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Continuous and discrete flows and the property of cA0*

by

Saroop K. Kaul * (Regina)

Abstract. Consider a continuous or a discrete flow (X, T) where X is a locally compact con-
nected metric space. Let B denote the set of points x € X such that x is not a point either of chOt
or ch0~. Assume that B does not disconnect X and has only compact components. This paper an-
swers the question: How many components can B have. For continuous flows the question is com-
pletely answered, for discrete flows it is answered completely if we assume furthermore that

A = X—Bis a semi-continuum.

Introduction. Let (X, T) be a continuous or a discrete flow. Let B denote the set
of points x € X where T fails to be either of ch0% or ch0~ (for definition see [1]),
and let 4 = X—B. Assume that X is a locally compact, connected metric space,
that B does not disconnect X, that is, 4 is connected, and that every component of. B
is compact

We wish to study the cardinality of the components of B and the behaviour
of the trajectories of points in 4 relative to the components of B. The major steps
in the study are as follows: First we look at the case where B = @. It turns out
that if such a flow contains one recurrent point then it is pointwise equicontinuous
and each point of X has compact orbit closure or equivalently the flow is pointwise
almost periodic. Next we look at the case where B # @ and B is totally disconnected.
In this case the results for discrete flows require that 4 be a semi-continuum. It is
then shown that B consists of at most two points, both left fixed by each element
of T, and any point of B acts either as an attractive point or a repulsive point for all
elements of 4. Lastly in the general case B # @ and not zero dimensional, it is shown
that if the flow is such that some point of 4 is not a recurrent point then again B
has at most two components and they behave like the points of the second case
above. An example is given to show that this additional condition is also necessary
for such a result.

We give below precise statements of these results after preliminary definitions.

Throughout this paper a transformation group (X, T, 7) or.simply (X, T) [2] is
a discrete or a continuous flow, that is, T is either the additive group of integers with
discrete topology or the additive group of reals with the usual topology and X is
a locally compact, connected metric space. T (T~) denote the nonnegative (non-
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positive) set of elements of T. A sequence {#;} in T is said to diverge if it has no
convergent subsequence. We use f,—o0 (#;——co) to indicate that the sequence
diverges to oo (or — o).

We recall some definitions and elementary results. For any x € X, the positive
limit set of x, L¥(x) = {y € X: xt;—y for some {t;} diverging to co}. It is known
that L*(x) is a closed subset of X and is invariant under T. The positive prolongation
limit set of x, J¥(x) = {y € X1 x;t;~y, for some sequence {x;} converging to x
and {t;} diverging to co}. The positive prolongation set of x, D*(x) = {y € X: x;t,~,
for some {x;} converging to x and some sequence {#;} in T'*}. The positive orbit
closure of x is denoted by K ™(x). Similar sets are defined for T~ and denoted by
L™(x), J~(x), D™(x) and K~ (x). K(x) denotes the orbit closure of x. It is easy to
see that if y e J*(x) then xeJ ().

A point x & X is said to be of ¢h0* (ch07) if K*(x) = D (x) (K~ (x) = D7(x)).
Let B denote the set of points of X which fail to be either of ch0™ or of ¢h0~ and
set 4 = X~—B. Thus each point of 4 is both of ch0* and ch0~. For terms not
defined here see [3].

DEEINITION (0.1). A flow is said to be of ch0¥ if B == @. A flow is said to be
of ch0% almost everywhere (CAE for short) if B # @, Bis zero dimensional and 4 is
connected.

In § 1 we study flows of ch0F. The main result is:

TaeoREM A. Let (X, T) be a flow of chO%. Then the following are equivalent.

(i) Some point xy€ X is T-recurrent.

(ii) (X, T) is pointwise almost periodic.

(iif) (X, T) is pointwise equicontinuous and for each x e X, K(x) is compact.

The notion of “indivisibility” was first introduced in [4]. We give a definition
of indivisible applicable to our case of CAE flows in § 2 and obtain a crucial result,
Lemma (2.1). The following structure theorems for CAE flows are proved in § 3.

