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Generalized Lusin sets with the Blackwell property
by
R.M. Shoertt* (Middletown, Conn.) and K.P.S. Bhaskara Rao (Calcutta)
Abstract. A separable space (X, #) has the Blackwell property if whenever % is a countably

generated sub-g-algebra of % separating points of X, then ¥ = %. We characterize which Lusin
and Sjerpinski sets have the Blackwell property and consider when the property is preserved under

the taking of products.

§ 0. Introduction. At the 1383 Oberwolfach Conference on Measure Theory,
the first author posed the problem of whether the construction of universally null
Blackwell spaces is possible within ZFC. At present, the matter does not seem to
have found resolution. However, Jakub Jasifiski [7] in Gdafisk has very recently
shown that under the assumption of CH, there are some Lusin sets with the Blackwell
property and some without. As he points out, his arguments apply also to their cate-
gory analogue, the Sierpinski sets.

The present paper is an effort to unify these results with other theorems about
Blackwell spaces in a rather general framework. Many examples of Blackwell spaces
may then be seen to arise as generalized Lusin sets with respect to a o-ideal of Borel
sets. Vary the o-ideal, and different species of Blackwell spaces emerge. v

Our point of departure remains the observation that every set is a generalized
Lusin sct with respect to some Borel o -ideal. For each fixed ¢-ideal, only the “larger™
Lusin sets enjoy the Blackwell property, and the strong Blackwell property is reserved
for those sti'l even larger. Further gradations of sizc may be observed for sets various
products of which ere also Blackwell.

Section | defincs Blackwell propertics and 1nnoducc§ the concupt of a Lusin
set with respect to a o-ideal, as well as the notion of size (#-density) mentioned
above. Scction 2 goes on to characterize J-Lusin sets with Blackwell and strong
Blackwell properties for an arbitrary ¢-ideal (Proposition.2). It is seen that if f is.
a uniformisable ¢-idecl, then for #-Lusin sets, these properties actually coincide.

* The first author has been supported in this research by a Natxonal Scienoe Foundanon grant
DMS-8412413. :
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Propositions 3 and 4 take up the matter of Blackwell properties for spaces of the
form X"x S, where X is an #-Lusin set and S is a standard space.

Section 3 presents proofs (assuming CH) that there are .#-Lusin sets with and
without Blackwell properties (Propositions 6 and 7). Proposition 5 guarantees the
existence of #-Lusin sets of any prescribed order of density. Section 4 takes on
the o-ideal of countable sets. This o-ideal turns out to be uniformisable, with the
-consequence that for spaces with totally imperfect complement, Blackwell and strong
Blackwell properties coincide. This result was obtained earlier by the first author [18],
but here it is viewed as part of a general theory.

Section 5 defines the notion of a uniformisable set. Like the Blackwell spaces,
such sets turn out to be a generalization of analytic spaces (Proposition 10), and
they have a close relationship with the Blackwell problem (Proposition 13).

The rest of the paper specializes to the o-ideal of measure zero sets. In this case,
‘the .# - Lusin sets are precisely the classical Sicrpinski sets. This ¢-ideal is not unifor-
misable (Lemma 13), and indeed, Blackwell and strong Blackwell properties part
company for such spaces, =t least under CH (Proposition 18). Interestingly enough,
the construction also solves an open problem of probabilistic measure theory posed
by Ramachandran [14]: the notions of independent random variable due to Stein-
haus and Kolmogoroff do mot necessarily agree on Blackwell domains.

Section 7 takes up the question of Blackwelf properties for various products
-of Sierpifiski sets. The structure of the o-ideal of measure zero sets is sufficiently
rich so as to allow a fuller analysis than that given in Section 2, e.g. Proposition 19.
Some work of Kellerer on marginal problems puts in an unexpected guest appearance
at this juncture.

Section 8 obtains a pair of measurable selection theorems (Propositions 23
and 25) using disintegration of measures, hyperspaces of compact sets and Strassen’s
“Theorem from probability in concert. With these results, it becomes possible to esta-
blish another characterization of Sierpinski sets with Blackwell properties (Pro-
position 26). This theorem finds employment in Section 9, where it is used to prove
Proposition 27 on Blackwell properties for countable unions of such sets.

Section 10 considers the question of whether X x S is Blackwell whenever S is
standard and X is a strongly Blackwell Sierpiniski set. The issue remains unresolved,
but the question is shown to bc equivalent to a conjecture about measurable selec-
tions and doubly-stochastic mcasures (Proposition 29).

Thanks are due to Jakub Jasiriski, Henryk Leszczyfiski, Janusz Pawlikowski,
and Czestaw Ryll-Nardzewski, who found errors in earlier draughts of this work.

§ 1. Preliminaries. For the elements of descriptive set theory and basic results
about Borel structures, the reader is referred to [1] and [9]. The notation and termi-
nology of this paper generally follow [1].

A separcble space is a measurable (Borel) space (X, ) whose o-algebra # is
countably generated (c.g.) and contains all singletons drawn from the set X. If ¢ is
a sub-g-algebra of %, and 4 c X, then the notation ¥(4) = {Cn4: Ce ¥} wil
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be used to denote the relative € -structure on A. A separable space (S, %) is standard
(resp. analytic) if there is a complete (resp. analytic) separable metric topology on §
for which £ is the corresponding Borel structure.

A separable space (X, %) has the Blackwell property if whenever € is a c. g. sub-
o-algebra of # separating points of X, then necessarily ¢ = %. Say that (X, 4)
has the strong Blackwell property if whenever ¥ « @ are c.g. sub-o-algebras of
# with the same atoms, the necessarily € = £. For equivalent definitions,
consult [1].

Throughout this paper, (S, #) will denote a fixed uncountable standard space.
Often, the space will be denoted simply as S. A o-ideal # of sets in #(S) is con-
tinuous if it contains all singleton subsets of S. Let .# be any c-ideal in #(S). (The
set S is never a member of £.) A subset X of S is ¥ -Lusin if X is uncountable and
the intersection of X with every member of # is countable.

We shall often consider the n-fold product of .$ with itself as a standard space,
denoted by S". Here n may be any positive integer. If Ny, ..., N, are subsets of S,
then (N, ..., N,» is the set of all (s, ..., §,) in §” such that for some k, one has
s, € N,. Thus (N, .. , N,) is the complement in §” of N x N3 x ..xN;. A subset R
of S" is S -reticulate in 8" if these are sets Ny, ..., N, in & with R< {Ny, ..., Np).
A subset of T of Sx S is an S-thread if

1) T is the graph of a Borel-isomorphism between sets 4 and B in B(S);
2) T is not £ -reticulate.

A subset ¢ of SxS is an S-graph if

1) ¢ is the graph of some Borel function g: A—S, where 4 E@(S),

2) 4 is not .f-reticulate.

Note. The set @ is allowed to be of either form {(s,#):¢ = g(s)} or
{(s,1):5s = g()}. A o-ideal # is uniformisable if every set R in 2(SxS) which
is not . -reticulate contains an #-thread.

A subset X of S is & -dense (of order 1) in S if every B e 4(S) disjoint from X'is
a member of #. Say that X is S -dense of order n in S if X" intersects every R in
A(S") which is not £ -reticulate. It is easy to see that for each n > 1, #-density of
order n+1 implies #-density of order n.

One particular type of ¢-ideal in #(S) will prove to be of special interest. Let X
be a fixed uncountable subset of S. Define #(X) to be the o-ideal of all B in #(S)
with Bn X countable. Then #(X) is a continuous ¢-ideal, and X is .# (X)-dense
in-S. In fact, one may easily prove.

LEMMA 1. Let # be a o-ideal in B(S) and let X be an uncountable subset of S-

1) The set X is S-Lusin in S if and only if S = F(X).

2) If F(X) < #, then X is F-dense in S. The converse holds if £ is assumed
to be continuous.

Thus, £ (X) is the largest o-ideal # in 2 (S) for which X is % - Lusin, whilst #(X)
is the smallest continuous o-ideal S for which X is . -dense.


GUEST


12  R.M. Shortt and K. P. S. Bhaskara Rao

. Suppose J is a given o-ideal in Z(S) and that € and 9 are ¢.g. sub-o-algebras
of #(S). Say that € is S -proper in @ if
1) ¥c2; .
2) if Ne 4, then €(N°) # Z(N°).
" Given Marczewski functions f and g for countable génerators of o-algebras %
and 9, we define the set

T, D) ={(s,)eSxS: f(&) =/() and g(s) #g()}.

The definition of T(%, 9) does not depend on the particular choice of the Marczew-
ski functions f and g.

LemMMA 2. Let ¥ <D be c.g. sub-c-algebras of #(S). Then the following are
equivalent:

1) € is F-proper in @,

2) there is some set D in 9 not equivalent to any. €-set modulo S : in other words,
DACES forany Cin%; .

3) T(#, 2) is not S-reticulate in § x8.

Proof. 1)=-2): We proceed to prove the contrapositive and assurme that no
set D as in 2) exists. Let Dy, D,, ... be a countable generator for 2. Then there is
a sequence Cy, Cy, ... in € with C, ~ D, mod(#). Put

N=U®D,AC

a set in #. Then 4 (N°) = Z(N°), since for each n, D,AN°= C,nN°. Thus ¥ is
not J-proper in 2.

2) =1): Suppose D in 9 is as specified and that N € £. Then for notet Cin¥%
does it happen that DA N® = CnN°. If this werc true, then C A D<= N, a contra-
diction..

" 3) =1): Suppose that Ne f is such that @ W9y = @(N“) 'I’hen one sees that
T(C, 2)c{N,N).

