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The Hurewicz and Whitehead theorems with
compact carriers

by

Stanistaw Spiez (Warszawa)

Abstract. We prove analdgues of the classical Hurewicz and Whitehead theorems for Borsuk’s
weak shape theory or, more generally, for the category generated by the homotopy category of
pointed polyhedra. We also give a certain geometrical application of the modified Hurewicz
theoreni.

Introduction. The dual notion to that of a pro-category will be called an
in-category. By induction, we say that a category pro-%’ or in-%" is k- generated
by a category ¥ whenever provided %' is (k—1)-generated by ¥ (we assume that
¢ is 0-generated by €).

The classical Hurewicz and Whitehead theorems have their analogues in shape
theory and pro-homotopy theory (for example see [M~S]). We will prove analogues
of these theorems in a more general case, for any category generated by the
homotopy category of pointed polyhedra HPol,. As a consequence, we obtain
modified Hurewicz and Whitehead theorems for Bossuk’s weak shape theory
(i.e. shape theory with compact carxiers) and for compactly generated shape theory.
Under more restrictive assumptions a Whitehead type theorem for compactly
generated shape theory has been proved previously by T. J. Sanders [Sa2].

The inspiration to prove a Hurewicz type theorem in Borsuk’s weak shape
theory was the following question of H. Toruficzyk [T].

QuESTION 1. Let A be a .subset of R" such that every map I 25 R is ap-
proximable by mappings with images missing A. Let f: aI°* » R" be a map which
satisfies im(f) n A = @, where s+dimA <n. Is there a compact set C< R™NA
such that f is null homotopic in every neighborhood U of Cin R*?

If 4 is o-compact then {ge C[I, R"]| im(g) N A = @} is dense in C[I*, R"]
(see [S]). This needs be shown for compacta only and follows by induction on s
using Alexander duality and Hurewicz theorem. H. Torusiczyk asked if one can
prove a Hurewioz type theorem in Borsuk’s weak shape theory. He suggested


GUEST


198 S. Spiez

a positive answer to Question 1 by using such a modified Hurewicz type theorem
and Sitnikov duality [M].

Recall that a pointed metric space (X, xo) = (M, xo) e AR(R) is approxim-
atively k- connected [B]if for every compactum B in X, x, € B, there is a compactum
B’ in X such that for every neighborhood U’ of B in M there is a neighborhood U
of B in M such that every map of a pointed k-dimensional sphere (S¥, 55) into
(U, x¢) is homotopically trivial in (U’ xo).

Using Theorem 11.19 of [M] and the Hurewicz type theorem for Borsuk’s weak
shape theory (§ 3, Theorem 1) one can prove the following proposition.

PROPOSITION 1. Let A be a subset of R". If R'\A is approximatively 0-con-
nected and 1-commected then R'™A is approximatively s-connected for s <n-dim4~1.

If A4 is a subset of R" such that every map I* » R? with f(I%) = R"™\4 is ap-
proximable relative 2 by mappings with images missing A4, then R"™A is ap-
proximatively 1-connected. Thus the above proposition gives the positive answer
to Toruficzyk’s question slightly modified (see § 4, Corollary 2).

In our paper we use the notation of [M-S}

1. Category theory. Let 4 be a category. The category pro-% (see [G], [4-S],
[M-S]) is the category whose objects are all inverse systems (over all directed sets)
and whose morphisms are equivalence classes of morphisms of inverse systems.
By in-% we denote the category defined dually. Objects of in-% are all direct
systems in ¢ over all directed sets. Observe that 4 can be considered as a full sub-
category of pro-¢ and as a full subcategory of in-%. We say that a category 4" is
k-generated (or generated) by € if ' = € or €' = 1,- ... -(1,~%) where 7; = pro
or t; =i for i=1,2,..,n n<k.

Let % be an arbitrary category. A diagram in the category & consists of a set @
of objects of % and a set 4 of morphism of ¥. Moreover, it is required that both
Domf and Codomy belong to @ for each f in ¥. We denote a diagram by 2
= (0, .4). If there exists a sequence fy, ..., f,, n=>1, of morphisms in . such that
Dom(f,...f;) = Codom(f, ... f;), we say that the diagram @ = (0, .#) contains
a loop. If both @ and .# are finite we say that the diagram @ = (0, ) is finite.

The following theorem is a generalization of Theorem 3, [M-S], p. 12 (see
also [A-M]).

