On locally nonexpausive mappings and local isometries
by

Aleksander Calka (Wroclaw)

Abstract, The orbit structure of some locally nonexpansive mappings is studied. Some decom-
position theorems are obtained. Several implications of these results are then considered, specifically
to obtain conditions on a space under which local isometries are isometries. Finally, some connec-
tions of the results with a problem of A.D. Aleksandrov are discussed.

1. Introductien. Let f be a mapping of a metric space (M, ) into a metric space
(N, 6). Then f is said to be a locally nonexpansive mapping (resp. a local isometry)
provided that for each z e M there exists a number &> 0 such that

¢y a(f (), fO)) < elx.)
(resp.
@ . o(f (), f()) = o(x. )

for all x,ye Kz, &) = {pe M: g(z,p) < ¢}. If the number & does not depend
fn ze M, then f is called g-locally nonexpansive (resp. an g-local isometry). If for
overy bounded subset 4 of M there exists a number g, > 0 such that the restriction
e |4 is an gy-locally nonexpansive mapping (resp. an g,-local isometry), then f is
called uniformly locally nonexpansive (resp. a uniform local isometry), We observe
that a nonexpansive- mapping (resp. an isometry) can be regarded as an oo-locally
nonexpansive mapping (resp. an co-local isometry).

Now let f be a mapping of M into itself. A point x & A = M is said to belong to
the f~closure of 4, x € A7, if there exists a sequence of integers {#;}i2o, 0 <n; <my4,
fori=0,1,.., so that { f*(x)}{2, converges to x. Note that this definition is more
restrictive than Edelstein’s definition given in |8]. However, these definitions, in the
case of s-locally nonexpansive mappings, are equivalent (see [8, Proposmon 1]
and also Remark 4 bélow).

In this paper we are concerned with the following questions:

A. Under what conditions on a metric space (M, @) is the restriction of every
locally nonexpansive (resp. uniformly locally nonexpansive; g-locally nomexpansive)
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mapping f: M— M to the f-closure of M, M?, a local isometry (resp. an uniform local
isometry; an g-local isometry)?

B. Under what conditions on a metric space (M, @) is every local isometry (resp.
uniform local isometry; e-local isometry) f1 M— M an isometry?

Question A is motivated by a result of Edelstein (see [8, Theorem 1]) which
states that if fis an z-locally nonexpansive mapping of a metric space (M, g) into
itself, then for every point x &€ M7 the restriction of f to the set {f"(x)}:%, is an
g-local isometry. Question B has been investigated by Busemann [2]-[3], Kirk [9]-[11]
and Szenthe [13]-[15] in the special case where (M, o) is a G-space and fis an open
and surjective local isometry, and by the author in the case where fis a local isometry
and (M, @) is compact [4], or finitely compact [5], and in the case where fis an e-local
isometry and (M, p) is totally bounded [6].

In § 2 of this paper we give some notation and preliminary remarks. In § 3 we
give some examples of locally nonexpansive mappings and local isometries. In § 4 we
collect the necessary information concerning uniformly locally nonexpansive
mappings.

In § 5, starting from a description of the set MY for uniformly locally nonex-
pansive mappings of finitely totally bounded metric spaces (i.e. such spaces that
every bounded subset is totally bounded) into themselves (Proposition (5.3)), we
give an answer to question A (Corollaries (5.6), (5.7) and Theorems (5.9), (5.12)).
We observe that part (a) of Theorem (5.9) extends Theorem (5.6) of [7] and enables
us to answer, in more generality than was asked for, a question posed by Kirk in [11].

§ 6 contains some decomposition theorems for uniform local isometries and
g-local isometries of finitely totally bounded metric spaces into themselves (Theo-
rems (6.6), (6.9) and Corollaries (6.7), (6.8) and (6.10)).

Applications of the results of §§ 4, 5 and 6 to obtain an answer to question B are
given in § 7 (Theorems (7.7)~(7.12)). These results extend considerably the results
of [4], [5] and [6] as well as the results of [9], [10] and [11]. We conclude (§ 8) with
some related questions and some remarks concerning a problem of A. D. Aleksandrov
(see [12]).

Throughout the paper, cl will be used to denote closure; the completion of a me-
tric space (M, @) will be denoted by (M, ¢) and M will be considered as a subset

of M. If 4, B are nonempty subsets of M, then g(4, B) = inf{g(x,y): xe 4, ¢ B}
and

diam,(4) = sup{e(x,): x,ye 4},
Kd,r)={xeM: o(4,x)<r},

If f'is a mapping of M into itself, then f© = idy, f**! = fof" foreachn =0, 1, ...
The set of real numbers will be denoted by R, and [x,y] = {te R: x<t<y}, for
all x,yeR, x<y.

for each r>0.