1) =3): Suppose that these arc sets N, and N, in # with T(‘g 9) ={N;y, N,).
Put N = Ny UN,. Then 4(N°) = Z(N°) have the same atoms. Since every standard
set is strongly Blackwell [1; p. 21], we have ¥(N;) = Z(N°), as desired. ®

Say that a subset X of S satisfics condition (J) or (J+) for the o-ideal # if

o whenever € is a c. g. sub-c-algebra of #(S) which is S -proper in #(S)
then there is some ¢ -atom C such that C'n X contains at least two points
(i.e. ¥ does not separate points of X);

(I+) whenever ¢ and 2 are c.g. suBﬁ-'algebyas of B(S) with & £ -proper in @’
then there is some -atom C such that Cn X contains two points separated
by 2.

Compare the definition of (*)-Blackwell conditions in [18], as well as their use
for a special case in [7] (“Jasiriski conditions™). Condition (J+) guarantees that
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whenever % is very much smaller than & (with respect to ), then the set X contams
witnesses to this fact. :

Another sort of o-ideal on which our attention will focus consists of sets which
are null with respect to a given probability measure. Let m be a Borel probability
measure on S. Define J(m to be the collection of all m-null sets in Z(S). The
o-ideal # (m) is continuous if and only if m is a continuous measure. Mest often,
we shall take m to be continuous. A subset X of S is # (m)-dense in S if and only
if m*(X) = 1. If m is continuous, then.the #(m)-Lusin sets are the classical sets
with property (S) studied by Sierpiriski [2], [20]. We shall often use the terms
#(m)-Lusin and m-Sierpinski interchangeably. .

The following result will be quite handy in the sequel'

LevMa 3. Let m be an atomless probability on S. If B isa ,set in B(S?) af positive
(m®m)-area, then B contains an J (m)-thread.

Note. The result also holds whenever m is purely atqmic, but not if m is. of mixed
type.

Proof. By the usual 1som0rphlsm theorems, it is no loss of generahty to take m
to be Lebesgue measure on the interval S = 10, 1[. For each real ¢, define
B(c) = {(s,t) € B: t = s+c}. Then by Fubini’s Theorem (at a 45° angle), at least
one of the sets B(c) has positive linear measure. Such a set B(c) is an . (n)-thread. B

Consider the following restriction on a o-ideal £:
(R) Whenever B, and B, are two members of %’(S) \F, then the rechnglc B, x BZ
contains an .# -thread.

LevMa 4. Let £ be a continum'ls o-ideal in B(S) satisfying restriction (R). If
X < S sarisfies (1), then X is £ -dense. In particular, this implication holds when & is
uniformisable.

Proof. If X is not dense in S, then there is some set B = S\Xin #\J. Since £ is
continuous, B decomposes into two (necessarily uncountable) disjoint sets By and B,
in #°.#. Applying restriction (R), we find an £ -thread G inside By X B,. Now G is
the graph of a Borel-isomorphism g between sets C; and C, in #(S). Define f1 8§—8

by the rule
_Je®, seCy,
A0 { , s¢Cy.

Define 4 = #(f) = {f~(B): Be #(S)}. We claim that ¥ is #-proper in #(S).
For each N e .#, there is in G a point (s, g(s)) not in (N xS)u(Sx N). Then s and
g(s) are points of N° not separated by %. So G(N°) # B(N°).

However, ¥ separates points of X. The Lemma follows by contraposition. B

We shall see later that a o-ideal may satisfy restriction (R) but not be unifor-
misable. This will be the case with the o-ideal of null sets for a continuous measure
(see Section 6). Also, it is not true that every continuous o~ideal £ satisfies restric-
tion (R). An example to illustrate the point will be given in Section 6.
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§ 2. Results for general o-ideals. As usual, .# is taken to be a o-ideal in the stan-
dard structure Z(S).

PROPOSITION 1. Suppose X is S -dense in S.

A) If X is S -dense of order 2 in S; then X satisfies condition (J+).

B) If X satisfies condition (J+), then X x X intersects every S -graph in Sx S.

C) If X satisfies condition (J), then X x X intersects every S -thread in SxX S,

Proof. Part A. As noted in Lemma 2, % proper in 2 means that 7(%, 9)
is not . -reticulate. If X is dense of order 2, then (XX X)nT(¥, 9) # J. So there
are points x and x’ in X not separated by € but separated by 2. This establishes.
condition (J+).

Part B. We assume that S = ]0, 1[ under the usual linear order and Borel
structure. The contrapositive will be proved.

Begin by taking ¢ to be an S -graph with ¥n(X'x X) = &. We shall assume
that there is some 4 in #Z(S) and a Borel function k: 4—.S such that # = graph(k)
= {(s,k(s)): se€d}. This assumption is made without loss of generality. Define

4 ={(s,s):se8},
A, ={s, 1) s<1t},
A ={(s,1): s>1}
as subsets of Sx.S. Since X is S -dense in S, it follows that ¥n4 is S ~reticulate.,
So one of the sets ¥4 or ¥n4, is an S -graph, We shall assume that ¥~ A4_
is an #-graph. The other case, where it is ¥~ 4., that is an #-graph involves an
argument entirely parallel to the one we now offer.

With these assumptions in place, there is some >0 such that ¥n4_(e) is
an #-graph, where

4_(8) ={(s,t)eSxS: s—e>1}.

Also, there is some open interval @ of length & such that ¥nd_()N(OxS) is.
an S -graph. This set is the graph of a Borel function & defined on a set D in Z(S):

G4 (nOxS) = {(s, k(s)): se D}.

Now, whenever s and ¢ are elements of D, then h(s) < s—s <, so that i(D)n D = O.
Define functions f and g on S by the formulae

o= e
' _ (/z(s),O)h, seD,
g(s)_{(s,s), se D°.

Here, g takes values in R?. Let % and 2 be the sub-o-algebras generated by fand g,
respectively. i
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We claim that € is  -proper in 2. This will follow from a proof that T'(%¢, &)
is not #-re.iculate. For this, we need only note that

T, 2) = {(s. 1(s)): se DyU{(h(®),1): te D}.

On the other hand, T(%¢, 2)n (X x X) = @, so that ¥(X) and 2(X) have the same
atoms. Thus condition (J+) fails for X. )

Part C. Essentially the same proof as for part B, taking % 1o be an S -thread
and noting that, in this case, & as defined above equals #(S). B

PROPOSITION 2. Let X be an f-Lusin subset of S.

1) If X satisfies (J+), then X is strongly Blackwell. The converse obtains if X
is S -dense in S.

2) If X satisfies (I), then X is Blackwell. The converse obtains if X is S -dense
in S.

Proof. We show that if X satisfies condition (J+), then X is strongly Blackwell..
The implication (J)—Blackwell runs parallel and its proof is omitted.

So suppose that €(X) = 2(X) are c.g. sub-o-algebras of #(X) with the same
atoms. Then there are c.g. o-algebras ¥ < 9 = #(S) whose relativizations to X
are #(X) and 2(X). Condition (J+) implies that ¥ is not proper in &. Therefore,
there is some set N in & with #(N°) = 2(N°). Since X is an # -Lusin set, it follows
that XN N is countable.

Let 4 be the union of all ¥-atoms C with the property that CnXnN # .
There are only countably many such #-atoms, so that A4 € #(S). Since #(Xn4)
and 2 (X n A) have the same countable set of atoms, one has ¥(Xn4) = Z(Xn A).
Now X A° < N° so that ¥ (X n 4°) = D(Xn A4°). Given Din 2, there are ¥-sets C;
and C, such that

DnX=DnXndHuDnXn4))
=(CNnXnAu(C,nXNnAY)

is a member of €(X). So ¢(X) = D(X), as desired.

To conclude the proof, we show that if X is #-dense and strongly Blackwell,
then X satisfies condition (J+). Again, the implication Blackwell—(J) is similar
and so its proof is omitted.

So suppose that % and 2 are c.g. sub-o-algebras of %(S) with ¥ proper in Z..
We shall assume that (J+) fails and derive a contradiction. If (J4) fails, then
%(X)c D(X) have the same atoms. From the strong Blackwell property,
#(X) = @(X). Let g be a Marczewski function for 2(S). Then when restricted
to X, g generates 2(X) = #(X). Call this restricted. function go. Since it is-
#(X)-measurable, it extends to a %-measurable function f on S. Put

B={seS: f(s) =g()}.

Then Be %(S); in fact, Be 2.
Since X = B, we know that S\B € .#. We claim that % (B) = 2 (B). For, suppose,.
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that b and &’ are points in B separated by @. Then g(b) # g(b"). Thus f (b)) # f(5')
and so b and b’ are separated by #. This proves the claim.

A contradiction has been established: % is proper in 9, but #(B)
with S\Be S. B

Remark. It should be noted that in the proof of the converse, the hypothesis
that X is #-Lusin was not used.

COROLLARY. Suppose that F is a uniformisable o-ideal. Let X be an S -Lusin
set S-dense in S. Then the following are equivalent:

1y X is dense of order 2;

2) X is strongly Blackweil;

3) X is Blackwell. ’

Note. The implication 1)=>2) does not require £ to be uniformisable or X
to be £ -dense; 3) =1) does not require .# to be continuous or X to be #-Lusin;
2)=3) needs no conditions on ¥ or X.

DrFINITION. A subsct X of S is analytically F-dense (of order 1) in S if for
each analytic subset 4 of S\X, there is some set N in # with A< N.

Clearly, this notion is stronger than that of simple £ -density. The following is
immediate:

LEMMA 5. A subset X of S is cmalytically J(X)-dense if and only if Borel sets
separate X from every analytic A with AnX = @.