THEOREM 1. Let @ = (€, .#) be a finite diagram in pro-% (or in in-%) without
loops. Then there exists a diagram 2’ = (0', ') in pro-% (resp. in-%) and there
exist one-to-one correspondences i1 O — O and j: M —~ ' such that

(i) Domj(f) = i(Domf) and Codomj(f) = i(Codomf) for each morphism
fin A,
(ii) all objects in U' are indexed over the same cofinite directed ordered set A,
(ili) every term and bonding morphism of i(X) is also one in X, for each X in 0;
(iv) there exists an isomorphism iy: X — i(X) in pro~% (resp. in in-%), where
X e 0, such that for every morphism f: X — Y from 4 the following diagram com-
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mutes
iy
XX i)
7 i
Y ——>i(Y)
Iy

Moreover, j( ) admits a representative f' which is a level morphism of systems.
Let %* be the category dual to a category %. The canonical contravariant

bijective functor from % to %* induces a contravariant bijective functor from
pro-% to in-%*, This yields

PROPOSITION 1. Let 2 be a property of categories and #* be the property dual
1o #. Then the following two conditions are equivalent for any category 4:

(i) pro-% has property P provided € has P,

(ii) in-% has property P* provided € has P*.

A zero-object 0 in a category ¢ is an object of ¢ which is initial and terminal,
i.e. for every object 4 of 4 there are unique morphisms 0 —» 4 and 4 — 0. We
say that % is a category with zero-objects if there exists at least one zero object in .
(Any two zero-objects are isomorphic and any object isomorphic to a zero-object
is itself a zero-object).

A zero-object in a category % can be considered as a zero-object in the category
pro-% and as a zero-object in the category in-%. Thus we have

PROPOSITION 2. If € is a category with zero-objects then both pro~% and in-%
are categories with zero-objects. ‘

In a category ¥ with zero-objects a morphism X — Y is a zero-morphism
provided it factors through a zero-object 0. For any two objects there is a unique
zero-morphism X — ¥ which is denoted by 0: X — Y.

One can easily prove (compare [M-~S], Theorem 7, p. 116):

PROPOSITION 3. Let & be a category with zero-objects. An object X = (X, pyars A)
of pro-% (respectively of in-%) is a zero-object of pro-%€ (respectively of in-%) if
and only if every Ae A admits X' = A such that p,; = 0.

A kernel of a morphism f: X — Y in a category ¥ with zero-objects is defined
as a morphism 7: N — X with the following properties

@ fi=0

(i) whenever g: Z — X is a morphism with fg = 0 then there is 2 unique
morphism /! Z - N such that ik = g.

Usually a kernel of 1 X — Y is denoted by Kerf — X.

Kerncls of £ are unique up to natural isomorphisms. A kernel is always a mono-
morphism and. the kernel of a monomorphism f: X — ¥ is the morphism 0: X'— Y.
If, in a category ¥ with zero-objects, every morphism has a kernel, we say that
% is a category with zero-objects and kernels.
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Dually, one can define the cokernel ¥ — Cokerf of a morphism /2 X — ¥ in
a category with zero-objects. If, in-a category € with zero-objects, every morphism
has a cokernel, we say that € is a category with zero-objects and cokernels.

One can easily prove the following

PROPOSITION 4. If € is a category with zero-objects and kernels (respectively
cokernels) then pro-% is a category with zero-objects and kernels (respectively co-
kernels). o

By Propositions 1 and 4 we obtain

PROPOSITION 4*, If € is a category with zero-objects and kernels (respectively
cokernels) then in-% is a category with zero-objects and kernels (respectively co-
kernels).

The groﬁp category Grp is a category with zero-objects and kernels and co-
kernels. Thus, a category generated by Grp is a category with zero-objects and
kernels and cokernels.

Let % be a category with zero-objects and kernels and let i,: Kerf;, - X be
the kernel of a morphism fi: X — ¥; for k= 0, 1. We say that Kerf; c Kerf,
if foiy : Kerfy — ¥, is the zero morphism or equivalently, if there exists a morphism
h: Kerf; — Kerf, such that i; = iyh. Let % be a category with zero-objects -and
cokernels and let j,: X — Cokerf; be the cokernel of a morphism f: Y,— X for
k =0,1. Dually, we say that Imf, < Imf, if j,f;: Y,— Cokerf; is the zero-
morphism.

We say that a category % with zero-objects and kernels has property o if for
every two morphisms fo: X' = ¥, and fi: X — Y, with Kerf; < Kerf, and every
two morphisms k and / from Z to X such that f;k = f/ we have jok = fol. It is
easy to see that € has property a if and only if for every commutative diagram in %

i , 1
Kerfl - X | —— Yl
i
h ' g
Kerf, —> X, —> Y
Io [

where i is the kernel of f; for k = 0, 1, and every two morphisms k and / from Z
to X, such that fik = 1,/ we have fygk = fygl. The dual property of categorics
with zero-objects and cokernels will be denoted by u*,

We say that a category ¢ with zero-objects, kernels and cokernels has property
B if for every commutative diagram D in %

b
. Xt XZ<—I)2 X; .
D: fll le fsl
! ¥ v
Y« S Y, — Y3
41 q>
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with Kerf, = Kerp, and Img, < Iimf, there exists a unique morphism gp: Y3— X,
such that gpfs = p,p, and figp = g.4,. Moreover, for every commutative diagram
D' in % with Kerf; < Kerpy and Img} =Imf,

. 1 , P
Xi < X< X
e LA A
Yi——17, Al £
9 q2

and every morphism D — D' given by morphisms k;: X; - X/ and /;: ¥,— ¥{ for
i=1.2,3 we have kygp = gp I;. .