2. Basic concepts and preliminary remarks. The following definitions and remarks
will be needed.
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(2.1) NotaTiON. Let f be a mapping of a metric space (M, g) into itself. Then
for every A = M,

(a) 47, the f-closure of A, will be {x € A: x € wi(x)}, where
W) = () A{F): izn)
nz0

(b) B(A) = {xe A: diam,({/"()}izo) <00} ;
(c) the function g,(x,») = sup o(f"(x),/"(»)) defined for all x, pe 4 will be
nz0

called the induced metric on A. _

(2.2) Remark. Let f be a mapping of a metric space (M, g) into itself. Then

(@ 47 = An M’ and b (4) = Anb/(M) for Ac M,

() if 4= M is invariant (i.e., f(4) = A), then the sets b'(4) and A\B'(4)
are also invariant,

(0) if A M is invariant and if f is continuous, then the.f-closure of 4, 47, is
also invariant and f(47) is a dense subset of 47,

(d) in general the induced metric ¢, may have “infinite values” (hence it is not
a metric in the usual sense); however,

os(x, )< oo for all x,yeb (M).

(2.3) DEFINITION. A metric space (M, g) is said to be finitely totally bounded
(resp. finitely compact) if each bounded (resp. bounded and closed) subset of M is
totally bounded (resp. compact).

(2.4) Remark. A metric space (M, g) is finitely totally bounded if and only
if (M, @) is finitely compact. A mapping f of a finitely totally bounded metric space
(M, o) into a metric space (N, o) is uniformly locally nonexpansive (resp. an uniform
local isometry) if and only if f can be extended to a locally nonexpansive mapping
(resp. a local isometry) of (M, g) into (N, &).

(2.5) DEFNITION. Let g;, 1 = 0,1, be metrices on a set M and let 4= M.
We will say that g, and o, are locally identical (resp. ¢-locally identical) on A if the
identity mapping, id,, is a local isometry (resp. an £-local isometry) of (4, ¢;) into
(4,0 for all i,7=0,1.

(2.6) Remark. Let g;, i = 0, 1, be metrices on a set M. If g, and g, are locally
identical, then they are topologically equivalent. If g, and g, are locally identical
(resp. &-locally identical) and g, > oo and if (M, g,) is finitely compact (resp. finitely
totally bounded), then (3, g,) is also finitely compact (resp. finitely totally bounded).

(2.7) Remark. Let f be a mapping of a metric space (M, ¢) into itself and
let A=M be such that g(x,y)<oco for all x,ye 4. Then, for every integer
n=0,1,..., the induced metric ¢, is a metric on the set f"(4) such that

@ ez .

(b) the restriction of f to f"(d) is a nonexpansive mapping of (f"(d), g;) into
(f"H ), e0)s
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(c) if f1is an sflocaily nonexpansive mapping, then g ; and @ are e-locally
identical on f"(4);

(d) for each x'& 4, diam, ({/*(x)}iLo) = diam,({ F5(x)}0).

(2.8) DerFINITION. Let (M, ) be a metric space and let ¢>0bea given number,
Then

(2) given a family 4,, t € T, of subsets of M, we will say that the sets A, teT,
are g-separated if for-all t,se T the conditions 4, # @ # 4, and 4, # A, imply
that o(4,, 4,) = ¢;

(b) a finite sequence of points zy, 2, , ..., 5, of M is said to be an &-chain from x
foyif zg=x, z;= y and o(z;, z;4,) <& for all i = 0, ..., k—1. For every xe M,
the set

Cx) = {y'e M: there is an e-chain from x to ¥}

will be called the.s-component at x. The space (M, ¢) is said to be e-chainable if
C,(x) = M for every xe M.

(c) the space (M, ) is said to be &-comvex if it is s-chainable and if, for all
X,y €M, the number

k-1
() 0,(x,3) = inf_}% 0z zre1)

i=
(where the infimum is taken over all possible ¢-chains zy, z;, ..., 7, from x to y)

is equal to g(x,y). '

(2.9) Remark. Let (M, @) be a metric space and let ¢>0 be a given number.
Then

(a) for every x e M, the e-component at x, C,(x), is an open, closed and
¢-chainable subspace of M containing the point x; moreover, Cx), x e M, is a de-
composition of M into e-separated sets,

(b) for every xe M, the function ¢, defined by () is a metric on C,(x) such
that (i) o, > ¢, (i) ¢, and ¢ are ¢/2-locally identical (hence topologically equivalent),
and (iii) the space (Cc(x), 0,) is e-convex.