ExAMPLE 1. Let 4 be an analytic subset of S. Then 4 is analytically £ (4)-dense
in S. This is Lusin's first separation principle in another costume.

ExAMPLE 2. Let X be a co-analytic subset of S. Then Xis analytically # (X)dense
in S if and only if X is a Borel set.

Say that a subset X of S is analytically S -dense of order n in S if X" intersects
-every analytic set A< S" which is not #-reticulate in S". In other words, if
Ac S™X" then there are sets Ny, ..., N, in . with A<= {Ny, ..., N,).

It is easy to show that analytic # -density of order n+1 implies that of order
forn=1,2,..

LeMMA 6. Let X be an S -Lusin subset of S. The following statements are equi-
valent: ‘

1) X is analytically #-dense of order n;

2) whenever A is an analytic subset of S"™X", then there are #-sets Ny, ..., N,
contained in S\X such that A< {(Ny, ..., N).

Proof, The implication 2=>1 is immediate The proof of 1=>2 proceeds via
induction on n. For n = 1, we see that if 4 = S\X is analytic, then there is some N
in & with 4 = N. But since X is #-Lusin, we know that Nn X is countable. So
Ac NNXcS\X fills the bill.

Now we assume the result for all dimensions less than n (n> 2) and suppose

= 9(B)
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that X is analytically #-dense of order n. Supposc that 4 =S X" is an analytic
set. There are sets Ny, ..., N, in .# with A< {N;,...; N,). Since X is .#- -Lusin,
the set N;nX may be listed as x,, x,, ... For each z> 1, the section A(x,) of 4
over x; is an analytic subset of $"7!\X""!. By the induction hypcthesis, there 2
F-sets NP, ..., N9 contained in S\X with A(x) = (NP, ., NP> For 2<k < n,
put N = NkuN‘l) NPU.. Then A= (N X, Nj, Ni, ..., NI>.

Repeat the procedure for cach of the other n—1 co-ordinates in S*. This will
produce f-sets M, ..., M, contained in S\X such that dc My, My, o5
desired. H

PROPOSITION 3. Let F be a o-ideal in the standard structure %(S ) and suppose
that X = 8 is an S -Lusin set analytically . -dense of order 2n (n > 1). Then X" x S
is a strongly Blackwell space.

Proof. Ii suffices, by Propositions ! and 2, to prove that X"xS is
F (X" % S)-dense of order 2in S" x S. So suppose R is a member of B(S"x Sx 8" x S)
contained in (S"xSxS"xS) (X"xSxX"xS). Let /3 S"xSxS"xS— S"x "
be defined as the projection

NG,
Then f(R) is an analytic subset of (S* x S"N\(X" x X™. Since Xis analytically .# -densc

Sus Snt 15 T3 vees Ts T g) = (1, ens Spo Ty s 1) -

of order 2n, there are £-sets 4, , ..., 4, and By, ..., B, contained in S\X (Lemma 6)
with
F(R)={4y, .., Ay, Bys oo, By,
and so
R ({Ay, s 40s B, (By, .., By, BY) .

Since {4y, ..., 4,,@) and {By, ..., B,, @) do not intersect X"x S, we sce that R
is J(X"x 8)-reticulate, as desired. M

PROPOSITION 4. Let £ be a o-ideal in ihe standard Borel structure #(S) and
suppese that X < § is analyticclly S -dense (order 1) in S. For n 2 1, if X" x S is Black-
well, then X is analyticclly S -dense of order 2n in S.

Proof. Suppose that A4 is an analytic subset of S*"\X2". There is some Bore]
mapping / of S onto 4. We deﬁnc a Borel subset T" of (S"xS)x (S"xS) as

T = (510 e Sy Sy Tas oo B By} Sy = By and

s 1) = (515, s 1)} - ,
The set T is disjoint from (X" x.S) x (X" x §). Furthermore, each:section of T {either
direction) over a point in $”xS is at most singleton.
Now since X" x S is Blackwell, it follows (Propositiofis 1 and 2) that (X"x S)
% (X" % 8) meets every S(X"xS)-thread in (S"x S)x(S"x S). Since the onc-one
graph T is not met, it inust be.that the;gi&sgme Nin £(X"x S) with T<{N, N).

Sus Eiyone

2 — Fundamenta Mathematicae 127.1
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Let f be the natural projection map from S"x S onto S™. Then M = f (N) is an ana-
lytic subset of S* such that

a) MnX" is countable;

b) Ac={M, M.

We have proved that to each analytic 4 = S*\X 21 there corresponds at least one
analytic M = S" with properties &) and b).

The proof now proceeds by induction on n. For n = 1, take M corresponding
to 4 as above. Since X is analytically £-dense in S, there is some £-set N with
M < N. Then A = {N, N') as desired. Now we assume that the result has been estab-
lished for dimensions k < n and consider the case for n-+1. Since X' #+1 % S is Black-
well, so too is X™ xS, so that (by the induction hypothesis) X is analytically S -dense
of order 2 and therefore also of order n-+1. Again, given 4 o g\ x 204D,
take M < S"*1 corresponding to A as before. There are J-sets Nisr Nyiq With
Mc (N, .., Nysy)- S0

AC<N1, ...,N,,+1, Nla sery Nn+1>

as desired.

COROLLARY. Let X = S be an 8 -Lusin set analytically -dense in S and suppose
that A is an uncountable analytic subset of S. Then for edach nz 1, the following are
equivalent:

1) X*x S is strongly Blackwell;

2) X"x A is strongly Blackwell;

3) X"x A is Blackwell;

4) X"x S is Blackwell;

5) X is analytically S -dense of order 2n in S.

Proof. The implications 1=>2 and 3=>4 follow from the fact that 4 is a measu-
rableimage of S, and that S is isomorphicto a Borel subset of 4. The implication 2=>3
is obvious, 4=>5 is Proposition 4, whilst S=1 is Proposition 3. B

§ 3. Existence theorems. In this section, we make use of the continuum hypo-
thesis (CH) to prove the existence of #-Lusin sets with and without Blackwell
properties. Later, through the use of Proposition 5 (regarding the existence of
#-Lusin sets of any prescribed density) we shall demonstrate the existence of sets
Y § such that X"x S is strong Blackwell, but X"**x S is not Blackwell

Levma 7 (CH). Let S be a continuous ¢ -ideal in %(S). Let n be a positive integer
and suppose that o is a collection of subsets of S" such that

1) no set in o is F-reticulate;

2) for each A in of and N in 5, the set AN(N, ..., N is a member of .
Suppose thar Y < S is such that Y" intersects cvery set in . Then there is an S -Lusin
X < Y with the same property. { .

Proof. Well-order the members of & and of # in transfinite series
Ay Ay As ... Ag... and NoN{ N, ... N,..., & <. Select points yO, .., ¥ in ¥ with
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© (0)
) ;ﬁ.)..,),, ?eA0\<N0,...,N0). For each o, put M,=U{Ny; <o}y
u{y”: 1<i<n and B<«} and choose points y, ..., @ in ¥ with

OO, e VY e ANM,, ., M

Properties of o/ ensure the kpossibility of such selections. Define
X={p 1<ignand a<s,}.
This set has the desired properties. M .

N PI.{OPOSITION 5 (CH). Let # be a continuous o-ideal in #B(S) and let n be a po-
sitive integer. Suppose that Y =S has one of the following properties:
1) Yx Y intersects every S-thread in SxS; e
2) Yx Y intersects every J-graph in SxS;
3) Y is S-dense of order n in S;
4) Y is analytically S -dense of order n in S.
Then there is an F-Lusin set X< Y with the same property.

Indication. This is a simple application of Lemma 7: let . be either the col-

lection of #-threads, .#-graphs, or Borel or analytic subsets of S" which are not
# -reticulate.

ProPOSITION 6 (CH). Let S be a continuous o-ideal in B(S). Then there is
an S-Lusin subset X of S with the strong Blackwell property.

Proof. From Proposition 5 with ¥ = §, we find an #-Lusin set X which is
#-dense of order 2 in S. The result follows from Propositions 1 and 2. W

) PROPOSITIO}\AI 7 (CH). Let S be a continuous ¢-ideal in B(S) satisfying restric-
tion (R). There is an S -Lusin subset X of S which is dense but lacks the Blackwell
property. . :

) Proof. Since the g-ideal # is continuous, there are disjoint sets B, and B
in Z(S)\F. Restriction (R) implies that B; x B, contains a thread G. There ar:
sets C; and C, in Z(S)\# so that G is the graph of a Borel-isomorphism g of C
onto C,. Define f: S—S by the rule ‘ - '

g(s), seCy,
=497, s5eC,
s, seS\N(CLuCy).

Note that g(s) # s for any s in C; and that f = f~*.

Let ByB; B, ... B, ...(a<c) be a listing in transfinite series of all members of
Z(S)NS and let Ny Ny N, ... N, ... (¢ <c) be a similar listing of #. For each coun-
table ordinal &, put M, = | {Ny: f<a}.

Choose x, from B,\M, and for each « < c select x, from

BAMU{f Gt f<a))-
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Put X = {x,: a<c}. Then X is _Lusin and dense in S. But X x X does not inter-
sect G, so that from Proposition 1, condition (7) fails for X. Proposition 2 shows
that X lacks the Blackwell property. B

§ 4. Borel-density. Let  be the o-ideal of all countable subsets of the uncoun-
table standard space S. Then £ is continuous, and the #-Lusin sets are precisely
the uncountable subsets of S. The notions of #-reticulate sets, #-thread, and
#-density for this s-ideal coincide with those of “reticulate set”, “thread”, and
“Borel-density” as used in [17], [18], and [19].