Let us ohserve that the group category Grp has properties o, o* and: .

One can prove

PROPOSITION 5. Let % be a category with zero-objects and kernels. If € has
property o. then both pro-% and in-6 have property o (a category gencrated by € has
property a).

By Propositions | and 5 we obtain

PROPOSITION 5*. Let € be a category with zero-objects and cokernels. If € has
property o then both pro-% and in-€ have o* (a category generated by € has prop-
erty a*).

One can also prove the following propositions

PROPOSITION 6. Let ¢ be a category with zero objects, kernels and cokernels.
If € has property f then categories generated by € have the property B.

(Since the property f is semidual, it suffices to prove that pro-% has property f
provided % has property f.)

PROPOSITION 7. Let a category € with zero-objects and kernels have property «.
Then a morphism f: X — Y in € is a monomorphism if and only if the morphism
0 — X is the kernel of f.

PROPOSITION 7*. Let a category € with zero-objects and cokernels have

property o*. Then a morphism f: X —» Y in € is an epimorphism if and only if the
morphism Y — 0 is the cokernel of f.

Propositions 7 and 7%, along with Propositions 5 and 5%, yield the following
corollary

COROLLARY 1. Let @ be « category generated by Grp. Then a morphism f: X— Y
in € is a monomorphism (respectively an epimorphism) if and only if the morphism
0 — X (respectively Y — 0) is the kernel (respectively cokernel) of f.

One can easily obtain Theorems 1, 2, 3 and 4 of [M-S], p. 107-110, from the
above Corollary 1.

COROLLARY 2. Let a category 4 with zero-objects and kernels have property o
and let 1 X = (Xo, payr, A) = Y= (Y1, Qs 4) be a morphism of - pro-% (re-
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spectively of in-%) given by a level morphism of systems (f,). Then the morphism
[ is a monomorphism if and only if the following condition holds

(M) For every Ae A there is a X' > ) such that Kerf,, ©Kerp,, (respectively
Kerf, =Kerp;;.).

COROLLARY 2*. Let a category € with zero-objects and cokernels have property o*
and let f: X = (X, pap, 4) = Y = (Y3, gaw» A) be a morphism in pro-% (re-
spectively in in-%) given by a level morphism of systems ( f3): X — Y. Then the morphism
[ is an epimorphism in pro-% (respectively in in-%) if and only if the following con-
dition holds

(E) For every e A there is a A’z A such that Tmqy, SImf, (respectively
Img,; < Imf)).

Corollaries 2 and 2* generalize Theorems 1 and 3, [M-S], p. 107 and p. 109.
One can also generalize, in a similar way, Theorems 2 and 4, [M-S], p. 108 and
p. 112,

One can prove

PROPOSITION 8. Let € be a category with zero-objects, kernels and cokernels.
If % has property B then % is a balanced category (i.e. a bimorphism must be an
isomorphism).

From Propositions 6 and 8 follows

COROLLARY 3. Let a category € with zero-objects, kernels and cokernels have
property B. Then (both categories pro-% and in-% being balanced), a category
generated by € is balanced.

The above Corollary generalizes Theorem 6, [M-S], p. 114

COROLLARY 4. A category € generated by Grp is balanced.

2. Hurewicz theorem. For every Abelian group G the kth singular homology
group Hi(—; G) is a functor from the homotopy category HTop of topological
spaces into the category Ab of abelian groups. By induction this functor extends
to a functor Hy(—; G) from a category n-generated by HTop into a category
n-generated by Ab (for all > 0) as follows (compare [M-S], pp. 120-121). As-
sume that this is done for n <m. Let %" be a category (m+1)-generated by HTop.
Then € = pro-%’ or " = in-%’, where ¢’ is a category m-~generated by HTop.
We can consider an object of ¢’ as an inverse or direct system X = (X, pyyr, A)
in ¢'. Then, by defimition, H(X; G) = (H,(X,; G), H,(ps: G); A). Furthermore,
iff: X - Y= (Y,, gy, A) is a morphism of "' given by (f,. 1) (here fy,: Xy = Y,
are morphisms in ¢') then Hy( f; G): Hy(X; G) — H,(Y; G)is given by (H{ 1 G, 1)
If G is the group of integers Z, we suppress G in the above notations.

In a similar way we can define a functor my(—) from a category generated
by the homotopy category HTop,, of pointed topological spaces into a category
generated by the category Grp of groups.