Recall that a metric space (M, @) is convex (in the sense of Menger) provided
that for each two distinct points x, y € M there exists a point ze M, z % x, y, such
that ¢(x, ») = o(x, z)+.g(z, ¥). A relation between the convexity and the &-con-
vexity of the space is given by

(2.10) Remark. Let (M, @) be a metric space.

(a) If (M, @) is convex, then (M, @) is &-convex for every &> 0.

_ gb) If (M, @) is finitely totally bounded and &-convex for every &> 0, then
(M, g) is convex.

Proof. Assume that (M, g) is convex and let &> 0 be given. Let x,yeM,
x#y It follgws by a theorem of Menger (cf. [1, p- 41]), that there exists a metric
segment L = M whose end-points are x and y, i. e., a subset isometric with an interval
of length g(x, y). Thus there exists an s-chain 205 Z15 oes 2, 6 L from x to y such
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k-1
that g(x,3) = 3. 0(z;, z;+1). For every i= 1, ..., k—1, we can choose a sequence
i=0
of points z{, n = 0,1, ..., of M with limz] = z;. Hence
n- oo
-
0,(x,y) = lim

1 k-1 oo
e(@, 2y = Z é(zh Ziv1) = 0(x. ),
n—+w i=0 . i=0
which shows that (M, @) is e-convex. Since &>0 was chosen arbitrary, this
proves (a).
In order to prove (b), let us assume that (A, g) is finitely totally bounded and
s-convex for every £>0. Let x,ye M, x # y. It is easy to see that there exists

- 1 1
a sequence of points x,, n = 1,2, ..., of M such that o(x, x,) < ig(x,y)+ 5 and

- 1 — =y e
a(x,, M) < %g(x, »)+ - Since (M, ) is finitely compact (cf. Remark 2.4), we can
N n ,

assume that the sequence x,, n=1,2,..., converges to a point ze M. Thus
a(x, 2) = g(z,y) = }o(x, y), which shows that (M, g).is convex. This completes
the proof.

3. Some examples. The examples of this section will be discussed further in
the later sections. ) )

First we give an example of a uniformly locally nonexpansive mapping f of
a finitely totally bounded metric space (M, @) into itself for which the restriction
of f to M7 is not a uniform local isometry.

(3.1) ExameLe. Foreveryn = 1,2,...,andi = 0,1, ..., n, letn] >0be a num-
ber such that x5 = 0 and

and 7y <Ay

Let, in the euclidean plane,
My={x{:n=1,2,..,i=0,1,..,n}, and
M, ={x:i=0,1,..},

1 .
where x7 = (— —ny, i) and x; = (0, 1).
n

Let M = M, u M, with the euclidean metric g. Then define a mapping
1 M—M by
X} ifi<n
SN it+1 3
Sy = {x{‘) ifi=n
and f (x;) = x;4,. It is easy to verify that (a) (M, ) is finitely compact, (b) f is a lo-
cally nonexpansive mapping (hence, by Remark 2.4, it is uniformly locally non-
expansive), and if #} = O forn=1,2,...,i =0, 1, ..., n, then f'is a local isometry,
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while if 77 <nlyy forn=1,2,..,i=0,1,..,n, then the restriction of f to M,
is not a uniform local isometry, and (¢) MY = b/(M) = M,.

The following is an example of a local isometry f of a connected finitely compact
metric space (M, g) into itself, for which 5/(3f) is a connected and dense subset of M,
and b/(M) # M.

(3.2) ExaMeLE. Let Mo ={xl:n=1,2,.., i=0,1,..,2"—1},

x?:(l,i) and let M; = {(0,7): >0} and M, ={(1,7): 0<r<1}. Let
n

A= M,u M, U M, and let g* denote the euclidean metric on A.
Let @, = @*(xp,x3") for n=1,2,.. For each n=1,2,.. and
i=0,1,...,2"" —1, consider the interval 4] of length «,, identified with the set

where

A= {(t,n,0): 0<t<a,},

and define the distance function on A} by |x;—x,| = |t;—1,|, for x; = (¢, n,i),
x, = (t,,n, )€ 4].
Define M to be the space obtained by taking the disjoint sum

w anil-g
4o U U 4

n=1 i=1
and then identifying (0, n,7) with
X3 fo<gig2'-1,
X A 2Kig2"M -1,

and (a,, n, #) with x}** for eachn = 1,2, ..., and i = 0, 1,..., 2" —1 (see Fig. 1).
Let f: M— M be defined by

(t,n,8"G)) if x = (¢,n,i)ed],
FG) =100,t+1) ifx=(0,1)eM,,
(1,1-1) if'x=(1,1)eM,,

where 5°() = i+1 for i<2"*1—1 and s"(2"*1—1) = 0.

