0. | A=Y T 14,
j}{kl i=1 =1 Liigaaigel, 2=1
Since the polynomial = Z X Z H A
Teg =1 ligigmileC, A= 1 &
!—[1 Zl vy —tye Qlay, o ure, ] Henee f(x)! has at most ¢ terms and by Theorem 1
e i
i<
fog(T—1
o . . r>r+1+(log2)“‘log(1+—c’£(——)——).
does not vanish tdentically and 1s of degree (5 it follows from Lemma 4 lNog4l—~log!

This shows the Frst part of the theorem.
In order to prove the second part, let us put char K = p, I = p® m, where

Hence there exist integers uy, ..., up_, such that m# Omodp, m > 1. Take
£(x) = (14 x)#emn e m= ym

with U:{“EZ: |l g%(gﬁ-%} that it does not vanish on the set U" "¢

T
(23) il <)+ (1 <isT-0)
2 and let T, ¢, be the number of terms of f, and f. respectlvely We have
and f;,( ) (1+ )(p(p(m)lu.m np* _(]+ pelminta (1‘|“(Pl -1
T T-y¢
(24) [T 2 ultwy—u; 0. hence
A 1, < 2m< 2L
Let us put _ On the other hand, if
. i {m) _ k plm)
Z W vy — mm] 21 wo, (1<j<T). prm—1_ Y o p. P I Z dipt (0<end <p.o #0)

= . m =0

By (23} and (24) we have for all j < T then k < @{m); hence
T (p(m)n+m_1 k
(25} OsN}Q(T—Q)((j)+1)19£(T2—T+2)IT‘2. ' ET—ch+z de Pl
2 v=11i=0
By (24) N} are all distinct. Since [N1, ..., N17is a solution of {21) we have is a reduced representation of (p""’“’"+m—1 )m to the base p and, by
for all r <5 and suitable integers v(r) Lemma 5
) ! k k
(26) Y M=) = e[ T+ 1) 22,
i= 1 - =0 i=

for all vectors [i,, ..., i]eC,. Let us put ‘ Lemma 6. If K is a field of characreristic p, ek

T p-l .

Z jl (27 (x=&ym Y Jfi(xf),  where  fie K[yl

= ji=0
The polynomial f; has T terms and in virtue of (25) then

Ideg f, < 1"~ (T*—=T+2) < char K. (y=EN"Ai)  Jor all j <p.
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Proof by induction on m. For m =1, we have
fi(x?) = f(E) mod (x—£)7,

hence
p—1 o
(x—9)7 2 X
i=0
and on comparing the degrees we get f;{¢f) =0 for all j < p; thus

y=E&1 L0

Assuming that the lemma is true with m replaced by m—1 we get first by
applying the case m =1, that

L =0-g;00, gk,
hence by (27)

p=1
R M DYEPHCY
i=0
and by the inductive assumption
=& Mgty 0<j<p,

which gives the assertion.
Lemma 7. Let K be a field of characteristic p,

-1
f(x):prj_f}(x”)eK[x], n=rmodp, 0<r<p.

i=0 _
If éeK is a zero of f of multiplicity exactly n, then
{28)  for ull nonnegative j < p
S = (x =& g (), gyeK[xT;

(29) for all nonnegative s <r

11 (Jeg e =0
(30) Pgl (i)érrgj(ép} 0.

Proof. Since (x—&)""f(x), (28) follows from Lemma 6. Now the
condition {x—¢&)"|f(x) reduces to(?)

p—1
(x—&Yllg(x),  where  g(x)= 3, x'g;(x").
i=0

(%) al|b means that a/b aod {a, bfa) = L.

icm
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If r=0 the condition (29) is void and {30) foliows from g(&) #0. If
r >0 we write
glx)=(x—Eyh(x), h(#0
and differentiating s < r times we find that
g &) =0 for s<r, g =rlh(E)£0,
which gives (29) and (30).

Remarik. The implication given in Lemma 7 is, in fact, an equivalence.

Proof of Theorem 3. For £ =0 the theorem is clear. For & #0 in
view of Lemma 1 we may assume char K = p. We proceed by induction on n.
For n = 1 the theorem is cbviously true. Assume it is true for all multiplicities
less than » = 2 and let f have a zero (e K of multiplicity exactly n. Let

p-1
(31) =Y 07, fieKD]
i=0
and
k .
(32) n=73Y ¢p%, O<g<p, O0<n <m<. <n.

If n, >0, then by Lemma 6
=&"Ly 0<Kj<p)

and for at least one j

(y=&"71 ).

Hence, by the inductive assumption the number of terms of f; is at least that
of (y—£&8? je. that of (x—é&)

If n, =0 we apply Lemma 7 and infer (28), (29), (30) with r = ¢;. (30)
implies that at least one of the elements g;(¢?) (¢, <j <p) is not zero.

We assert that among the numbers g;{¢¥) (0 <j < p) there are at least
¢;+1 different from 0. Indeed, otherwise there would be, at least p—cy
indices j with g;(£%) = 0. Let the remaining indices be jy, ..., j.,- The system
of equations (29) gives

€1

3 (=0 o<s<e)

t=1
05,5<C1.

(J})
s
1€r<ey

hence g; (¢7) =0 for all ¢ and thus g; (¢%) = 0 for all j < p, contrary to (30).

However

= 1—[ jL:"i_q#(),

DKg<r<ey r—q
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Let now g,(c?) # 0 for je§, where S is a set of cardinality ¢; +1. We
have for je S

(=" ),

hence by the inductive assumption f;(y) has at least as many terms as
k

(J,_é,,)um-,);"’v ie. by Lemma 5 and by (32) at least H {c;+1) terms. It
(=2
k
follows that f{x} has at least []({c;+1) terms, but this is exactly by
f=1

Lemma 5 the number of terms of (x—&)"
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Perfect powers in products of integers from
a block of consecutive integers

by

T. N. SHorey (Bombay)

To Professor P. Erdds on his 735th birthday

1. Erdds and Selfridge [5] confirmed an old conjecture by proving that
the product of two or more consecutive positive integers is never a power.
We consider a more general guestion. For an integer v > 1, we define P(v} to
be the greatest prime factor of v and we write P(I) = 1. Let m> 0 and k 2 2
be integers. Let d,, ..., d, with t> 2 be distinct integers in the interval
[1,k]. For integers 1> 2, y >0 and b >0 with P(b) <k, we consider the
equation

(N (m+dy)...(m+d) = by

For /22, let v, be a real number satisfying 0 <y, <1 If x>1 and k*
< m< k', then equation (1) implies that P(m-+d;) < k for 1 i< 1 and hence

t <o lk+m(k).
See Erdds and Turk [6], Lemma 2.1. For m > k', we have
TreoREM 1. Let ¢ >0 and 0 <u < 1. Suppose that equation (1) with
2 123, m>k, t=zvk
is satisfied. Then the inequalities
3 . 1 B >1(1+ 21—-34u
e nEr L te T a1

imply that k is bounded by an effectively computable-number depending only on &.

We observe that (3) with an optimal choice of u is somewhat stronger
than

| .
V;?‘vi(l‘i'l_—l‘).

We apply Theorem 1 together with Lemma 6 of [9] to derive