With every pointed space (X, %) and integer k> 1 there is associated the
Hurewicz homeomorphism Pr,x T X, #) = H(X). Recall that ¢ is a natural
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transformation, ie. if f: (X,*) - (Y,%) is an H-map, then O, cx, 0T )
= H{)rx,n- BY induction, we define the Hurewicz homomorphism @y on
a category ¢ generated by HTop,. Let f: (X, *) - (Y, ) be a morphism in €.
By the naturality of the Hurewicz homomorphism the following diagram com-
mutes,

D, i

ﬂk(ﬂ)

Pre, (x, ) l l‘/’k, x,9
HyX) > H(Y)
H([)
There are unique homomorphisms K,(f) and C,(f) which make the following
diagram commutative,

!
Ker Pr, x, )~ Ker(pk,@

Ik, (%,%) Ix, 9
MK, (Y %)
Piey (X, | Pr,(v,%)
! H(f)
H{(X) —> H(Y)
Je @, 0 Je,(t»
¥ G(f)
Cokergy, (g ——>Cokergy, v,y

where i, (x +) and 7y, are kernels and j, cx,,y @nd ji, (v, are cokernels of ¢, 0
and %,(y:)—, respectively. - -
We need the following
Lemma 1 ((M-S], p. 136). Let n> 1 and let p,: (X, %) ~ (Xpy, %) be maps
of pointed polyhedra such that the induced homomorphism m(p,): X, *)
= (X1, %) equals O for k=0,1,..,n—1. Then the map
P = Py PiPot (Ko, %) = (X5 0
Jactors through an (n—1)-connected polyhedron.
By the classical Hurewicz isomorphism theorem we obtain
COROLLARY 1. Under the assumptions of Lemma 1, the homomorphisms
K(p): Kerpuxom — Kerpy i, for k<n,
Cip): Coker gy, (xo, v = Cokeroy i, Jor k<n+l
'induced By p = Py o piPg equal O provided nz2. If n =1 then Cy(p) = 0.

3 — Fundamenta Mathematicae 127, 3
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By induction (on /) one can prove the following
Lemma 2. Let & be a category I-generated by HPoly, 1= 0. Let p,: (X, %)
— (Xy41, %) be a morphism of € such that the induced morphism nk(ﬂ): Tl X, %)

— (X110 2) equals O for k= 0,1, ...,n=1. If n=2 then the morphisms
K(p): Kel‘#’k,(xg,_*_)_—* Ker(pk,(xl_",,_) for k<n,
Ci(p): Cokeroy, x,,s) = Cokergy, x,. Jor k<n+1

induced by p = p,.y...p1Po equal 0. If n=1 then Cy(p) = 0.
Let @ be a category generated by HPol,.. We say that an object (X, ) of %Ts
n-connected, n >0, if m(X, %) is a zero-object in an appropriate category generated

by Gfp fork = 0,1, ..., n. A direct consequence of Lemma 2 and § 1, Proposition 3
is the following

COROLLARY 2. Let & be a category generated by HPol,. Let (X, «) be an
(n—1)~connected object of €. If n > 2 then Ker ¢y (x,sy = 0 for k< nand Coker @, x,4
=0 for k<n+1 If n=1 then Cokerg,,x,., = 0. -

By the above corollary and § 1, Corollaries 1 and 4, we obtain a Hurewicz
isomorphism theorem for categories generated by HPol,

TreEOREM 1. Ler % be a category generated by HPoly and €g., be an ap-
Dpropriate category generated by Grp. Let (X, *) be an (n—1)-connected object of &.
If nz=2, then M

() HX) =0, 1<k<n-1;

(D) @n: m(X, %) » H(X) is an isomorphism of € g,p;

(i) @paq: 7:,,+1(1Y£ - Hyy (X)) is an epimorphism %g,,.
If n=1, then

(v) oy ﬂl(_X _’i) — Hy(X) is an epimorphism %g,,.

The above theorem generalizes the Hurewicz isomorphism theorem for
pro-HPol, (e.g. [M-S], Theorem 2, p. 136).

The Hurewicz isomorphism theorem is also proved for pro-HPolZ. (e.g.
[M-S], Theorem 7, p. 140). Analogous result can be obtained for a category
generated by HPolZ.

3. Hurewicz theorem for Borsuk’s weak shape theory. To any pointed Hausdorfl .

space (X, #) we assign an object of in-pro-HPol,, in the following way. We consider
(X, %) as the limit of the direct system ((X}, #), jy,, 4), where (X3, %)504 18 the
family of all pointed compact subsets of (X, #) and jy,: (X, ) > (X, %) is the
inclusion whenever A< Bvery (X, ) is the limit of an inverse system
(x1, ), 0, 4,). Let (X, ®) = (X7, %, 151, 4;) € pro-HPol,. A map j,, induces
a morphism j,,.: (&j‘) — (X, *) in pro-HPol,. We assign to (X, *) the system

X, ) = (X3, %), juas A € in-pro-HPol,,. One can easily see that any other object
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assigned to (X, %) in such a way is isomorphic to (X, =) in the category in-pro-
HPol,. We denote m,{X, *) by in-pro-m,(X, ), Hk(X—)‘ Ey in-pro-Hy(X) and ¢ x
by ¢, x. -

If (X, *) Is a pointed metric space, it can be easily checked that in-pro-m(X, )
is the trivial element in the category in-pro-Grp if and only if (X, ) is approxim-
atively k-connected in the sense of Borsuk. Thus from § 2, Theorem 1 we obtain
the following theorem.