THeoREM B. Let (X, R) be a continuous CAE flow. Then it has at most one point
each not of ch0 and ch0~. Furthermore, if there exists a point of ch0¥ (ch07) then R~
(R™) is equicontinuous on A.

THEOREM C. Let (X, Z) be a discrete CAE flow. Then the conclusions of Theorem B
hold if 4 is a semi-continuum.

Remark. Theorem B is proved by Lam [5, Th. 4, p. 145] with the additional
assumption that 4 contain a point which is not almost periodic. Theorem A helps
us to drop this assumption. Theorem B yields Theorem (3.2) for discrete flows
similar to Lam’'s Theorem 7 [5, p. 146] which is for continuous flows only.

k § 1. In this section we shall prove Theorem A starting with some preliminary
results.

Levma (1.1). Let (X, T, ©) be a continwous or a discrete flow, x € X be of ch0™

and K*(x) be compact. If U is an open set in X containing K*(x) (L*(x)) then there

exists an open set V containing x such that for each y eV, K*(y) = UL™(y) = U].
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Proof. We first prove the lemma for T = Z. Let W be an open set in X such
that K*(x) = W< We U, and Wis compact. Suppose no such open set ¥ as claimed
in the lemma exists. Then using the continuity of z we can find a sequence {z,} in Z *
such that x,t, € Wbut x,(z,+1) ¢ W for some sequence {x,} converging to x. Con-
sequently, x,(z,+1) € W(1) gives a point y e W(1)— W which lies in D¥(x). Since x
is of chO*, this is a contradiction. This proves the lemma for 7' = Z.

Now suppose that T = R and the lemma is not true. Then using the continuity
of = again, and W as above, the fact that K*(x) = W gives a sequence {x,} con-
verging to x, and sequences {s,} and {r,} in R* such that x,7,¢ W but x,s5,€ W,
so that there is a y, between s, and #, for each n, such that x,y, € dW. This implies
that D*(x)NdW # & and since x is of ch0*, K*(x) = D*(x), contradicting the
choice of W. This proves the lemma for T = R. -

It is casy to see that the same proof applies to L™(x).

LeMMA (1.2). Let (X, T) be a continuous or a discrete flow. Then the following
are true.

(@) If x is of chOT (ch07) then L¥(x) = J*(x) (L™(x) = J~(x)).

() If x is of ch0* and y e L*(x) is of ¢h0~, then x e L*(x).

Proof. For proof of (a) see Lemma (1.1) [4, p. 808]. (b) Since L*(x) is T-inva-
riant and closed, yeL¥(x) implies that K(y)cL*(x) =J*(x). Therefore,
xeJ™(¥) = L7(») = K(y) = L*(x). This completes the proof.

Levma (1.3). Let (X, T) be a continuous or a discrete flow of chO*. Then the set
= {xe X: T is recurrent at x} is both open and closed in X.

Proof. Recall that x is T recurrent if and only if xeL"*(x) and x e L™(x)
[2, ch. 7], and that Y is invariant under T [2, Th. (7. 03), p. 64]: The proof is divided
into three parts:

(a) Yis closed in X: Let ye Y and {y,} be a sequence in ¥ converging to y-
Then y,eL*(y,) = J*(»,) from Lemma (1.2). Hence y € J*(y) = L*(y). Similarly
yeL™(y) and Y is closed. Consequently Y-is locally compact.

(b) For any y e ¥, the orbit closure of y is a minimal set: Since L™ () is closed
and invariant, y e L*(y) = K(y) [2, Remark (7. 02), p. 64]. Let x € K(3); then
xeL*(y) = J*(y), from Lemma (1.2), hence y eJ (x) = L™(x) = K(x) and K(»)
is minimal.

