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1. Introduction amd motation. It is well known that, for a prime p
= 1{mod 4), an explicit representation of p as a sum of two integral squares
is given by formulae of Jacobsthal involving Legendre symbols, and there
have been numerous generalizations of this result; see, for example, [2] and
the references there given. In the present paper we are interested in sums of
Jacobsthal type, in which the Legendre symbols are replaced by general
Dirichlet characters on a finite field. In the special cases where these
characters (ake values in the Gaussian feld, representations of prime powers
as sums of squares of rational integers are obtained.

Throughout p denotes an odd prime, k a positive integer, and we write

(1.1 g =pt

and denote by F, the finite field of ¢ clements, whose nonzero members form
the cyclic group F¥ of order Q = ¢—1, generated by the primitive element g.

The letters x and W, with or without suffixes, denote multiplicative
characters on F¥, extended to F, by taking the value zero at 0. The abelian
group of all such characters is cyclic, being generated by the primitive
character y,, which is defined uniquely by the equation

(1.2) 11 (g) = *".

The principal (trivial) character is denoted by yo, and, for any character y,
we write 8(y) = | or 0 according as y is, or is not, xo.

In applications we shall be particularly interested in the real quadratic
character n and the biquadratic character &. Here n = x¥ and is a gener-
alization of the Legendre symbol, while ¢ is defined, when g = 1 (mod4), to
be x#* | sa that e(g) = i. We note that, for ¢ = £1(mod8), n(2) =1, so that
e{2) is real. '
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For any positive integer m, R,, denotes the ring Z [{,] of integers in the
cyclotomic field generated by

(1.3) L = 2™,

In particular, R, is the ring of Gaussian integers.
We take positive rational integers e and f satisfying

(14) of =Q=q-1
and are interested in the sums
(1.5) S ey, W) =3 TV (x+g")  (xeZ).

Here ) denotes a summation over all xe F,. We shall write Z* to denote a

X
sum over all xeFy.
We are also interested in the following sums:

f-1
(1.6) a(e; 1, ¥) = Z i +g) (xel)

and

Q B,
(L7 Te, u; 1, W) = Zjl S(e,e; x, WIS(x+p, 55, ¥)  (peZ).

In particular, we write

(1.8) Tle; x, ¥) = Tle, 05 x, ¥).-

Complex conjugate quantities are denoted throughout by a bar.

When the characters y and  are powers of ¢ the sums (1.3) are
Gaussian or rational integers, and this will enable us to express ¢ as a sum
of squares of rational integers.

2. Character sums.

Tueorem 1. For ueZ, write
(2.1) p=ei, g=1 if du and A=g,=0 if erp
Then

Q7 Tle, i x, ¥) = Q6 — 13y (g™ 8 () — & (Y*)
+&, {(g/N)—ed ()} x (g (@) 8 ().
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Proof We have, by (L.7),
Q" Tle, 151, ¥)

ZZ LW (X +g) e +g* ™)

uMn

=0 EZ XM P +n)F O g +mi (g

x ¥
=Q’""Jf(g")225€(x)x(y} {Zl/f(X"—yﬂg""+z)IF(Z)-I/f(xey""g")}
=Q *ig") }_,):x(x Z (1427t X~y g™ D)~ 3 (Ty*)

= Q" 2 (g" ZZ P x () 105t —1)

x ¥
x€pty T H

g ZZ T ()=o)

v x‘ ‘, “H

= W (g") {08 ()1} 5()
+0" 1 (") lg- Q30 LT 00 1) - 8@,
Xy

where x° = y*g”# in the double sum. Hence, the left-hand side becomes

v

The

(2.2)
and
(2.3
We

(2.4)

(¢") 108 ()~ 16 (0 —8 () +8,07>{g— QW @ 1" X 2™

y n=1
result follows, since the double sum on the right is
Qex (g*) d (x').
The theorem is of particular interest when

2=

S(x) = 0() = o () =
then have
CoroLiary 1. If (2.1)-(2.3) hold, then

Tle, 1 %, ) = e, 0gex ()Y (07

in particular,

(2.3)

T(e.; X W) = Qge.
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TheoreM 2. For each xeZ, a,(e; x, ¥)eRg. Further, if f is even, then : (iiiy Put x=g in (1.53) and write