TueoreM 1. Let (X, ) be a pointed metric space which is approximatively
k-connected for k<n—1. If n 22, then

(i) in-pro-H(X) =0, 1<k<n-1;

(ii) the Hurewicz morphism @, x: in-pro-m(X, ) — in-pro-H(X) is an
isomorphism;

(iil) @p+1,x is an epimorphism.
If n=1 then

(iv) @4, x is an epimorphism.

One can also state a similar theorem in CG-shape theory.

4. Approximative conuectivity. In this section we use the notation of [M] for
homology groups. We say that a Hausdorff space X is approximatively homologically
k-connected if in-pro-H,(X) is trivial. If X is a subspace of M € AR(M) then X is
approximatively homologically k-connected in M if for every compactum C in X
there is a compactum D in X, C < D, such that for any neighborhood V of D in M
there is a neighborhood U of Cin M, U< V¥, such that the homomorphism H(U)
— H(V) induced by the inclusion U — ¥ is trivial.

LemMa 1. Let X be a subspace of R™ and dimX = k <m. Then the space Y
= R™X is approximatively homologically I-connected for every I<m—k—1.

Proof. Let 4 be a compactum in Y. There is a sequence {M} of m-manifolds
in R™ such that M;,, = M;, M, is a ball and () M; = 4. Let / be an integer less
then m—k—1.

Since k < m—I—1, we have H* " 3(X A M;) = H" (X n M;) = 0. Thus by
Theorem 11.19 of [M], the homomorphism /#; : HE(Y n M) - H(M,) induced
by the inclusion is an isomorphism. The group HE(Y n M) is finitely generated,
so there is a compactum B; in ¥ n M; such that the homomorphism Hy(B;)
— HE(Y n M) induced by the inclusion is an epimorphism. We define

C,= UB;u4d.
izn
Then C, is a compactum and the homomorphism k,,.: H(C,) - HE(Y n M,)
induced by the inclusion is also an epimorphism.

Let al, o2, ..., a;" be generators of HE(Y A M) and pL, B2, ..., B be clements

of Hy(C,) such that Ky (B8) = ai for i=1,2,..., 5, Let

™
. 3 k i _
7n,*(an+1) = i}_‘;”n%—l,i“;: for k= 1, 2: YRS

3%
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where 7, 4: HEY A M,.,) - HY (Y n M,) is the homomorphism' induced by the
inclusion. We define

n

Ver =jn,*(ﬁ§+1)—.2 aﬁ-%l,iﬁ:; for k=1,2,...,
where jy, «1 H(C,ps1) = H(C,) is the homomorphism induced by the inclusion.
The image of y¥,, under the homomorphism k, . is trivial. Thus there is
a compactum Df such that C, < DEc ¥ A M, and that the image of y¥.; under
the homomorphism H,(C,) — Hy(DF) induced by the inclusion is trivial. We define
compact sets

Fntt

oy
D,= U Dt and D= UD,.
k=1 k=1

Let us observe that the image of ff under the homomorphism H(C,) — H/(D)
induced by the inclusion is trivial for every n.

We will show that for any neighborhood U of D-in R"™ there is a neighbor-
hood V of 4 in R™ such that the homomorphism Hy(V) - H(U) induced by the
inclusion is trivial. We may assume that U is a polyhedron.

There is an integer # such that M, < U. We take V' = M,. We have the
following commutative diagram,

The image of ¥ (for k= 1,2, ..., r,) under the homomorphism H,(C,) —» H,(D)
induced by the inclusion is trivial. Thus the image of f¥ under the homomotphism
Hy(C,) » H(U) induced by the inclusion is trivial. Hence also image of & = Iy, ()
ugder tlhe zhomomorphism H{(M,) - H(U) induced by the inclusion is trivial.
mece 8,,8,, ..., &" are generators of the group H(M,), the inclusion M, » U
induces the trivial homomorphism. This finishes the proof of the lemma.

Lemma 1 and § 3, Theorem 1 imply the following corollary.

COROLLARY. 1. Let X be a subspace of R™ with dimX = k <m. If the space
Y = R™X is approximatively 1-connected then Y is approximatively I-connected
Jor every l<m—k—1.

We will also need the following lemma.

LEMMA 2. Let Y be a subset of R™ such that every map f: I*~ R with f0%) < ¥

is approximable relative 1* by mappings with images in Y. Then Y is approximatively
1-connected.