(c) Now consider the flow (Y, T). Then by Theorem (7.05) [2, p. 641, (¥, T)
is pointwise almost periodic and hence for any y € ¥, K(») is compact. Therefore,
from Lemma (1.1), for any y € Y there is an openset ¥ containing y such that for any
x eV, K(x) is compact hence L*(x) # & and L™(x) # &. Hence V= Y and ¥ is
open. This completes the proof of the Lemma.

~ Proofof Theorem A. (i) =(ii): By assumption (i) the set ¥ defined in Lemma
(1.3) isnonempty. Since X is connected ¥ = X and, by (c) in the proof of Lemma (1 3)
(X, T) is pointwise almost periodic.
1*
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(ii)= (iii): That K(x) is compact for each x € X follows from Theorem (4.09)
[2, p. 32]. From Lemma (1.1) it is easy to see then that (X, T") is pointwise equicon-
tingous. © . : )

“(iii)=s (i): Trivial. -

We give an example to show that if in Theorem A the assumption that a recurs ent
point exists is dropped then the theorem is not true. .

ExaMpLe (L.4). Consider the differential equation y = —y 25ind in polar
coordinates (y, 6) in the plane. The trajectories given by the polar equation
y = ¢—cosf for arbitrary cz0 describe a continuous flow (X, R) where X is
the plane R?.

Tt is easy to see that no point on the parabola ¢ = 1 is a point of ch0™ or ch0™
as every such point is a limiting point of periodic points on the ellipses given by
¢ > 1. But now consider the subspace Y of the plane obtained by deleting all ellipses
from the plane X. Then (Y, R) is again a continuous flow on a connected locally
compact metric space Y. It has no recurrent points. Every point of Y is a point of
¢h0* but no point on the line ¢ =0 (x = —1) is a point of equicontinuity.

§ 2. Fora gcncral definition of indivisibility sce [4]. We give below a dcﬁmtxon
more suitable for our purposes.

DEFINITION (2.0). A CAE flow (X, T) is said to be indivisible if, whenever for
some x, € A there exists a sequence {#,} in T such that xot,—p € B, then x#,—p
for all xe d. - :

Our first result is a lemma crucial to the study of CAE flows. For any subset W
of X we denote the component of any point x€ W in W by c(x, ).

LemMa (2.1). Let (X, T") be a CAE flow. If p is not of ch0* (ch0™), then there
exists a point y € A such that pe L™ (3) (p e LT(3)).

Proof. Since p is not of ch0*, therc is a point g€ D (p)—K*(p) and con-
sequently sequences {p,} in X'and {t,} in T'" such that p,—p and p,#,—¢. Let U, V'be
open sets in X such that g e U< ¥, Vis compact, dUU0V < 4, and VnK*(p) =

Then the following two cases ate exhaustive. Either

(a) there exists an open set W containing p such that ¢(p,, W)t, < U for all
n>n, for some positive integer ny, or

(b) given any open W containing p there are infinitely many values of » for
which C(pnr W.)tn¢ U-

Suppose (a) holds. Without loss of generality we may suppose that Wis com-~
pact, X— W# & and 0 W 4. Then X being connected W # @ and by (10.1)
[6, p. 16], c(x, W)noW # @ for any x e W. Using the terminology of [6] and
Theorem (9.1) [6, p. 141, clearly p elim infe(p,, W), hence limsupc(p,, W) = E

n—co n—+oo
is connected. Also EndW # @ since ¢(p,, W)ndW #* @ and dw is compact. Let
ze EndW < EnA. We may assume without loss of generality (or else we work
with a subsequence) that there is a sequence z, € ¢(p,, W) n = 1,2, ... converging
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z. Then; by assumption (a), z,7,€ U, and U being compact, J*(2)nT # B.
Smce z is of ch0*, by Lemma (1.2) (a), L¥(D)nU # @.