(i) ag # 0 if, for some prime p' dividing Q, p'¥f~1, _ r=mf+n where O<Sm<eand O<n<f

(i) a, # 0, where 0 <x <e, if, for some prime p' dividing Q, p'ff. Then

Proof. That a,cR, is obvious. Write 4 =1~{,, in the notation of 0 ‘ ,
(1.3). Then, for each neZ, ) S, e 0, W) = Z g g +g%)

¥ ) &0 .
{5 = 1(mod 2), ‘ foten

and so (i) ap = f~1(modJ), and {ii) a, = f(mod 4) for 0 <% < ¢; note that . s }_:,0 ZO)MC“(HM"F")'I’(Q"“‘*'Q”)
g®+1=0forn= f/2 The results follow, since the norm of A is & product of ""f__ '1"
positive powers of the primes dividing Q. . "-.2 T (g™ + g

CoroLiARY 2. Let ¥ and \/ take values in the Gaussian ring Ry, and let f ' Yoo
be even. Then ag(e; x, ¥) = 1{mod (1 1), and a,(e; x, ¥) = O(mod (1 —3)) for _ by (2.2)
0 <x <e. In particular, ao(e; 2, ¥} # 0. . Finally, (2.9} is obvious.

We now obtain some further properties of the numbers a,(e; x, ¥). We immediately deduce

TueoreM 3. Suppose that y/ = y,. Then CoroLiary 3. If % = 1o, then

() Germeles x> ¥) = TG (@) acles 1 ¥)  (me ), - @9 2300 @ me(e; 20 W) = lales 1, W) =la,(e; T, W) for all meZ,

(i) o (es 1, W) = g amiles 7, %), (27 and

(i) SQx, e; 2, ) = ea,fe; 1, ¥, (2.8) ‘ (2.11) |, (€3 3, W) = a. (€3 TU5, W)

(V) ale; T, ¥) = aeles 2, ¥)- (29) TueoreM 4. Let y and  satisfy (2.2) and (2.3). Then

Proof. : o1

_ =y . , (2.12) T lagles g, W) =

O Geemeles ¥ = Y TG (" +g7™) ' %=0

r=0

ot and

VO L %’;"f‘gﬁ_Wug”) @) T el e H=0 ¥ v#omedd
=K@V L 2, & Proof. (2.12) follows from (25, (28) and (2.10), while (2.13), follows

from which (2.6} follows. %:g;m(ﬁ: )ny(_jbfglaa‘ﬂ? biz [E}gtlnzhia tE;?]m‘?;l: L%t:::;ques fornua fnvohne

(i) afe ¥ = 1/;(1+g")+fi1 Flg” ™ gV ™ g%) THEOREM 5. Let Q = ef, where e = e e, und ¢, f; = e, [, = Q. Then

m=1 2y 1
= ! _ V 2.14 ) g, (€1 €2 270 W) = a(eas X, ¥).
=9 {l+g9)+x NV ¥ 2™ M g™ +g™") 5 @iy vg() 1l (e
m=1 i
; Proof. The lefi-hand side of (2.14) is, by (L.6),

f—1
=y (g Zox(g"‘)'ﬁe(g”')il/(g"”%*g'“) | P )

m= : - e1n+v Lz(q"*"’ x
=y(g)a-(e; Y ¥). _ ' { L X1 o

Q) yw O
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from which the result follows since e; n-+v runs from zero to

el(f—1)+el—1 = elf—l =f2—]..
Corotrary 5. Ler Q =0{mod4). Then

a, (4: 22 W+ TV (@) a2 (45 X2 W) = a (25 x, ¥).

3. ¢ = 1. In this case the character sums are Jacobi sums, which have
been extensively discussed by various authors; see, for example, the early
account [1], where examples are given for various values of p. Note also,
that, when the characters take values in the Gaussian ring R,, the relation

lag|® = q gives a representation of ¢ as a sum of two rational integral
squares.

4, ¢ = 2. We begin by proving a general result.
TucoreMm 6. Let ceF¥ and put g = —c* Then

X250y, 25 1, %)
is real.
Proof. Let C = F¥f—{c, —c} and define

fy =228

(AeQ).