Levma 8. The o-ideal S is uniformisable.

Indication. This follows from results in [5], as well as an argument in
Sarbadhikari’s note [15].

The following was obtained in [18]. It is now seen to be a consequerce of our
general theory, in particular the corollary to Proposition 2.

PROPOSITION 8. Let X be a subsct of an uncountable Polish space S such that
SN\X is totally imperfect. Then the following are equivalent:

1) X is Blackwell; :

2) X is strongly Blackwell;

3) X is F-dense (“Borel-dense” in [17]) of order 2.

COROLLARY. If X is a Blackwell subset of S with totally imperfect complement,
then any Y such that X< Y < S is strongly Blackwell.

§ 5. Uniformisable sets. Let X be a fixed uncountable subset of S. Define J(X)
to be the o-ideal consisting of all B in #(S) with Bn X countable. Then £ (X) is
continuous, and X is #(X)-dense of order 1 in S.

Levma 9. Suppose that X is S(X)-dense of order 2 in S. Then the sets R in
B(SxS) which are not S (X)-reticulate are precisely those for which Rn(XxX)
is not contained in u countcble union of horizontal and vertical sections.

Proof. Clearly, any R with this property is not S (X’ )-reticulate. Conversely,
if R (X x X) is contained in a countable union of sections, then by removing these
sections from R, we obtain a Borel set R, disjoint from X'x X. Second-order density
implies that R, is .#(X)-reticulate. So also is R. ]

PROPOSITION 9. Let A be an anzlytic subset of S. Then A is F(A)-dense of

order 2 in S.

Proof. Let R be a member of #(SxS) disjoint from Ax.4. Then
R, = Rn(Sx4) is an analytic set whose projection onto the first factor is disjoint
from 4. Lusin’s first separation principle implies that there is some N, € 2(S) such
that N; n4 = @and R, = (N; x§) Now R, = R\(N; x5) is a member of #(Sx S)
whose projection onto the second factor does mot meet 4. Thus there is some
N, e #(S) such that Ny n 4 = & and R, =(Sx N). Then N = N{UN,eJ(A),
and Rc(NxS)Uu(SxN). B

ProOPOSITION 10. If A is analytic, then the o-ideal F(A) is uniformisable.
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Proof. Suppose that R is a member of #(Sx.S) not J(4)-reticulate. From
Proposition 9 and Lemma 9, we know that Rn (4 x 4) is not contained in a coun-
table union of sections. It follows from [5; Theorem 4.4] or [15] that Rn (4 x A)
f:ontains an uncountable standard set T each of whose horizontal and vertical sections
is at most a singleton. See also the discussion in [19]. Thus T'is an # (4)-thread. B

If X is any uncountable subset of S, then certainly X is an #(X)-Lusin set.
However, there may be a great many other #(X)-Lusin sets essentially larger than X.

Levma 10. Lot A be an analytic subset of S. Then the 5 (A)-Lusin sets are those
uncountable subsets Y of S whose iersection wiil each constituent of the co-cnalytic
set S\NA is countable.

Proof. If X'is an £ (4)- Lusin set, and C is a constituent of S\ 4, then C e .# (4),
so that X'n C is countable. On the other hand, suppose X intersects each constituent
of S\4 in a countable set. Given N in #(4), we know that Nn A is countable, so
that N\ 4 is Borel and contained in a countable union of constituents (boundedness
theorem). This forces XN N to be countable. M

PRrROPOSITION 11. Let A be an analytic subset of S and suppose that Y is a set
whose intersection with each constituent of S\A is countable. Then AU Y is strongly
Blackwell.

Remark. Jakub Jasinski has recently [7] used Martin’s Axiom to obtain a partial
converse to this result.

Proof. From Proposition 9, the sets 4 and 4u Y are S (4)-dense of order 2.
Lemma 10 says that 4 U Y is & (4)-Lusin. The result now follows from the corollary
to Proposition 2. #

‘ The following result has been obtained independently by Jasifiski [7]. It follows
easily from the theory developed here, and we include it for the sake of completeness.

PROPOSITION 12. Let X be an uncountable Blackwell (resp. strongly Blackwell)
sublsl';zt of S. If Y is an £ (X)-Lusin set, then XU Y is Blackwell (resp. strongly Black-
well).

Proof. Clearly, XU Y is #(X)-Lusin and .#(X)-dense in S. If X is Blackwell
(resp. strongly Blackwell), then from Proposition 2, X and X'u ¥ satisfy condition (J),
(resp. condition (J+)). Another application of Proposition 2 does the job. B

Say that a subset X of an uncountable standard space S is a wniformisable set
if S (X) is uniformisable. We have shown that every analytic set is uniformisable. Thus,
the notion of uniformisable space generalizes and properly contains that of analytic
space. To see this, note that if S\X is totally imperfect (X" is Borel-dense), then
JF(X) is the o-ideal of countable subsets of S. So from Lemma 8, X is uniformisable.

PROPOSITION 13. Let X be a subset of S which is Blackwell, but not strongly
Blackwell. Then X not a uniformisable set.

Proof. As mentioned, X is certainly an .# (X)-Lusin set # (X)-dense of order 1.
The result is immediate from Propositions .1 and 2. B
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Blackwell spaces without the strong Blackwell property have been constructed
under the axioms CH aiid MA + not -CH. We shall give another construction (CH)
is section 6. The sitnation in ZFC is still not known. See [4] and the discussion in [1].

§ 6. Sierpinski sets. Throughout this section we let m denote a continuous pro-
bability on the Borel structure #(S). Also, £ = #(m) will be the ¢-ideal of all
m-null sets in #(S). Then £ is continuous, and the # -Lusin subsets of § are the
classical Sierpifiski sets [2]. A subset X of S is #-dense if and only if m*(X) = 1.

We shall prove that # satisfies restriction (R) but is not uniformisable. Addi-
tionally, # will be used to construct a continuous ¢-ideal violating restriction (R).
To facilitate discussion, it becomes convenient to introduce the following set function,
defined on ‘subsets ‘R of $xS:

R = inf{mA+mB: R (AxS)U(SxB); A, BeB(S)}.

Then p is a Carathéodory outer measure with very few u-measurable sets.

LeMMa 11. 4 set ReSxS is S-reticulate if and only if uR =0,

Proof. One direction (only if) is obvious. To prove the converse, suppose that
uR = 0. Choose sets 4, and B, in #(S) with Rc (4,xS)u(SxB,) and m(4,)+
+m(B,) <27 Put A = limsup4, and B = limsupB,. Then R (4 xS)U(SxB),
and from the Borel-Cantelli Lemma, md4 = mB = 0. So R is reticulate. B

PROPOSITION 14. Suppose that (S x S)\R is a countable union of Borel rectangles
(e.g. if S is metric and R is closed). Then pR > ¢ if and only if there is a measure v
on B(SxS) bath of whose. marginals equal m such that pR > e.

Proof. This is essentially a result of Strassen [21], discussed and extended for
the measurable setting in. [16]. B

LEMMA 12. The g-ideal S satisfies restriction (R).

Proof. Suppose that B, and B, are sets in #(S) with m(B,)in(B,) positive:
Then there are sets C; = B, and C, < B, in #(S) with m(Cy) = m(C,).>0. Alsol
there is a Borel-isomorphism f of C; onto C, preserving m-measure: for all Bores
B C,, one has mf (B) = m(B). The graph of fis a thread inside B; x B,. B

LemMA 13. The -o-ideal #(m) is not uniformisable.

Proof. Let f be a Borel-isomorphism of S onto Sx.S mapping m onto the
product measure m@®@m. Let p: Sx.S—S be projection onto the first co-ordinate
and define g: S—S to be the composition g = p of. Then G = graph(g) is non-
reticulate in S'x .S but contains no threads.

To see. this, suppose that G < (N, X SYU(Sx Ny) with m(N;) = m(N,) = 0.
Then SeN,ugT' (W), but. mg ' (M) = mf TpTH(N) = (m@m)pTI(I,)
= m(N,) = 0, a contradiction. So G is not reticulate.

On the other hand, suppose that T is a thread in G. Then T is the graph of the
restriction of g to some C in #(S). On C, the function g is one-one. So f(C) is
a subset of SxS each of whose vertical sections is at most singleton. So
m(C) = (m@m)f(C) = 0, a contradiction. B
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Let # be an arbitrary o-~ideal in £(S). Say that a subset R of S x Sis (#, #)-reti-
culate if R can be covered by a set of the form (V; x.§) U(S x N,) with m(N;) = 0
and N, e £. .

LeMMA 14. 4 subset R of Sx S is not (£, §)-reticulate if and only if there is
some &> 0 such that for all B in #(S) with m(B) = 1—e¢, the set Rn(Bx.S) is not
(£, F)-reticulate. .

Proof. One direction (if) is obvious. To prove the converse, we suppose that for
each n, there is some B, in Z(S) with m(B,) > 1—27" such that Rn(B,xS) is
(£, F)-reticulate. Thus there are sets N, and M, with Rn(B,xS) <V, xS)u
u(SxM,) and m(N,) = 0 and M, e #. Put 4, = S\B, and note that

Re((4,uN)xS)u(SxM,).

Define 4 = limsup(4,UN,) and M = {JM,. Then Rc(AxS)u(Sx M) and
one has M € # and, by the Borel~Cantelli lemma, m1(4) = 0. Thus Ris (£, #)-reti-
culate. M

ExAMPLE. Not every continuous o-ideal satisfies restriction (R).