Now let {W,}, where W, = W, be a decreasing sequence of nelghbourhood
base at p, and choose inductively for each integer » an element z, € c(p, W,) as
above so that I.7(z,)n T # &. Thus, for each 7, there exists an s, € 7" such that
z,s,€ V. Since K*(p)n V= @, for sufficiently large values of n, ps, ¢ V. Hence
c(p, W,)s,n 0V # &. Consequently, as z,—p, JT(p)ndV # @. Let y e S (p) n 3V,
then peJ~*(») = L™(») by Lemma (1. 2) (a) because 8V < A. This completes the
proof of the Lemma in ¢ase (a).

Case (b): Given a neighbourhood base {W,} at p as above, there exist points
Py = qn€ Wn, =0, and 1, =s,, such that c(g,, 0)s,2U. Since g,5,—g;
¢(gn, 0,)8,n8U # @. Thus J*(p)n8U # @, and as in the last paragraph above
there is a point y € 8U such that p € J ~*(y). This completes the proof of the lemma.

" THEOREM (2.2). If (X, T) is a CAE flow, then T is not recurrent at any point of A-

Proof. Note that 4 is invariant under T, and (4, T) satisfies all the conditions
of Theorem A. Thus, if it contains a recurrent point then for all points x € 4, K'(x),
the orbit closure of x in (4, T), is compact. Hence K'(x) = K(x), where K(x) is
the orbit closure of x in (X, T). Consequently, for each x € 4, K(x)nB = &. Since
B # @ this contradicts Lemma (2.1) and completes the proof,

TaeoreMm (2.3). Let (X, T) be a' CAE flow. If x eA then L*(x)nA = @ and
L (x)nd =@.

Proof. f LT (x)n A # @ then by Lemma (1. 2) (b) x e L¥(x). Hence x € J 7 (%),
which implies that x € J 7 (x) = L7(x) by Lemma (1.2) (a). Thus x is recurrent con-
tradicting Theorem (2.2). Similarly L™(*)n4 = &.

. Lemma. (2.4). Let (X, T) be a continuous flow. Let U be an open set in X such
that oU is compact and disjoint with B. Let {t,}. be any given sequence in T Then the
set Y= {xed: {xt,} lies eventually in U} is open in A.

Proof. Suppose the lemma is not true. Then there exists a y € Ya sequence {»:}
not in ¥ but convergent to y, and a subsequence {s;, = fy,} of {#,} such that y,s, ¢ U
for all k. Then by the continuity of s, for each k, there exists an integer m(k) such
that Yp e € U. SINCe Yy Suy ¢ U, there is an ry in the interval with end point Sy,
and s, in R, such that, y,q) € 0U. Since 4 is invariant under T, {#,} is a divergent
sequence in T; hence so also is {r}. Since U is compact and y,@m—¥,
J*(y)naU # @. Since y € 4, by Lemma’(1.2) (a), LT(y)n U # @ contradicting
Theorem (2.3). This proves the Lemma. ' v ‘

THEOREM (2.5). A contimious CAE flow (X, R) is indivisible.

Proof. Let x5 € 4 and x,t,—p € B for some sequence {#,} in R. Let U be an
open set in X containing p such that U is compact and U n B = @. Then by Lemma
(2.4) the set ¥ = {xe A: {xt,} lies eventually in U} is a nonempty open set. We
claim that this set is also closed. Suppose not and let.yo & ¥YnA but yo ¢ Y. Then
therc exists a subsequence {s,} of {t,} such that {ys,} lies gbentually inV=x-U
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(Theorem (2.3)). Since 8¥ = aU, by Lemma (2.4) the set Q = {xe 4: {xt,} lies
eventually in V} is open. But this is a contradiction since yo is a limit point of Y.
Thus Y is 4 nomempty open and closed subset of 4. Since 4 is connected,
¥ = A. Since there exist arbitrarily small such open sets as U, clearly x7,—p for
all xe 4.
THEOREM (2. 6) Let (X, Z) be q discrete CAE flow. If A is a semi-continium,
then (X, Z) is indivisible.