It is easily verified that, if = f{4), then A= f(y) and that f maps C
bijectively onto itself. Moreover

A2 —e? 2uc

Zie  pP—c?
Hence
Ar—c?
=02 207 ) =5* (
10050, 200 =3"1( 57,

lz—cz) 2uc )
TPy
=Zzﬁ }

neC Z,uc

from which the theorem follows.
CorOLLARY 6. Let ¥/ = yo £ y. Then

4.1) a,(2; x, ¥} ¥(2c) is real
In particular,
(4.2) ¥ ag(2; x, x) is real if ¢ = 1(mod4),

icm
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and
(4.3) F(2e)aq{2; %, x) is real if g = —1(mod4),
where ¢ = g@F 24 = U+ D2,

Proof. (4.1) follows from the theorem and (2.8), To deduce (4.2), put
¢ =g, so that —c? = —g¥? =1 and y=0; x(c) = x1 since ¢* = ¢/. For
(4.3) take ¢ as stated and note that —c* =g and y = 1.

As an example of (4.3) take

g=17, g=3 e=32, f=3 and

Then

1) =0 =¥,

ag = 14+20%  a =20, J(2" =720 =’

and
lag)® +ag)* =3+4 =7,

If ¥ and i take real values only, and (2.2) and (2.3) hold, we must have
y(n) =y (n) = n(n). When g = p this is the case considered by Jacobsthal and

14
n(n) is the Legendre symbol (;) .

We now consider the cases when y and ¥ take values in Ry and are not
both real. In order to satisfy (2.2} and (2.3) we must have f = 0(mod4), ie.
¢ =1(mod8). There are only six possibilities, namely

=&, Y=¢,

where s=1 or 3 and r = 1, 2, or 3. When s = 3, the sums S(x, 2: %, W) take
conjugate complex values to their values for s = 1, so that we may restnct
our attention to the three cases

p=& (r=1,273),

x =&
which we consider in

TurorEm 7. Let e = 2 und f = 0(mod4). Then in each of the following
three cuses there exist integers ¢ and d, with ¢ odd, such that

) ag(2: ¢, 8) =c, a,(2; &, 8 =d(1=0),
(i) ap(2:e, e =c, a,(2;8, £} = d (1 +1),
(i) ao(2: &, 8% = c+1id, a,(2; ¢, &%) =0.
Proof. (i) That ao is an odd integer follows from (4.2) and Corollary 2,
since ¢(2) is real. Further, by (2.6) and (2.13),

0= (23 El “l"'(ll az == aofi] '—‘llal 50 == a(al——ml),

so that @, = ia,. It follows that a, = d(1—i), where del.
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(1) We have

-1 =1
ag = 3, ElgMet(gP+1) =X+ Y Elghet w1,
n=0 n=1
In the last sum put m = f—n. Then, since s(g?) = —1,

F([]") HZ(QZH + 1) — (_ I)mﬁ(gm] ;:2 (g2m -+ ”
Hence,
-1
ap=c(2)+2 Y (=1)e*g*+1)

A=1
and so is a real Gaussian integer, which must be odd, by Corollary 2,
Further, by (2.7) and (2.6), a; = —a_, = id,, so that ¢, = d (1 +1), where
de Z.
(i) We have
F-1

a; = ) E(g"E(G" +g)
n={0
=1
= E(g+D+EGEG +o)+ 3, ElgNEE* +9).
n= 2

Put m = f+1—n in the last sum. Then
elgNe(g®™+g) = —e(g™ e +9),
from which it follows that a, = 0. Similarly, putting m = f—n, we deduce
that
21
ap =E(2+2 Y E@NEG™+ 1) =c+id,
n=1

where ¢ is odd and d is even, since £(2) = +1.

Note that, as a result of Theorem 7, we have representations of g, not as
a real quaternary form, but as a binary form of the types ¢*+2d* (r =1, 2)
and ¢*+d* (r = 3). As examples we find that, for p = ¢ = 17, we have

ay = —3, a1=w2-§-.2i; ap =3, a =242 a=1+4, a; =0,

in the three cases, respectively. ‘

When g = p¥, where k is even, a trivial representation is given by taking
one of the summands to be p“* and the rest equal to zero. That this is not
the only sclution obtainable by sums of Jacobsthal type is shown by the case
g=25 e=2 y=1y =n where we find a, =3, a, =4.