Construction. Realize S as the union of the intervals I; = [0, 1] and
I, = [2, 3] as a compact metric space under the usual structure, Define a o-ideal 4"
in 4(S) to be the collection of all Borel sets of the form N; U N,, where N, is a sub-
set of I; of Lebesgue measure m(N;) = 0 and N, is a subset of I, of first Baire
category.

We shall prove that I, x I, contains no 4 -threads. Suppose for the sake of
contradiction that T were such a thread. Then 7 is the graph of some Borel-iso-
morphismf. Let & be as specified in Lemma 14 for the set T"any apply Lusin’s Theorem
to produce a compact K < I, with m(K)>1—¢ and such that f is continuous on K
(in fact, a homeomorphism). Now from Lemma 14, Trn (K x I,) is a thread; it is the
graph of the restriction of £ to K, which function we call g.

The set K decomposes into a union K = NUF, where m(N) = 0 and F is of
first category in K. Since g is a homeomorphism, g (F) is of first category in g(K)
and hence also in J,. Thus Tr (Kx I,) = graph(g) = (N x §)U(S x g(F)) is A -reti-
culate. This gives the desired contradiction.

Jasiniski [7] has, under the assumption of CH, constructed a Sierpifiski set X;
such that if X, > X, is another Sierpifiski set, then automatically X, is strong
Blackwell. In his example, m*(X;) = 1. We shall see that such behavior is actually
typical.

PROPOSITION 15 (CH). There are Sierpiriski subsets of S with the strong Blackwell
property.

Proof. Apply Proposition 6. B

ProposiTION 16 (CH). There are Sierpifiski subseis of S without the Blaclkwell
property.

Proof. Apply Proposition 7 and Lemma 12. B
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Remark. Jasitiski shows [7] without CH that if there is a Sierpifski set, then
there is some Sierpifiski set without the Blackwell property.

PROPOSITION 17. Suppose that X, and X, are S (m)-Lusin sets (“m-Sierpiriski
sets™) with X; < X, and m*(X,) = m*(X,). :

1) If X, is Blackwell, then X, is Blackwell;

2) If X, is strongly Blackwell, then X, is strongly Blackwell.

Proof. Choose B> X, with Be #(S) and m(B) = m*(X,). We know that
m*(X;)> 0, so that n = m/m(B) is a continuous probability on the standard space
(B, #(B)). Since X, is #(n)-dense in B, Proposition 2 will apply to prove the re-
sults. &

However, for the o-ideal 4 = .#(m), the conditions in Proposition | are not
equivalent. The nonuniformisability of .# exerts great influence in the following.

PROPOSITION 18 (CH). Let m be « continuous probability on a stundard space S.
Then S contains an S (m)-Lusin set X which is Blackwell, but not strongly Blackwell.

Proof. Any two standard, continuous probability spaces (Sy, m,), (S5, 71,) are
isomorphic, so it suffices to work with a particular instance of such a space. Put
S=[0,1{x]0, 1| under the usual Borel structure. Put 4; = {0}%]0, 1[ and
Ay = 8\d4,; =10, 1[x]0, 1[. Define a Borel probability m on S as follows:

1) on subsets of 4, m agrees with one half the usual linear Lebesgue measure;

2) on subsets of 4,, m agrees with one half the usual planar area measure.
We define functions f and g on S as follows:

a) f(x,y) =¥;

b) g(x,¥) = y+sga(x).

Let % and & be the o-algebras on $ generated by f and g, respectively. Clearly ¢ < 9.

We claim that % is & (m)-proper in &. To see this, suppose that N is a null
set for m. Then f (4, " N) is a linear null set in ]0, 1], and from Fubini’'s Theorem,
almost all horizontal sections of 4, N N have linear measure zero. It follows that
there is some y in ]0, 1[ such, that

D ©,»eN;

2) (x,y)e N for some x> 0.

The points (0, y) and (x, y) are not separated by %, but are separated by &.
Thus ¥(N°) # 9(N), and € is proper in &.

It follows that the set T(%, @) is not J(m)-reticulate. A pair (s, ¢) belongs
to T(%, ) if and only if s and ¢ are members of the same horizontal v-section
of S, and one of the two points is of the form (0, ). Thus for any three points S5 S3, 83
in S, some pair (s;,s;) does not belong to T'(%, 2).

List in transfinite series &,&; ... &, ... a <8, all c.g. sub-g-algebras of #(S)
proper in #(S). List also as Ny Ny ... N, ... <¥, all m-null members of B(S).
We shall choose points s, and £, in S vig transfinite induction.

Assume that points s, #; have been chosen for § < «. Remove a Borel subset
of S that is the union of the horizontal sections [0, 1[x {f (s5)} and [0, 1[ x { f (t)}
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all B <o) as well as the union NyUN; U .
zero. Denote what remains of S by R.

Since &, s proper, we know that &,(R) is not separated. We choose points s, Z,
from R not separated by &, but which are such, that the pair (s,, 7,) does not belong;
to T(%, 2). We show presently that such a choice is possible:

1) If &,(R) contains an atom with at least three elements, then as mentioned
above, two of these elements form a pair (s, t) not in 7T(%, 9). Put s, = s and
fy=1

2) In this case, we assume that all §,(R)-atoms are of cardinality <2 and
suppose that if {5, ¢} is any &,(R)-atom, then (s, t) € T(%, &). Let W be the union
of all &,(R)-atoms of cardinality two (it follows from [6; p. 119] that W is analytic).
Then A = Wn 4, is an analytic subset of 0, 1[x 0, 1[, each of whose horizontal
sections is either singleton or empty. Thus there is a Borel set B> 4 such, that

m(B) = 0. But since &, is proper in &%, we know that &,(R\B) s #(R\B). This is.
the desired contradiction.

.. UN,. This Borel set has m-measure

Having defined the points s,, 7, for each a<,, put X = {s,, 7, a <w;}.
Then X is a Sierpiniski subset of S satisfying condition (J) but for which condition
(J+) fails at (¥, 2).

Lemmas 4 and 12 imply that m*(X) = 1. It follows from Proposition 2 that X’
is Blackwell, but not strongly Blackwell. B

The space constructed in Proposition 18 yields an answer to an unsolved problem
of D. Ramachandran: P930 in [14].

COROLLARY (CH). There is a probabilizy space (X, #(X), P) whosz Borel struc-
ture % (X) is Blackwell, but for which the notions of Kolmogoroff-and Steinhaus-
independence are not equivclen:.

Remark. In [14] it is shown that the two definitions of independence are equi-
valent whenever Z(X) is strongly Blackwell.

Proof. Let X be the space constructed in the proof of Proposition 18 and put
P = m*, Let h and f be projection onto the first and second factor as functions
defined on X. Then % and f are Steinhaus-independent random variables, meaning’
that

B(h) = {h~(4): A Borel},
B(f)={(/"'(4): 4 Borel}
are P-independent o-algebras. This follows from the fact that m is a product measure

on § and from the equation m*(BnX) = m(B) for B in %(S).
However, 4 and f are not Kolmogoroff-independent, meaning that

(k) = [k~ 1(4): 4 linear set, h™"(4) e Z(X)},
A (f) = {f 1(4): A linear set, f™'(4) € Z(X)}

are not P-independent. To see this, put 4 = f(X'n Ay). Then A4 is a linear set_vlvith
f71(d) = XnA, a member of o/(f). Now FHA4) = h~X0) and PfTH(A)
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= Ph™*(0) = 1/2. This event is not independent of itself, so &/ (h) and &/ (f) are
not independent. B

§ 7. Products of Sierpinski sets. This section takes up the matter of when certain
products of Sierpinski sets have the Blackwell property. In order to apply the tech-
niques of Section 2, we begin by showing that for the g-ideal # = (i), the notions
of ‘analytic and simple .#-density coincide.

Let m be a Borel probability measure on a compact metric space S. Let L(S)
be the set of all Borel functions from § to the interval [0, 1]. For each n> 1, we
define a set function ¢, on subsets of the product §”. For any R < S”, define

W(R) = inf{ [ hydm+..+ [ hydm: hy, ..., ke L(S) and Ig(sy, ..., 8,)
< hy(s) +..+h(s,), all s5,€8}.

Here, 1, is the indicator (characteristic) function of the set R. Hans Kellerer has
considered this set function in his paper on the marginal problem [8]. (See 1.3 and 1.8
therein for an equivalent definition). }

Lemma 15, Let m, S, and v, be as described above.

1) The set function ¢, is a regular (Choquet) capacity on S*.

2) A subsct R of S" is S (m)-reticulate if and only if 1,(R) = 0.

Indications. Part 1 follows from 1.28 and 1.30 in [8]. Part 2 is established
in [8] as part (b) in the proof of 1.15.

LeMMA 16. Let m be a Borel probability on a standard space S. For each n>1,
a subset X of S is anclytically S -dense of order n if and only if X is  -dense of order n.

Proof. One direction (only if) is immediate. For the other, we note that on
analytic set 4 = S” is not # (m)-reticulate if and only if there is some Borel Bc 4
which is not #(im)-reticulate. This follows from Lemma 15 and the capacity theorem
of Choquet. (If S is topologized as a compact metric space, then B may be chosen
compact.) B

PROPOSITION 19. Let-m be a Borel probability on a standard space and let X
be an m-Sierpiniski subset of S with m*(X) = 1. Let A be an uncountable analytic
subset of S. The following are equivalent:

1) X*x S is strongly Blackwell;

2) X"x A is strongly Blackwell;

3) X"x A is Blackwell,

4) X"x S is Blackwell;

5) X is F(m)-dense of order 2n in S.