Proof. Let x, € 4 and {t,} be a sequence in Z such that xo2,—p. We want to
show that xt,—p for every x € A. Suppose there is a y, € A for which this is not true.
Since A is a semi-continuum there is a compact connected set C in 4 containing x,
and y,. Let U be an open set containing p such that 8U is compact and U A.
Then Ct,n8U # @ for infinitely many values of n, and since C is compact, one can
easily show that either L¥(z))ndU # & or L (2,) n9U # @, which contradicts
Theorem (2.3). This proves the Theorem.

§ 3. In this section we shall prove Theorems B and C.

THEOREM (3.1). Let (X, T) be an indivisible CAE transformation group. Ifpis
not of ch0~ (ch0™), then given aiy open set U containing p and any x € A there exists
atyeT" (toeT7) such that for t=t, (t<te) xtelU.

Proof. We; assume that U is compact and 8U B = & and prove the claim
separately for discrete and continuous flows:

Suppose I = Z: Suppose the claim is not true. Then as in the proof of Lemma
(2.1) we can find a sequence {s,} in Z* such thatxs, € Ubutx(s,+ 1)¢ U.Now U being
compact limsupxs, # @ and by Theorem (2.3), limsupxs,cBnU. Hence

n-—+w n—+m
xr,—q € BnU for some subsequence {ry} of {s,}. But then by indivisibility, x(r,+1)
= (x1)r,—q which is a contradiction. Hence the claim.

Case T = R. Suppose the claim is not true. Then there is a sequence {r,} in R
such that, xr, (,-’s U Since p is not of ch0”, by Lemma (2.1) there is a point x € 4
and a sequence {t} in T* such that xyt,—p and by indivisibility xt,—p for all
x € A. Hence, as argued eatlier L*(x)ndU # @ contradicting Theorem (2.3). This
completes the proof.

Proof of Theorem B. Letp e Bbe of ch0~. Then by Lemma (2.1) there is an x,
such that xq1,—p for. some sequence {z,} in R*. Then by Theorem (2.5) and Theo-
rem (3.1) it follows that p is the only point not of ch0~ in B. Similarly, we can show
that B contains at most one point not of ch07.

Tt is easy to see using Lemma (1.1) that if B has a point of ch0” (ch0*) then T+
(T'") is pointwise equicontinuous on 7. This proves Theorem B.

Proof of Theorem' C. In the proof of Theorem B use Theorem (2.6) instead
of Theorem (2.5).

Using Thcorem C the following Theorem can be proved in the same way as
Theorem 7 [5, p. 146]
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THEOREM (3.2). Let (X, Z) be a discrete flow on a locally compact connected metric
space X. Let B not disconnect X and have only compact components. If A contains
a point which is not almost periodic, then B is the union of at most two components K
and L (K may equal L) and o(x) = K; o(x) =L for all xe 4.

ExawmrLE (3.3). The following example shows that for a flow (X, T') in which B
is compact and not zero dimensional then, without the assumption that 4 contains
a point which is not almost periodic, B may have uncountably many components.
Thus, the assumption that 4 contains a point which is not almost periodic in Theo-
rem (3.2) above and Theorem 7 [5, p. 146] is also necessary.

ExaMPLE (3.3). In Example (1.4) above consider the subflow (E, R), where E
is the set of points on the parabola P and the ellipses. Then no point of P is a point
of ch0* or ch0~. Let X = Eu{co} be the one point compactification of E and
(X, R) be the extended flow, where oot = co for every t€R. Let B = Pu{w}.

Let S be the Cantor set and define (Xx S, R, n) by {((x,s), 1w = (xt, 3).
Then Bx S is the set of all those points which fail to be of ch0” and ch0™. Let ¥ be
the quotient space obtained from Xx .S by identifying all points {(p,,s),se S}
where p, is the degenerate ellipse in (£, R). Then in the quotient transformation
group (¥, R), ¥ is a compact connected metrizable space and B = Bx S, the set
of points that fail to be of c20* or ch07, is compact and does not disconnect the
space, and A = Y—B is arcwise connected but the number of components of B
is uncountable. Of course, every point of A is a point of almost periodicity.
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