Observe that'f (x]) = X for m=1,2,..,i=0,1,...,2"—1, and thus the
restriction /| 4 is a local isometry with respect to the metric g¢* (cf. Example (3.1)).

Now, using the metric p* on A and the distance functions on the sets A7, we
proceed to define an extension g of the metric * to M, satisfying both of the following
conditions:

(a) f is a’local isometry -of (M, g) into itself,

(b) (M, @) is a finitely compact metric space.

Let b,, n=1,2, ..., be a sequence of integers such that b, > 2 and a,/b,—0
as n—»o0 (for example, such a sequence is b, = n-2"), For each n = 1,2, ...,
I=0,1,.,2" ' ~land k =1,...,b,~1, let

a” .
Dk = (k-b—",n,z>
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and
i fogig2"~1,

- o
i 1i+k-— i rgigomti—1.

n

Note that pf e 4} and gj,e M.

4
- X15 !

- 3
i Ats

M
1 n X'?
i x
A4
x% 1
x3
N
' x3 x2
01 X i i y
(0} x| x¢ x3 x3
A3 AZ Ay

Fig. 1
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Let Q be the sum of Ax 4 and all 4} x 4} and all pairs (x, y), where x = p,
and y =giy, or x =g and y = pj,, forn=1,2,...,i=0,1,...,2"" 1 and
k=1,..,b,~1. Then define a function « on Q by

0*(x,y) if x,yed,

o =l ifx,yedy,
alx, 1) = 1 if x=p},and y =g}, or
n if x = g7y and y = pi.

The desired extension ¢ of ¢* to M may thus be defined as follows:

k-1
Q(X, ¥ = inf{_zoa(zi: Zi+1) >

where the infimum is taken over all possible finite chains of poinits z,, z, ...
of M such that zy = x, z, = y and (z;,2;4,)e Q for each i =0, ..., k—1.

It can easily be verified that ¢ is an extension of the metric o* to M and that f
maps the set

» Tk

M\ U (Azn,.l 19 A2u+1_1)

a=1
isometrically into M. Since the metric g is locally identical with the distance functions

. -~ s . a

on each of 47, we infer that ¢ satisfies condition (a). Since b—"—>0 as n— o0, each
n

bounded sequence of points of (M, ¢) has a convergent subsequence, i.e., g satisfies

condition (b). It can also be easily scen that 5/(M) = MY = MM, (and, moreover,
M/ is the set of all periodic points of /') and that it is a path-connected, dense and
open subset of M. Hence ¢ satisfies also the following condition: :
(c) /(M) = M is a connected, dense and open subset of M, and b'(M) # M.
The following example shows that there exists a local isometry f of a finitely
compact metric space (37, ¢) into itself for which MI\b'(M) 5 @.
(3.3) ExaMPLE. Let C, be the Cantor set:

©

1.
C0={?§§: t, =0 or 2}.

A

i=1

For each n = 1,2, ... let

X
C, = {Zrl—l- ?:1-_;:—1: xe CO} .
Let M = (J C, with absolute value distance .
n=0

If 4 is a nonempty and bounded subset of the real line R and if B= {x+a:xe 4},
then the (unique) translation of 4 onto B.will be denoted by T(4, B). Consider the
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following subsets of the real line R:

2 1
Co=Con i) 3'—‘,”1 ,

)

CO

1
G, n [2n,2n.+ -3;}

C: = CII\CI? E

for n=1,2,... Then we define a mapping f: M—M by: fle = T(Cy, Cy)..
fleg = T(Cy, C3) and flet = T(Cy, Cos)-

The following facts may easily be verified: (2) (M, @) is finitely compact, (b) fis-
a local isometry, and (c) 0e M/\b/(M.

Next we give an example of a local isometry f of a finitely compact metric
space (M, o) into itself for which MY # | {w,(x): xe M} (cf. (&) of (2.1)).

- (3.4) ExampLE, Let (M, ), C,, C?, C! for n =1,2,..., and let T be as in.
Example (3.3). For every n = 1,2, ..., let

1
o = an[l‘ﬁ,ljl.

Define a mapping f: M—M by: flg, = T(Co, C1), [l = T(C7, Do)
and flcy‘x = T(th > Cn+1)'

It is easy to see that (a) (M, ) is finitely compact, (b) f is a local isometry,.
and (c) 1 e w(0) (i.e., a subsequence of {f"(0)},~o converges to 1) while w (1) = &
(i.e., no subsequence of {f"(1)};%, is convergent).