Indication. This re-expresses the corollary to Proposition 4, taking Lemma 16
into account.

The next set of results show that not all Sierpiniski sets are created equal: some
are “larger” than others. The larger ones enjoy more Blackwell properties.

PrOPOSITION 20. Let m be a continuous Borel probability on a standard space S.
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For eachn = 1,2, ..., there is a subset ¥ of S such that Y is #(m)-dense of order n,
but not order n+1 in S. - .

Proof. We take S to be the interval J0, 1] under its usual Borel structure. Let
1+ f2» +.. be the Borel automorphisms of S defined by £i(s) = s*. Let # be the c-ideal
of all countable subsets of S. The proof of Proposition 13 in [17] establishes the
existence of a Y < § such that

1) Y is #-dense of order n in S;

2) Y does not meet the subset

G = {(Sls cees Sy Sn+1): fl(sl) = e =f;t(sn) =fn+1(sn+1)} Of Sgrtt,

Property 1 implies that Y is also .#(m)-dense of order n. It remains only to note
that G is not £ (m)-reticulate in S"**. B

COROLLARY 1 (CH). Let m be a continuous Borel probability on a standard space S.
Foreachn = 1,2, ..., there is an m- Sierpifiski subset X of S such that X is & (m)-dense
fof order n, but not order n+1 in S.

Proof. Let ¥ be as in Proposition 20 and apply Proposition 5. Note that if ¥
is not dense of order n+1, then neither is any X< ¥ H

COROLLARY 2 (CH) Let m be a continuous probability on a standzrd space S.
For each n =1, 2, ..., there is an m-Sierpiriski subset X of S such that

1) X" xS is strongly Blackwell;

2) X**'x 8 is not Blackwell.

Proof. This follows from the preceeding corollary, combined with Propo-
sition 19: take § to be & (m)-dense of order 2n, but not of any higher order. M

§ 8. Selection theorems for m-threads and m-graphs. This section is devoted
to establishing converses to parts B and C of Proposition 1 for the o-ideal S (m).
This will yield a complete characterization of Sierpiniski sets with Blackwell pro-
perties and will facilitate a discussion of the combinatorial behavior of these sets.

Let m be a Borel probability on a compact metric space (S, d). Let o (S)
denote space of all compact subsets of S under the exponential topology of Hausdor{l
and Vietoris [9; p. 160]. The space (S is compact and is metrized by the Hausdorff
metric [9; p. 214]. Let C(S) denote the space of all continuous functions from S to
itself as a complete separable metric space under the uniform (Supremum) norm.
Finally, let 22(S) be the space of all Borel probabilities on S. This space,.under
the weak topology induced by continuous real functions on S, is compact metric [12].

Lemma 17. The real function (K, v)—v(K) is measurable (in fact, upper semi-
continmuous) on A (S)x 2(S). )

Proof. Given & 0 we prove that {(K,v): v(K)> &} is a closed set. Suppose
that (K,, v,)—(K,v) as n—oo with v,(K;) >¢ for each n. Fix 6 >0 and put

K® = {x: d(x,u)< 5 for some u in K}
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as the closed 8-neighbourhood of K. Choose n large so that X, = K° and so that
V(K®) = v, (KD —0 = v,(K,)—6 = e—0. Letting 6—0 gives v(K) > e H

Let f be a continuous real function on S. Let m(p, *) be a Markov transition
kernel (disintegration) indexed by p in f(S) such that:

1) For each p in f(S), the set function B—m(p, B) is a Borel probability on S;

2) For each B in #(S), the real function p—m(p, B) is Borel measurable on
AN

3) For each B in #(S), one may write

m(B) = f(IS)rn(p, Bydf (m)(p) ;
4) For each p in f(S), one has m(p,f *(p)) = L
For the existence of such kernels, see [13].
Lemma 18. The mapping p—m(p, ) is measurable from f(S) into P(S).

Proof. This follows immediately from the fact that the Borel structure on £(S)
is generated by the evaluation functionals v—v(B) for B ranging over #(S). B

LemMA 19. The mapping p—f~*(p) is Borel mecsurcble from f(S) to A (S).
Proof. See [9; p. 165]. M

Lemma 20. The set {(K,L): K<L} is closed in A4 (S)x A (S).

Proof. See [9; p. 167]. &

Lemma 21. The mapping (K, L)—KxL is continuous from A (S)x A (S) to
H(SxS). .

Proof. This follows from Remark 1 on p. 49 of [10] combined with the relation
lim(K,xL,) = (imK,)x (imL,) in [9; p. 339]. &
Lemma 22. Let R be an F, (¢-compact) subset of SxS. Then the set
o = {p: R is not m(p, *)-reticulate}

is @ Borel subset of f(S).
Proof. Write R as the union of compact sets R; UR, U ... = R. Then we see that
oA = !1 {p: R, is not m(p, -)-reticulate}

so it suffices to work with a particular compact R,. From Lemma 11 it follows that R,
is m(p, -)-reticulate if and only if R} contains rectangles with arbitrarily large sides
for m(p, -). For each k=1, define the following subset of f(S)x # (S):

&y ={(p,L): LxL< R; and m(p, L) > 1~ 1k} .

Fen.nna 17, 18 and 21 imply that each &, is Borel. Let P(&,) be the (analytic) pro-
jection of &) to f(S). Then we may write

{p: R, is m(p, -)-reticulate}
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as
N P(Zy).
k=1

We have shown that the set & is co-analytic.

Proposition 14 and Lemma 11 say that R, is not m(p, -)-reticulate if and only
if there is some probability v on Sx .S with marginals v, = v, = m(p, -) such that
¥(R,)> 0. Thus we define the following subset of f(S)x 2(5x S):

2 = {(p,v): v{ = v, = m(p,-) and v(R,)>0}.

Lemma 17 and 18 combined with the fact that the operations v—v; and v—v,
are continuous show that % is a Borel set. Now {p: R, is not m(p, -)-reticulate}
is the projection of &# to f(S). Thus, & is an analytic set.

The set o is both co-analytic and analytic, and therefore Borel. ®

Define a subset Ty of Sx S by
, To = {(s,1): [{9) =S ()} -
Then T, is compact.

PROPOSITION 21. For any o-compact (F,) subset R of Ty, the following conditions
are equivalent:

1) R is m-reticulate;

2) f(m) {p: R is not m(p, -)-reticulate} = 0.

Proof. Suppose that R is m-reticulate, so that Rce (NxS)U(SxN) with
m(N) = 0. Then

f{fs) m(p, N)df (m)(p) = m(N) =0,

so that for p outside some Borel subset M of f (S) with f(m)(M) = 0, one has
m(p, N) = 0. For such p, clearly R is m(p, -)-reticulate. Condition 2 follows.

Now assume that Condition 2 holds. Put Q = {p: Ris m(p, -)-reticulate}.
We know that f (m)(Q) = 1. Fix ¢> 0. For eachp in O, there is a compact K < f(p)
with Xx K< R and m(p, K)=1—¢

Consider now the subset of @ x J#'(S) defined by

v = {(p,K): Kef Yp), KxKc R, m(p, K) = 1—eg}.

Then from Lemmas 17-21 it follows that ¥ is a Borel subset of @ x #°(S), and so
has a continuous selector on most of Q: by the Jankov-von Neumann Theorem,
there is a continuous mapping p—K(p) defined on 2 compact subset C of Q such
that )

Hm(Cyzl-¢

2) for each p in C, the pair (p, K(p)) belongs to ¥

The range of the mapping p—K(p) is compact, and so therefore is the union
of all sets in its range, i.e.

L= U K(p).

peC
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Also,
m(L) =f(};) m(p, LYdf (m)(p) > Cj m(p, Lydf (m)(p) ,

and since K(p) =L, one has m(p, L) = m(p, K(p)) > 1—¢&. Therefore
mLy=(1—e)(1—¢).

Now we claim that LxL < R° Suppose there is some point (x,y) in (LxL)nR,
Then, (x,)) e Ty, so that f(x) =f(y). Now there are points p, ¢ in C with
xeK(pp)=f p) and yeK(g)=f"'(q). This means that p =g¢g. So (x,y) e
e(K(p)xK(p))mR, a contradiction from the definition of 7",

We have shown that for each &> 0, there is a Borel set L with m(L) = (1 —¢)*
and such, that Lx L < R°. It follows that R is m-reticulate (Lemma 11).

We shall require the following technical

LeMMA 23. Let f: K; — K, be a continuous mapping between compact metric spaces
(K, d,) and (K,, dy). Then f is one-one if and only if there is some countable dense
subset R of K, and a sequence of positive numbers & €, &, ... such that the following
condition holds:

(¥) whenever r and s are members of R with di(r,s)=1n (n=1,2,..), then

G(f (). f($))> &,

Remark. The proof shows that if f is one-one, then (x) holds for R = K,.

Proof. Suppose that f is indeed one-one on K. Then the inverse function
g = f~*! is uniformly continuous from f(K,) onto K;. Thus for each n 3> 1 there
is some positive &, such that d,(u, v) < ¢, implies d;(g (4), g(v)) < I/n for all u, v in
f(Ky). Rephrased, this means that whenever d,(x,y)>1/n, then also
&(f(x),f () > ¢, for all x, y in K.

Suppose that f, R, and &, satisfy («x) and suppose for the sake of contradiction
that there are points x # y in K with f(x) = f(»). There is some n> 1 such that
dy(x, y) > 1/n. Also, there is some & > 0 such that d, (x, ) < & implies dp( £ (x), £ (1))
<¢,/2 for all u in K, and such that d,(y, v) <6 implies d(f(»),f (v)) <eg,/2 for
all v in X;. Choose points r and s in R such that

1) di(x,r)<é,

2) di(y, 5) <,

3) dy(r, s)>1/n.