Prqoﬂ Let us observe that any map g: I - R™ with g(0)e ¥ is approximable
re'lanvel.y {0} by mappings with images in Y. It follows that any map g: I-» R*
with f(I} = Y is approximable relatively I by mappings with images in Y.
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Let 4 be any compact subset of Y. There is a sequence {M,} of m-manifolds
in R™ such that M., = M,;. M, isaball and (YM;= A.Letae 4. Let [ /'], [/Z1, ...
s [f79, where ff: (1,1) — (M, a), be generators of the 1-homotopy group
n (M, a); if i =1 then ry = 1 and fi is the constant map. We may assume that
ﬂ‘(])c: Y for every i and k. Let f¥ ,: (I,I) = (M;,a) be a product of paths
LA, o, ST such that the homotopy class [ff.q] € my (M, @) is the image of [fF, ]
under the homomorphism (M4, @) > 7,(M;, a) induced by the inclusion.
‘Observe that the product 77 * (ff1.,)~* represents the trivial element of =,(M;, a).
Thus there exists a map gty .: (1%, 0) = (M;, @) such that g§,4|/2 is defined by
fE % (ff ). By our assumption we may assume that gf;(7%) < Y. We define

o ry
B= U U9€+1(12)UA-
i=1 k=1

Let ¥ be any neighborhood of B in R™. There is an integer i such that M, c V.
It is easy to check that the homomorphism 7,(M;, a) — n,(V, a) induced by the
inclusion is trivial.

By Corollary 1 and Lemma 2 we obtain

COROLLARY 2. Let X be a subset of R™ such that every map f: I - R™ with
FU?) = R™\X is approximable relative I* by mappings with images missing X. If
dimX = k <m then R™\X is approximatively I-connected for every I<m—k—1.
In particular, if g: 8I° = R" is a map which satisfies im(g) n X = &, where s
+dim X < m, then there is a compact set X < R™\X such that g is null homotopic
in every neighborhood of Cin R".

The above corollary gives a positive answer to a modified Torunczyk’s question.

Recently D. W. Curtis [C] introduced the definition of a locally approximatively
I-connected space. In a similar way one can introduce the notion of a locally ap-
proximatively homologically I-connected space. Both these notions can be described
in the category pro-in-pro-HPol,. One can prove the following modification of
Lemma 1.

LEMMA 3. Let X be a k-dimensional subspace of R™, k<m. Then the space
Y = R™\X is locally approximatively homologically k-comnected for l<m—k—1.

Lemma 3 and § 2, Theorem 1 (for the category pro-in-pro-HPol) implies the
following corollary.

COROLLARY 3. Let X be a k-dimensional subspace of R", k<m. If the space
¥ = R™X is-locally approximatively 1-connected then Y is locally approximatively
I-connected for 1<m—k—1.

In a similar way one can also modify Lemma 2 and Corollary 2.

5. Whitehead theorem. Let py: (Xi, Ajy %) = (Xisqs Ay, ¥) be @ map of
pointed pairs of topological spaces. By pi: (X %) = (Xpeys %) and gt (4, %)
— (4,41, %) we denote the maps induced by p;. By i (dg, %)~ (X, %) and
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Jit (Xx» #) = (X, 4i, *) we denote the inclusions. One can find a proof of the
following lemma in [D-S], pp. 104-105.

Lemma 1. If im =,(p3) cimm,(i;) and kerm,  (i;) ckernm,_,(q,) then the
homomorphism m,(p,p,) equals 0, n> 1.

We will need the following two lemmas (see [D-S], p. 104, [M-S], p. 140
and p. 145).

LeMMA 2. Let pi: (X, Apy %) = (Xiwgs Arepy %), k= 0,1, ., n, 21 be maps
of pointed polyhedral pairs such that X, is connected and let m(p,): n (X, 4y, %)
— (X 1o Apr1> *) equal 0 for k=0,1,..,n Then the map

Py P1Po’ (X Aoy %) = (Xyhps Ay s %)

Sactors up to homotopy through the pair (Xo, Ay U X§, %) where X§™ is an m-skeleton

of X,
LemmA 3. Suppose that the following diagram in Poly is commutative up to
a pointed homotopy,

P
(X, )< (X", %)
S i ¢/
(e (¥,
Let (Z, %) be the reduced mapping cylinder of f and let i: (X, %) — (Z, %) and
J: (Y, %) = (Z, *) be the canonical embeddings. Let (Z', %), i’ and j' be analogously

defined by f'. Then there exists a s:(Z', %) — (Z, %) such that the Sollowing diagram
commutes in Pol,

r
X9 (%)

.

i i
s

2,9 ——(Z",%)

j .

(¥, %) (1", )

Identifying X with {(X) and X" with i(X’) onc can view s as a map of pairs
§:(Z, X', %)= (Z, X, %).

Using Lemmas 1, 2 and 3 one can prove (compare [D-S], Corollary 8.13,
p. 105) the following proposition.

PROPOSITION 1. Let the following diagram in Poly be commutative up to a pointed
homotopy (m>1)

Py Py Papm-1 Pom
(XO! *) 9.(JYD *) (XZ:"’ *) (XZm-I-h *)
J l |
l/ o %o f:l @ Gam—1 ¢f2m Tom ./‘Zm +1 i
(Yo, %) (Y1, %) (Yam> ¥ Yame15%)
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Assume that KetTiy_y(fon-1) S KOITy 1 (o) and im7,(gss) S ImTfonsr) for
n=1,2,..,mand that Y, is connected. Then the map (p, q) from f, to f5,.,, where
P = Pan-DiPo and q = qay -.. 4140, factors in HPol, through an inclusion f (P, ¥)
—(Q, *), where Q is a connected polyhedron and the n-skeletons of P and of Q
are equal (with respect to some triangulations).