4. Preliminary results en unifoxmly Jocally nonexpansive mappings. Let us prove:
the following

- (4.1) PROPOSITION. Let f be a uniformly locally nonexpansive mapping of a metric
space (M, o) into itself. Then

() the set b(M) is open,

(b) the induccd metric g, is a metric on the set b (M) such that o ,.and g are
locally identical on b'(M) and the restriction of f to b'(M) is a nonexpansive mapping
with respect 10 o, )

(c) there exist a scquence A,, n = 0,1, ..., of bounded and open scts such that:

(3) f(4,) = A, for evary n = 0,1, ...,

(4) A, < A,q for every n =0,1, ..., and

(5) U 4, = b/(a1).

n=0

First let us note the following
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(4.2) LEMMA. Let f be a uniformly locally nonexpansive mapping of a metric space
«(M, ) into itself. Then for every bounded subset A of M there exists a number >0
such that o(f(x),7(3)) < alx,y) for each ze A and all x,p € Kz, ¢)-

Proof. For a fixed number »> 0 there is an ¢ >0 such that the restriction
of f 1o Ky(d,r) = {yeM: o(y, ) <r} is an ¢-locally nonexpansive mapping.
Hence the number ¢ = min{r, &} is the required one.

Proof of Proposition (4.1). Let z be a given point of bI(M). Let & = &,/2,
“where s, is a number defined by Lemma (4.2) for the bounded set {f"2): n=0}
-and let

V. = K({f"(@): n>0}, ¢).

“Then V, is a bounded neighbourhood of z such that f (V,) = ¥, . Moreover, ¥, = b (M)
and fy, is an s-locally nonexpansive mapping of ¥ into itself. It follows by (d) of
Remark (2.2) and (c) of Remark (2.7) that ¢, and ¢ are g-locally identical on V.
We have thus proved (a) and (b) (cf. (b) of Remark (2.7)).

To prove (¢) assume that b7(M) # @ and fix a point z, of b'(M). Let
A = {f"zo): n=0}. Then, for every i =0,1,..., we define

A= {xeb/(M): o;(x, A) <i+1}.

‘Since f(4) = 4 and f is nonexpansive with respect to g, the sets 4;, i = 0,1, ...,
-satisfy condition (3) and, clearly, conditions (4) and (5). In order to finish the proof,
it remains to show that for every i = 0, 1, ..., the set 4; is bounded and open. By (d)
«of Remark (2.7),

diam,(4,) < diam, (4,) < diamg () +2(i+1) = diam,(4)+2(i+1) <oo,

i.e., 4; is bounded. Since /(M) is open and g, and ¢ are topologically equivalent
on b'(M) (cf. Remark (2.6)), the set A4, is open, which completes the proof.
Remark. Example (3.1) shows it is not generally true that the set b/(M) is
closed as well as that the identity mapping of 4/(M) is a uniform local isometry of
(7)), @) into (B(M), oy).
We now consider the case of £-locally nonexpansive mappings.

4.3) PROPOSITION. Let f be an e-locally nonexpansive mapping of a metric space
(M, @) into itself. Then

(@) M = bI(M) UM\ (M)] is a decomposition of M into invariant and
&-separated sets; the indiced metric oy is a metric on bI(M) such that g, and ¢ are
g-locally identical on b’ (M) and the restriction of f to b (M) is a nonexpansive mapping
with respect to gy,

(b) for every xe M, f(Cx)) = C(f (%)) and the induced metric o, is a metric
-on C(x) such that g, and @ are g-locally identical on C,(x) and the restriction of f o
C,(x) is a nonexpansive mapping of (Ci(%), o) into (C(f(x), ;).
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Proof. (a) In view of (b) of Remark (2.2) and (b), (¢) of Remark (2.7) and (2) of
Remark (2.9), it suffices to show that b/(M) is the union of its e-components. Let
xeb(M) and y € C,(x). Then there is an e-chain z, 2y, ..., 2, from x to y. Let

k-1

d=7Y o(z;, z;4+1). Since, for each i = 0,1, ..., f*is also g-locally nonexpansive,
i=0

k-1
(£ ('@ n= ) <e(FONS @) < T olF@). S 0)<d,
i=

ie., 1) e B {f"(x): n0},d). Since {f*(x): n>0} is bounded, this shows that
the sequence {f"())}2, is also bounded, i.e., y e b(M).