Then
(0, F D) <A Y. f W) +da(f (), 1 () < 85

a contradiction. M

We now are in a position to prove our first major selection theorem. The in-
sistence on 0-dimensionality in the following result is for purely technical reasons
(it enables one to extend continuous functions), and will not appear in the final
product, which deals with the measurable case.
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PROPOSITION 22, Let m be a Borel probability on a 0-dimensional compact
metric space S. Suppose that f is a continitous real function on S generating the sub-
o-algebra € of B(S). Suppose that € is S (m)-proper in (S). Then there is a homeo-
morphism g between compact subsets of S whose graph K satisfies:

1) Ke{(s,0): f(&) =f(@t) and 5 # t} = T(%, B).

2) K is a thread (not m-reticulate).

Proof. We shall define four analytic subsets of;, &7,, &3, &£, of f(S)x
% o (S xS). Then a selection theorem will be applied to their intersection much as.
in the proof of Proposition 21.

Define the set &/; by the rule

oy = {(p, K): Kef' o) f~Up)} -
Lemmas 19, 20, and 21 show that o/, is closed. Likewise define
o, = {(p,K): Knd =03},

where 4 is the diagonal in SxS. The set &, is open. ‘
Define o7 to be the collection of all (p, K) such that K is not m(p, -)-reticulate.
To see that &, is analytic, we define a subset &, of f(S)x A (SxS)x P(SxS) by

&, = {(p,K,: v(K)>0 and v; = v, = m(p, )},

where v, and v, are the univariate marginals of v. Then & is Borel gnd from Pro-
position 11 we see that &5 is the projection of &, to f(S)x A (SxS). )

The definition of &7, takes a few steps. When they are complete, &/, wﬂl. be
defined as the collection of all (p, K) such that X is the graph of a homeomorphism.
between compact subsets of S.

Consider the subset &, of A (S)xS* consisting of all (L, 51, 52, 535 ) suc'h
that §;8,53... is a sequence of points drawn from L which is dense in L. Then E; is
a G, set, since it may be written as the intersection of

N &, 51, 82,53, )" s,eL},
n=1
which is closed, with
A : =Quw L, 51,82, .): € U],
nDl (L, 8¢5 525 ) UL } kgl {(L, 51,52

where U, U,... is a fixed countable open base for the topology of. S. .
Define 2 subset E, of %(S)x A (S)xS%x R*)® to be the intersection of
the sets
{(f, Ly 51, 8250005 E15 625007 0505 s)<lfn or d(f(s),f (D)) > &a}
as n, i, j range over all positive integers. Then &, is a G, set, as is &4, the intersection
of &5 with C(S)x&,x(RY)™.
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Define &5 to be the (analytic) projection of &, to C(S)x A (S). Then from
Lemma 23, &, consists of all pairs (f, L), where fis a continuous function from §
to § which is one-one on the compact set L.

Consider the mapping from C(S)x(S) to A (SxS) sending (f,L) to
Graph (f)n(Lx S). Following [9; p. 180] and [10; p. 70], as well as [3; p. 72], we
see that the intersection operation (K, L)—KnL is measurable. From [9; p. 223],
the same may be said of the operation f— Graph(f). Thus the map in question is
measurable. Define £ to be the image of &5 under this map; clearly, &4 is an analy-
tic set.

Finally, we may define &, to be the product /' (S) x 6. As promised, &', consists
of all pairs (p, K), where K is the graph of some one-one continuous function
{bomeomorphism) defined on a compact subset S.

We have tacitly assumed that every such function may be extended continuously
to all of S. Since S is 0-dimensional, this is guaranteed [9; p. 281]. Define « to be
the intersection &f = o, Nl N 3N A .

Consider now the set 7" defined by

{60 f®
For each p in f(S), define the “cell” T(p) as
T(p) = {(s.1): f(5) =f(2) =p and s # 1}

Since ' = Z(f) is proper in B(S), the set T is not m-reticulate. Now T is a o-com-
pact (open) subset of

T=T%, %) = =F(t) and s # 1} .

Ty = {s, 1): f(s) =f ()},
.so that Proposition 21 applies with R = T Put

0 = {p: Tis not m(p, -)-reticulate} .

Then

1) m(Q)>0;

2) for each p in Q, the set T(p) is not m(p, -)-reticulate.

We shall now demonstrate that for each p in O, there is some K in # (§x.S)
such that (p, K)e «. So fix pe Q.

Case 1. The measure m(p, *) is purely discrete. We see that m(p, -} cannot be
a Dirac mass concentrated at a single point x in f~(p), since T(p) is not m(p, *)-re-
ticulate. So there must be two points x, and x, inf~!(p) with m(p, x,) and m(p, x,)
positive. Then put K = {(x,, x,)}.

Clearly, (p, K) belongs to &, since

D Kef~1(py<f"(p);

2) Knd = @,

3) K is not m(p, +)-reticulate;

4) Kis the graph of a one-one continuous function between compact (singleton)
subsets of S.

icm°®
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Case 2. The measure m(p, -) is not discrete, so there exists some Borel set
Acf ~!(p) with m(p, 4)>0 and on which m (p,*) is continuous. Let z denote
the measure m(p, ) restricted to subsets of 4. By the usual isomorphism tricks,
there is a Borel-isomorphism k of 4 onto a real interval J taking » to Lebesgue
measure k(n) on J. Then (s, £)—(k(s), k(1)) takes Ax A isomorphically onto Jx.J
and sends (AxA)n4 to the diagonal 4, of JxJ.

Now (JxJ)\4, contains the graph of a Borel automorphism % of J onto itself
which preserves the linear measure k(n). Then the composition g = k™o fok
is an avtomorphism of 4 onto itself preserving the measure n such that graph(y)
< (4 x A)\A. By Lusin’s theorem, there is a compact L < 4 with n(L) > 0 on which g
is continuous (a homeomorphism).

Define X to be the graph of the restriction of ¢ to the set L. Then (p, K) belongs
to &, since

D Kef(p)yxf~(p);

2) Knd =@;

3) K is not m(p, -)-reticulate;

4) K is the graph of a one-one continuous mapping between compact sub-
sets of S.

Remark. The above reasoning shows that Q
measure}.

= {p: m(p,-) is not a point

We have established that for each p in Q, there is some K in #°(Sx S) with
(p, K) e /. An application of the Jankov-von Neumann selection theorem, com-
bined with Lusin’s theorem produces a continuous selector for & over most of Q:
there is a continuous mapping p—K(p) defined on a compact subset C of Q such
that
) m(C)>0;
2) for each p in C, the pair (p, K(p)) belongs to .
The range of the mapping p— K(p) is compact, and so therefore is the union
of all sets in that range, i.e.
U K(p).
peC
Now for p € C, the set X(p) is not m(p, -)-reticulate. By Proposition 21, it follows
that K is not m-reticulate. Clearly, K is the graph of a one-one function. Since X is
compact, this function is a homeomorphism g. Lastly, we note that K< 7. B

The measurable case casily reduces to the continuous one described in Prop-
osition 22.

PROPOSITION 23. Let m be « Borel probability on a standard space S. Suppose
that f is a measurable real function on S generating the sub-c-algebra €. of #(S).
Suppose that € is proper in B(S). Then there is a thread K contained in T(%, .@)
={(s,1): f(s) =f(1) and s # t}. :

3 = Yundamenia Mathematicae 127.1
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Proof. We assume that § has been metrized as a 0-dimensional compact metric
space. The condition that & be proper in 2 (S) is equivalent to the statement that
T = T(%, &) is not reticulate, From Lemma 11, there is some ¢ >0 such that for
any B in #(S) with m(B) > 1—s, the set (BxB)nT is not reticulate.

Keeping ¢ as specified and applying Lusin’s theorem to f, we obtain a compact
So < S such that

1) m(Sp) = 1—e;

2) f is continuous on S,.

Then define a probability m, on S, by the rule

m(BnSo)

mo(B) = m(B|S,) = m(Sq)
[}

Let f, be the restriction of f to S;. Then Proposition 22 may be applied to my, Sp,
and f,, noting that % (Sp) is mo-proper in % (S,) and that if a set K = .S, x S, is not
mq-reticulate, then R is certainly not m-reticulate. 8

The techniques we have developed enable us to prove the following selection
theorem. The argument is similar to the one for Proposition 22, with a couple of
subtle differences. These differences turn out to mark the distinction between the
Blackwell and strong Blackwell properties for Sierpifski sets.

PROPOSITION 24. Let m be a Borel probability on a 0-dimensional compact
metric space S. Suppose that f and g are continuous real functions on S generating
sub-c-algebras € < @ in B(S) with € m-proper in 2.

- Then there is a contimious mapping k between compact subsets of S whose graph K
satisfies:

D Ke{(s,1): f(s) =1(@) and g(s) # g(0)} = T(¥, D);

2) K is not m-reticulate (K is an S (m)-graph).

Proof. Let m(p, ) be a transition kernel indexed by p in f(S) just as above.
Note that % proper in & means that T(%, 9) is not m-reticulate.

Following the proof of Proposition 22, we define four analytic subsets
oAy, Aoy Ay, A, of F(S)xH(SxS). The set of; is defined as

o = {(p, K): Kef (p)=f(p)} -
Let' D be the closed set
D = {(s,1): g(s) = g (1)}
and define
o, ={(p,K): KnD =@} .
Then &, ‘is closed, and &, is open.
Let o5 be the collection of all (p, K) such that X is not m(p, -)-reticulate.