5. e =4, (i) The classical real case arises when

x=¥=#n and ¢=1(mod8§),

icm
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so that f is cven. From {2.6) and (2.7) we have

U = —ay and g, =(~Ha_,,
so that ¢, == d3 and ay = 0. Hence
q = dj+ut+ai+al = at+2a},
(ii) We now take
g = 1{mod 16)  and  yee, Y=o

so that (2.2) and (2.3) are satisfied, From (2.6)

(r=1,2,3),

(5.0 "y
and therefore, by Theorem 4,
Jetol ety P 4| * + g * = g,

and

Qo fy ety dy ity 8y + iy dy = @y 8y -+ ay Oy -+ iay 8y +1ay @ = 0.
We deduce that ag &, + a &3 = x(1—i), where x is real, and, by Corollary 2,
aq = 1{mod (1—1), so that ay # 0.

For example, when ¢ == p = 17, we have

dy = —1l—i, x=-4

01:3-—[', r
4y =3+i, x=2  (r=3.

a(.l:—'l'» almzi

[10=—11 alﬂ1-i, ler‘-:Zi,

It may be verified by using (5.1) that these satisfy the formula
(5.2) adie, N ="a.(@B;iee) r=1,273),

which follows from (2.7). _

If we now take r = 2, we find from (5.2) that a, is real, and is therefore
an odd rational integer, ¢ say, while, since a, = g-, = —id,, we find that 4,
= (1—i)d (deZ); further, &, = ~ia;. Hence

g = lagl? + fay )+ agf* + |ag)? = ¢+ 24+ 2 ay .
In particular, for p «= g = 17,
ag = 1, oy = 2, ay= =242, a3= -2,
(iii) Finally, we iake
g = 1(mod 16), ¥ =¢,

so that (2.2} and (2.3) are satisfied. From Corollary 5 and Theorem 7(i) we
find that

1=t

(5.3) Go+it.g=¢, ay+ia_, =d{l-1i),

so that, by (2.6) and (2.7),
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(5'4) ao“faz =, ay =b(1*l): as :b(1+1)>
where be Z. Further, (2.13) gives

(5.5) 0= dg az+a1 53""02 §4+a3 6-1:5 = Ay 52—50 az-—4ib2,
so that

(3.6) g = |agl* +ay)? +lazl* +|as)* = 46 +|agl* +]as|* = ¢* + 802,
since
¢? = (ag—iaz}(Fo +idy) = |aol® + |ag|* +i(ag @y — g ay) = |agl® +aa{* —4b?,

by (5.5).

Thus g, which initially appeared to be expressed as a sum of eight
squares, turns out to be expressible as a real binary quadratic form. As an
illustration, we have for g = 17,

a0:—1w2f, alm_1+i, a2=—~2-2i, a3‘-:—1_i,

giving b= —1, ¢ = —3.
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On two analytic functions
by

K. Mamxr (Canberra)

1. Denote by U: |z < 1 the open unit disk in the complex z-plane, and
by Tan arbitrary closed subsct of U, Next let ¢ 2 2 be a fixed integer, and
let n run over all non-negalive integers, Finally let

plz) = potpezt ..+ pezt,
where d 2 1, be a polynomial with complex coefficients satislying.
PO = py==1 and p(l) =0,
Hence p(z) is divisible by 1z, say of the form

plz) = {1 =2)g(z),

where
gle) = qotq s+ gy 2]

is a second polynomial with complex coefficients such that
q (0) = qn hisd 1.
We shall use the notations

ol + g1 | - - o+ ga— 1|

P=lpol+lpdt. ot pl  and Q=

for the sums of the absolute values of the coefficients of p(z) and g(z),
respectively.
It is then abvious that

pE-1gP-1 and |g@|<Q for el

In these inequalities = may be replaced by =" since with z also 2% belongs to
the disk U. In fact, the lollowing stronger inequality

P 1< (P—1)]al"

holds if ze U, and n is any non-negative integer.