(b) Let ye Cy{x) and let z,, z,, ..., z, be an g-chain from x to y. Since f is
g-locally nonexpansive, f(zo), f(z1),....f (z) is an e-chain from f(x) to f(3),
whence f(¥) € C,(f(x)). For every n =0, 1, ..., we have

g(f"(x),f"(y)) gk;v_,lQ(f"(zi):f"(Ziﬂ)) <d,

where d = Z 0(zy, Zie1)- Therefore f(Cy(x))= C(f (%) and gy(x,y)<d <o,

which, in V1ew of (b) and (c) of Remark (2.7), completes the proof.
In the sequel we will need the following lemmas.

(4.4) LeMMA. Let f be a mapping of a metric space (M, @) into a metric space
(N, o). If one of the following conditions holds:

(@) f is an e-locally nonexpansive mapping and (M, @) is e-convex,

(b) f is an uniformly locally nonexpansive mapping and (M, @) is &-convex for
each ¢>0.

(©) f is a locally nonexpansive mapping and (M, ) is convex and complete,
then f is also a (globally) nonexpansive mapping.

Proof. Assume that (a) holds. Then for all x,ye M,

k-1 13

© olx,n) = mfz o= Z144) >mfz o(f=d,f Ge)) 2o (f (). 1 (D),

where the infimum is taken over all possible g-chains zg, zy, ..., 7 from x to y.

Assume that (b) holds. Let x, y € M and let d = o(x, y). Then there is a number
&> 0 such that the restriction of f to K,(x,d+1) is an e-locally nonexpansive
mapping. Since (M, g) is &-convex, it follows that the inequalites in (6) hold with the
infimum taken over all possible &-chains zy, zy, ..., z € Ky(x, d+1) from x to y.

Assume that (c) holds. Let x,ye M. Then, by a theorem of Menger
(cf. [1, p. 41)), there exists a metric segment L = M whose extremities are x and y.
Since L is compact, there is an >0 such that f|; is an g-locally nonexpansive
mapping. Since L is e-convex (cf. the proof of Remark (2.10)), it follows from (a)
above that |, is nonexpansive. Hence, ¢(f(x),f (1)) < a(x, )), which completes
the proof.
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(4.5) LemMA. Let f be a mapping of a metric space (M, o) into itself. If one of the
following conditions holds:

(2) f is nonexpansive, ‘

(b) f is e-locally nonexpansive and (M, o) is &-chainable,

() f is uniformly locally nonexpansive and (M, g) is e-convex for each &> 0,

(d) f is locally nonexpansive and (M, @) is convex and complete,
then either bY(M) = @ or b/(M) = M.

Proof. Assume that /(M) s @. If f is nonexpansive, then for a fixed point x
of (M) we have

e(f' ), (/") n> o) <e(f',fx) <e(r. %),
i.e., f1()eR({f"(x): n=0}, o(y, %)) for every ye M and all i =.0, 1,... Since
{f"(x): n=>0} is bounded, this shows that 5"(M) = M.
It follows from (a) of Proposition (4.3) and (b) and (c) of Lemma (4.4) that

each of the conditions (b), (c) and (d) together with /(M) # @ implies that
b(M) = M. This completes the proof.

(4.6) LemMa. Let f be a mapping of a metric space (M, @) into itself. If one of

the following conditions holds:

(a) f is e-locally nonexpansive,

(b) fis uniformly locally nonexpansive and b*(M) = M,
then the f-closure of M, MY, is a closed subset of M and -

Q] M7 = {wix): xe M}.

Proof. Assume that (a) holds. Given a sequence of points x,e M/, n =0, 1, ...,
such that limx, = x and a number &> 0, there exist integers n, m >0 with

e, x)<tn and g(x,, ")) <in,

where 7 = min{é, ¢}. Hence,

o(x, M) <olx, X} 0 (%0, ) + 0 (706, S7(0))
<in+inteo(x,, x)<n<s.

This shows that xe M7, Therefore M7 is closed. Relation (7) is an immediate
consequence. of [8, Proposition 1] and our definitions (cf. (2.1)).