Lastly, &7, is defined as the collection of ail (p, K) such that X is the graph of a con-
tinnous mapping between compact subsets of S. As in the proof of Proposition 22,

Generalized Lusin sets with the Blackwell property 35

the sets o5 and ., are analytic. The set .« is defined to be the intersection
A =d N, Aynsd .
For each p in f(S), define the “cell” T(p) as

T(p) = {(s,): f(5) = f(t) = p and g(s) # g(2)} .
Applying Lemma 22 to T(¥, 2), we produce the Borel set
Q = {p: T(%, ) is not m(p, -)-reticulate}
with the properties

1) m(Q)>0; S

2) for each p € @, the set T(p) is not m(p, -)-reticulate.

We now demonstrate that for each p in Q, there is some K in #(Sx.S) with
(p,K)esA. So fix pe Q.

Fact. The measure m(p, *) cannot be entirely concentrated on a single Z-atom
g~X(q). Were it so, then g *(g) x g ~*(g) = (S x S)\T(p) would contradict property 2
supra.

Case 1. There is some point y in f~*(p) with m(p, y) > 0. Define g = g(3)
and let Z be a compact subset of £~ 1(p)\g~*(g) with m(p, L) >0. (We have used
the Fact.) Put K = Lx{y}. Then (p, K) e o.

Case 2. The measure m(p, ") is continuous. Define g, to be the restriction
of g to the set f~!(p). Let n be the image of the measure m(p, -) under the map g,.
By the Fact, 7 is not a simple point mass. Thus there is some linear Borel set 4 with
O<nd<1. Put B=g5'(d) and B' = f '(p)\B. Then m(p, Bym(p, G')>0, so
that Bx B is a Borel subset of T(p) containing a compact £ (m(p, +))-thread K,
as desired.

Remark. It is instructive to carry out the decomposition of (¥, ) into the
sets T(p) as well as the corresponding disintegration of m for the example constructed
in Proposition 18. The essential difference between conditions (J) and (J+) then
becomes quite vivid.

" We have established that for each p in Q, there is some K in # (SxS) with
(p, K) € /. An application of the Jankov-von Neumann selection theorem, combi-
ned with Lusin's theorem, produces a continuous selector for & over most of O:
there is a continuous mapping p— K(p) defined on a compact subset C of Q such that

1) m(C)>0;

2) for each p in C, the pair (p, K(p)) belongs to .

The range of the mapping p—K(p) is compact, and so therefore is the union
of all sets in its range, i.e. )

K="U K().

peC
Now for p € C, the set K(p) is not m(p, -)-reticulate. By Proposition 21, it follows
that K is not m-reticulate. Clearly, K is the graph of some function k. Since K is
compact, k is continuous. Finally, we note that K< T(‘f, 2). B .
»
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As before, we pass to the measurable case. The proof of the following theorem is
entirely analogous to that of Proposition 23.

PROPOSITION 25, Let m be a Borel probability on a standard space S. Suppose
that f and g cre measyrable rec! functions on S generating the sub-c-algebras € < @
in B(S) with € m-p"rbpelr in 9. Then there is an F (m)-graph K contained in

T(%, %) = {(s,1): () =f (1) and g(s) # g (1)} -

It is now possible to obtain a complete characterization of Sierpinski sets with
Blackwell and strong Blackwell properties.

PROPOSITION 26. Let m:be a Borel probability on a standard space S. Suppose
that X is S (m)-Lusin in.S. with m*(X) = 1. Then the following are equivalent:

1) X is a Blackwell set;

2) X satisfies condition (J);

3) Xx X meets every S (m)- tlzrez/a’ in §xS.
Also, the following are equivalent:

4) X is strongly Blackwell;

5) X satisfies condition (J+);

6) X x X meets every S (m)-graph in SxS.

Proof. The equivalences 1<-2 and 4<5 follow from Proposition 1. The
implications 2<-3 @nd 5«6 follow from Proposition 2. Lastly, the implications
3<>2'and 6<>5 are easily deduced from Propositions 23 and 25, respectively.

§ 9. Direct sums of Sierpifiski sets. Suppose X is a subset of the standard space S
and that .7 is a o-ideal in Z(S). Let N be an arbitrary, nonvoid, countable set
(finite or infinite). If N is given the discrete Borel structure, then X'x N is a direct
ynion of copies of X contained in the standard : space Sx N. Define a o-ideal £ in
F(SxN) to be the collection of all countable unions of sets of the form M x {n},
where M e and ne N,

Levma 24. If X is F-dense in S, then Xx N is #-dense in Sx N. If X is an
F-Lusin set, lhen XXN isa §- Lusm set in SxN.

Proof. Ilmnedxate I
i,. PROPOSITION 27, Let m be a Bor rl probability on a standard space S and suppose
that X {5 an m-Sierpiiski subset of S.

1) If X is Blackwell, then so is SxN.

2) If X is strong Blackwell, then so is Sx N.

Proof. Without loss of generality, one may assume that m*(X) =
lish 2) then indicate the (similar) proof of 1).

Let d be any probability on N with d(n) >0 for each # in N. Put m’' = m®d
on’ Sx N. Then'thetsJidéal # discussed above consists of the null sets for m'.
Lemma 24 implits that X'XN'is an m'-Sierpinski sét. From Proposition 1, Xx X
meets every £ -(m)-gFaph'in Sx S. It is easily seen that (X'x N)x (X x N) intersects

1

1. We estab-
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every m'-graph in (S><N)><(S><N) Proposition 26 implies that X' x N is strong
Blackwell.
The same proof applies to Condition 1, with “graph”' replaced by “thread”. M
A forthcoming paper by the first author will contain a proof that whenever X
is a Blackwell space, then so too is X x N. The situation for strong Blackwell spaces
is still unresolved.

§ 10. A conjecture abeut m-graphs. The precéeding analysis has not answered
the question of whether X' xS is Blackwell whenever X is a strong Blackwell Sier-
piniski set. However, it will be shown that this matter reduces to a conjecture about
measurable selections, one that is of some independent interest.

Specifically, we have not been able to decide the following statements:

Hyroruesis (G). Let m be a continuous Borel probability on a standard space S.
If a set B in B(S?) is not S (m)-reticulate in S*, then B contains.an & (m)-graph.

Hyroruesis (G'). Let m be a continuous Borel probability on a standard space S.
If Y is & subset of S such that Y x Y mcets every # (m)-graph, then Y is J# (m)-dense
of order 2.

PROPOSITION 28. Hypothesis (G) implies hy potheszs (G’) Under CH, the con-
verse is also true.

Proof. The first sentence is obvious. Assuming CH, we prove that if hypothe-
sis (G) fails, then so does hypothesis (G"). Suppose that B e #(S?) is not S (m)-re-
ticulate and contains no £ (m)- graphs. From Lemma 3, (m @ m)(B) = 0. By Fubini’s
Theorem, we may assume that for each se S, the sections

B, = {teS: (s,t)e B},
= {teS: (t,5)e B}
are of m-measure zero. (We may remove the other sections and preserve the charactcr
of B.) We also assume that B is symmetric about the line y = x. (We may replace B
with its symmetrization BuB', where B! = {(z,5): (s,2)€B}.)

Well-order the collection of all £ (mi)-graphs as GoG; G, ... Goory d <8y,
and choose points ¥, y¥, a<x,, according to the -following scheme:
D, ¥y e G,\B; for each a, define Z, to be the set of all s& S-such that either
(s, J‘“")eB of (5,y%)eB. Put ¥, = {Z;: B<a«} and note that m(Y,) =0
In general, we select (3, ¥&) e GNBU(Y,, V) )

Put ¥ = {p{, ¥ a<n,}. The set Yx Y meets each of the # ()~ graphs Gy,
but (¥x Y)n B is void,

The importance of hypothesis (G) for the present analyms lles in the following
equivalence. It provides a partial answer to problem (P8) m [1] at least for Sier-
piniski- sets. :

PROPOSITION 29. Let S be an unco: mt('ble standard spdce and consider the follzm-
ing statements: ) o

1) Hypothesrs (G); P R
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2) Suppose m is a continuous probability on B(S) and that X < S is an m-Siep-
piniski set. If X is strongly Blackwell, then so also is X x S.
Statement 1 implies statement 2. Under CH, they are equivalent.

Proof. 1=>2. Assume that X' S is a strongly Blackwell m-Sierpiiiski set.
It is no loss of generality to assume that m*(X) = 1. By Proposition 2, X x X inter-
sects every 4 (m)-graph in S x S. Hypothesis (G) implies hypothesis (G), so that X
is # (m)-dense of order 2. Proposition 1 then implies that X x S is strongly Blackwell.

2=>(CH). Suppose hypothesis (G) fails. Then by Proposition 28, so does hypo-
thesis (G'). Thus there is some Y < S such that Y'x ¥ meets every % (m)-graph
and such that Y is not.# (m)-dense of order 2. From Proposition. 5, we see that there
is an m- Sierpiniski set X< Y with the same properties. Then X is strongly Blackwell,
but X'x S is not a Blackwell space (Proposition 19). B

Hypothesis (G) seems to be related to the analysis of the so-called “doubly sto-
chastic measures” (vide [11]). Not-(G) implies that there is an extreme doubly-
stochastic measure not concentrated on any countable union of measurable graphs.
An example of such a measure is known to exist [11], so this implication yields nothing
new, and its proof (using the Choquet-Bishop-de Leeuw theorem on integral re-
presentations) is therefore omitted. It may be taken as very mild evidence that (G)
is false.
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