Let Y be an object of a category % generated by the category HPol,. We say
that Y is connected if (¥, y) is 0-connected for some base point y€ Y. It can be
proved that ¥ is connected if and only if Y is equivalent to an object ¥ of € with
every term connected.

We now prove the following proposition.

PROPOSITION 2. Let the following diagram in pro-HPol, be commutative (n>1)

r° P "
(X° % (x!& %) (.Xf %) - (X %)
0 bt 2m 2m+ 1
o b
(@0, %) > (¥, %)
q

Y - (szs *)_____m__,_ (Xz,u_-l’ *)

where all inverse systems are indexed over the same cofinite directed ordered set A
ie. X* = (XF, pt, A) and Y* = (Y%, g%y, A) and all morphisms are given by level,
yorphisms of systems, £ © by (f£), * by (%) and ¢* by (¢5). Assume that Kern_, (f**=)
cKerm_ (p™ 1) and imm (g™ simm(f>) for k =1,2,..,m and that YO is
connected. Then for every Ae A there exists A'e A such that the map (p;;4z)
= (pi" ... Pil’gpg,v, ‘b’.'m q}.ngu.') Srom fo X;f.’ —¥g to fzzm“: xpmet - X
factors through an inclusion fi: P, — Q,, where Q, is a connected polyhedron and
the n-skeletons of P, and Q, are equal (with respect to some triangulations).

Proposition 2 follows from Proposition 1 and the following two lemmas.

LeMMA 4. Let % be a category with zero-objects and kernels, and let A
= (d;, paw> 4), 4’ = (4, Pyus A) and B = (By, 412, A) be objects of pro-%. Let
fiA—~A andg: A— Bbe morphisms in pro-% given by level morphisms of systems
(fy) and (gy), respectively. If Kerg = Kerf then there is a morphism of systems
(F fN: A - A" (equivalent to (f,)) such that

0) fi = fibapnyt Apy = A for 2e A

(i) Kergpoy <= Kerf; for e d

LeMMA 4% Let % be a category with zero-objects and cokernels and let A
= (A;, pax» A), B = (Bs, sz, 4) and B' = (B, G, A) be objects of pro-€. Let
h:'B— Bandg: A —~ B be morphisms in pro-% given by level morphisms of systems
(hy) and (gy), respectively. If Imh<Img then there is a morphism of systems
(B, B'): B'— B (equivalent to (g,)) such that

() B, = hidawey: B~ Ba Jor Aed

(i) imA}, cimf; for Ae 4

One can easily prove the following lemma.
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LeMMA 5. Let the following diagram in HPol, be commutative,

p
(9
f| I
(Y, %) (¥, %)
. q

If dmX<n-1 and dim Y<n and the ihap (p, q) from f to [’ factors in HPol,,
through an inclusion iz (P, ) — (Q, ) where the n-skeletons of P and Q are equial,
then there is a map h: (Y, x) = (X', %) such that p = If and q = f'h (in HPol,).
We will also need the following
L_EM]\{IA 6. Let € be a category and suppose that X' = (X}, pﬂ_,l., A) and Y!
= (Y;, qsu» A) are inverse systems in € for i=1,2,3. Let the following diagram
in € be commutative,

1 2
Xl__jp____:,xz B "':’X:&
-1 2 i
ror, e
.Yl 1___) XZ - __;,_,> _YB
q Cog

where t‘he morphisms p', q* and f* are given by the level morphisms (pﬂ'), (g% and ( 1,

respectively. Assume that for every A€ A there are X and )', A< A" < N, and there
- . e 2

exist morphisms ky: Y3, — X7, and k1 Y7, — X3 such that the following diagram

in € is commutative,

2 n2

2 A
X —A8 s
A
(A £
4 A n
kA

y‘\h 2
gy SIS A
Gy

Then there is a morphism k: Y* — X in pro-% given by the family (p2pZki)iea
a_): riwrphzsms in . Moreover, if pipi = kify, (respectively q2q%. = 2k} then
P’ = kf? (respectively f3k = q*qb).