Assume that (b) holds. Let x,, n = 0,1,.. be a sequence of points of M7 so
that limx, = x. By (c) of Proposition (4.1), there. exists a bounded and invariant
neighbourhood ¥ of x. Thus, for some &> 0, the restriction fly is an e-locally
nonexpansive mapping of ¥ into itself. From the above it follows that x € ¥/ < M7,
Hence M7 is closed. In order to prove (7), it suffices to show that, for each x e M,
ws(x) = M7. Let x be a given point of M and let A = cl{ f'(x): n20}. Thus 4 is
bounded and invariant and x € 4. Hence there is an & > 0 such that f |4 7s an e-locally
nonexpansive mapping of A4 into itself and it follows from the above that we(x)
< .4/ M7, This completes the proof.
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Remark. It follows from Lemma (4.6) that for every uniformly locally nonex-
pansive mapping / of a metric space (M, @) into itself we have

BODY = U {r): xed (O}

Remark. Examples (3.1) and (3.4) show that the assumption (M) =M
cannot be omitted in (b) of Lemma (4.6) even if M is finitely compact.

5. Locally nonexpansive mappings of finitely totally bounded metric spaces. Inthis
section we shall give an answer to question A of the Introduction. For this reason
we investigate the following related question: If f is « uniformly locally nonexpansive
(resp. an e-locally nonexpansive) mapping of a finitely totally bounded metric space
(M, o) into itself and if some subsequence of { f"(x)};%0, x € M, is bounded, is then
the sequence { f"(x)}io bounded?

Example (3.3) yields a negative answer to the above question for uniformly
locally nonexpansive mappings. However, the answer to this question will be yes
for e-locally nonexpansive mappings.

We make the following

(5.1) DerFmNITION. Let £ be a mapping of a metric space (M, @) into itself. Then
for every A<= M, we will denote :

(@) w(4d) = U {B=A: diamy(B) <o and f(B) is a dense subset of B},

(b) b{(A) = {xeA: {f"()}™, has a bounded subsequence}.

(5.2) Remark. Let f be a mapping of a metric space (M, @) into itself and let
Ac M. Then

(a) w(d) =b/(4) = bl(4) and AT < bi(4),

(b) f(w(4)’) is a dense subset of w(4),

(c) if f(4) = 4, then F(b(A4)) = bi(4),

(d) if f(A)= A4 and if f is continuous, then [B'(4)] =w(4).

We prove the following

(5.3) PROPOSITION. Let f be a uniformly locally nonexpansive mapping of a fi-
nitely totally bounded metric space (M, g) into itself. Then

@ w) = pI(M)Y,

(b) f maps w(M)’ isometrically into itself with respect to Q-

Before proving this proposition, we state the following fact from [6]:

(5.4) Lemma (see [6, Theorem 11). If f is an e-locally nonexpansive mapping of
a totally bounded metric space (M, @) into itself, then

(@) w(M) = M/,

(b) f maps w(M) isometrically into itself with respect to o;.

Proof of Proposition (5.3). (a) By (a) and (d) of Remark (5.2), it remains to
verify that w(M)’ = M. Let x e w(M)’. Then there exists a bounded set 4 = M
such that x e 4, f(4) = 4 and 4 = w(4)”. Since for some &> 0 the restriction 1|4 is
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e-locally nonexpansive, it follows by (2) of Lemma GhHthat =AM /. Hence
xeM’. _

(b) Let A4,, n=0,1, ... be a sequence of bounded sets satisfying conditions
(3)(5) (cf. (¢) of Proposition (4.1)). It follows by (3) and (b) of Lemma (5.4) that for
everyn = 0, 1, ..., f maps (4,)’ isometrically into itself with respect to ;. From (4),
(4) <(dy4,) for each n = 0,1, ..., and by (5) we have

BOnY = 04 -

Hence, by (a) above, f maps w(M)’ isometrically into itself with respect to ¢,. This
completes the proof

(5.5) COROLLARY. Under the assumptions of Proposition (5.3) and if (M) = M
we have

MT = wM) = {wx): xe M},

and MY is a closed subset of M.

Proof. This follows from (a) of Proposition (5.3) and (b) of Lemma (4.6).

(5.6) COROLLARY. Under the assumptions of Proposition (5.3), the restriction
of f to w(M) is a local isometry. If, moreover, bI(M) = M, then the restriction
of f to M7 is a local isometry.

Proof. This follows from (b) of Proposition (5.3), Corollary (5.5) and the fact
that g, and ¢ are locally identical on b (M) (cf. (b) of Proposition (4.1)).

We remark that every locally nonexpansive mapping of a finitely compact
metric space into itself satisfies the assumptions of Proposition (5.3) (cf. Remark (2.4)).
Thus we have the following

(5.7) COROLLARY. Let f be a locally nonexpansive mapping of a finitely compact
metric space (M, g) into itself. If b'(M) = M, then the restriction of f to M is a local
isometry of MY onto itself.