. We say that a morphism f: (X; %) — (¥, ) in a category generated by HPol,
is an ?z-equiv‘atlence if m(f) is an isomorphism for k = 0,1, .., n—1 and n,(f) is
:dn epimorphism. We say that dimX < » if and only if the dimension of each term
in X is <n

1E;w we can state the Whitehead theorem in in-pro-HPol, (compare [M-S]
p. . 7
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TueoreM 1. Let fi (X, %) = (Y, %) be a morphism of in-pro-HPol, which is
an n-equivalence. If dimX <n-1, dim¥Y<n and if X and Y are connected then
[ is an isomorphism of in-pro-HPol,. :

Proof. By § 1 Theorem 1, we may assume that X = (X,,p;;,4), ¥
= (Y, g, A) are directed systems in pro-HPol, with 4 = A" and that fis given
by a level morphism (f3), where f,: X, — ¥, A € A, are morphisms in pro-HPol,.
By § 1, Corollaries 1.2 and 1.2%, for every 4, € 4 we can find a sequence 2o <4; <...
e € Agpiy = A such that Kerny—;(far-1) = Ker oy (P 1200 30 iM7(G200 2005, )
cimm( fiy,,,) for k= 1,..,n In the same way we assign to 1" a A" > 2. By
Proposition 2, Lemma 5 and Lemma 6 there is a morphism g,: Y, - X,» such
that the following diagram commutes in pro-HPol,,

X Paar X
f s Fo
Y, —————~ Y,

2 %) A

By the dual version of Morita’s lemma (see [M-S}) it follows that f is an
isomorphism.

In a similar way one can prove the following theorems (compare M-S],
Theorems 4, 5 and 6, pp. 149-151).

TuEOREM 2. Let f: (X, %) — (Y, *) be an (n-+1)-equivalence in in-pro-HPol,.
IfdimY<nand Y is connected, then there is a morphism g: (¥, %) = (X, %) such
that fg =1 - -

THEOREM 3. Let f: (X, %) — (¥, *) be an n-equivalence in in-pro-HPol,. If
dimY<n and ¥ is connected then ﬁan epimorphism. of pro-HPol,.

THEOREM 4. Let f: (X, %) — (Y, ) be a morphism in in-pro-HPol,, which
induces an isomorphism n,((Tf ) for k<n. If dmX <n, dimY¥Y<n and X and Y are
connected then f is an isomorphism of in-pro-HPol,.

Remark. The above theorems can be proved in any category generated by
HPol, .

Let X< MeAR(M) be a metric space. We say that sd,, X <k if and only
if for any compact set B there is a compact set B’ such that for every neighborhood
U’ of B' in M there is a homotopy H: Bx[0,1] — U’ such that H, = idg and
dim H,(B) < k. It can be proved that sd, X <k if and only if the object X of in-
pro-HPol, assigned to X is isomorphic to an object X’ with dimX’ < k. A morphism
F: (X, ) — (Y, %) in weak shape theory for locally compact metric spaces can be
considered as a morphism f: (X, ¥) - (_lf:f) in-pro-HPol,. where (X, 4) and (¥, %)
are assigned to (X, %) and (¥, %), respectively (see [Sall).

We now can state the Whitehead theorem in weak shape theory.
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THEOREM. Let F: (X, ¥) — (¥, *) be a shape n-equivalence between connected
locally compact metric spaces. If sd, X <n— 1 and sd,, Y < n, then F is an isomorphism

in weak shape theory.
In a similar way we can obtain counterparts to Theorem 2, 3 and 4. We can

also state similar theorems in CG-shape theory (without assumption of local
compactness).
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Equivariant shape
by

S. A. Antonian (Yerevan) and S. Mardesié (Zagreb)

Abstract. The paper introduces an equivariant shape category ShC. Its objects are G-spaces,
i.e., topological spaces endowed with an action of a given compact group G. The category Sh%
is constructed using the method of resolutions.

1. Introduction. The aim of this paper is to define a shape category for G'-spaces,
i.e., topological spaces endowed with an action of a given compact group G. In
our development we follow the method of resolutions, introduced in the case of
ordinary shape by S. Marde$i¢ [14], [15] (also see [16]).

More precisely, in § 4 we define the notion of a G-resolution of a G-space
and we show that every G-space admits a G-ANR-resolution, i.e., a G-resolution
consisting of G-ANR’s (Theorem 1).

In § 5 we prove that every G-ANR-resolution induces in the G-homotopy
category [Topo] a G-ANR-expansion in the sense of [16, I, § 2.1]. This means
that the full subcategory [ANRS] of [Top?], which consists of spaces having the
G-homotopy types of G-ANR’s, is dense in [Top®] [16, I, § 2.2].

In [16, I, § 2] a general procedure is described, which associates a shape
category Shyg with every pair consisting of a category & and of a dense sub-
category #. The equivariant shape category Sh¢ is the shape category associated
in this way with the pair = [Top %], # = [ANR .

Note that Sh® coincides with the ordinary shape category Sh if G = {e} is
the trivial group.

In the realization of the outlined program (just as in the case of ordinary shape)
the crucial tool is a G-embedding and G-extension theorem (Proposition 1). It
asserts that every metric G-space X equivariantly embeds as a closed subset in
a normed linear G-space L, which is a G-absolute extensor. This fact is the result
of the work of several authors (see § 3 and for a detailed proof see [6]). Other
results on G-ANR’s needed in this paper were obtained by considering equivariant
versions of appropriate proofs of analogous results in the ordinary case. In several
instances the proofs given in [16] were appropriate. However, in some cases we


GUEST