Proof. In view of Corollary (5.6) and the remark above, it remains to show that
F(MTy = M7. By Corollary (5.5), M7 is closed, hence finitely compact. Let x € M7
and let 4, = cl{f"(x): n>0}. Thus xed,cM', 4, is compact and f(4,) is
a dense subset of 4,; hence f(4,) = 4,. This completes the proof.

Remark. It is not generally true that under the assumptions of Proposition (5.3)
the restriction of f'to w(M)’ is a uniform local isometry. Example (3.1) gives a simple
illustration of this.

We now consider the case of ¢-locally nonexpansive mappings. In [7] we proved
the following result:

(5.8) LemMA (see [7, Theorem (5.6)]). Let f be a nonexpansive mapping of a finitely
totally bounded metric space (M, o) into itself. If bi(M) # @, then b'(M) = M.

‘We are now in a position to prove the main result of this section.
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(5.9) THEOREM. Let f be an e-locally nonexpansive mapping of a finitely totally-
bounded metric space (M, @) into itself. Then

(a) b{(M) = b/ (M),

(b) w(M)y = M7,

(c) the restriction of f to M7 is an e-local isometry.

Proof. (a) In view of (a) of Remark (5.2), we only have to show that b(A)
< bf(M). Let x be a given point of b{(M). Since (M, g) is finitely totally bounded,
there exist integers », m such that

O<n<m and

o(f"@), /M) <e.

Letk = m—nandleth = f*and, foreveryi = 0, 1, ..., k, let x; = f**¥(x). Since fis
&-locally nonexpansive, we have g(x;, lz(xi)) <gfori=0,1,..,k, and h is also
an g-locally nonexpansive mapping. Thus, by (b) of Proposition (4.3) and (a) of
Remark (2.9),

h(Cex)) = Colxd)

Hence, by (b) of Proposition (4.3), for each integer i = 0, 1, ..., k, the induced me-
tric g, is a metric on C,(x;) such that (C,(x;), g,) is a finitely totally bounded metric
space, and the restriction of A to C,(x;) is a nonexpansive mapping of (C,(x}), )
into itself. By the assumption, x € b§(M) # @. Thus it follows from Lemma (5.8)
that for each i = 0, 1, ..., k the sequence {A"(x))};=o is bounded with respect to the
metric g;; hence it is bounded with respect to the metric ¢ because g, >p. Since

for each i = 0,1, ...,k.

(') n=0} = 6 (B n2 0 u {x, £ (X), ., 7D},
1=0

this shows that the sequence {f"(x)}so is bounded, i.c., x € b/(M). Therefore
bi(M) = b’ (M), as desired.

(b) It follows by (a) above and (a) of Proposition (5.3), that w(M)/
= bi(M) n MY (cf. (a) of Remark (2.2)). Since MY = b(M), we have w(M)" = M7,

(c) This follows from (b) above, (b) of Proposition (5.3) and the fact that o,
and ¢ are e-locally identical on b/(M) (cf. (2) of Proposition (4.3)). Thus the proof
of the theorem is complete.

Remark. It follows by (b) of Remark (2.9) and (a) of Lemma (4.4) that in the
proof of (2) of the above theorem we can also use the metric g,.

As an immediate consequence of (a).of Theorem (5.9) and (a) of Proposition (4.3).
we obtain

(5.10) CorOLLARY. If f is an &-locally nonexpansive mapping of a finitely rotally
bounded metric space (M, o) into itself, then

M = b(M) U [MNBY(M)]

is a decomposition of M into invariant and e-separated sets. In particular,.
MT =B (M).
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Consequently, we have

(5.11) COROLLARY. If f is an &-locally nonexpansive mapping of ai &- chmnable
.and finitely totally bounded metric space (M, ) into itself, then either bi(M) =
or BI(M) = M.

We now prove the following

(5.12) THEOREM. Let f be a mapping of a metric space (M, @) into itself such that
BY(M) # B. If one of the following holds:

(a) f is nonexpansive and (M, o) is finitely totally bounded,

(b) fis e-locally nonexpansive and (M, @) is finitely totally bounded and &-convex,

(©) f is uniformly locally nonexpansive and (M, g) is finitely totally bounded and
&-convex for each £¢>0,

(d) f is locelly nonexpansive and (M, o) is finitely compact and convex,
then b/(M) = M and f maps M7 iscmetrically into itself.

Proof. Assume that (a) holds. Then, by Lemma (5.8), we have b/(M) =
Since g, = g, it follows from (b) of Proposition (5.3) and (b) of Theorem (5.9) that
the restriction of f to MY is an isometry. Therefore, by Lemma (4.4), each of the
statements (b), (¢) and (d) implies the assertion.

Remark. The following is a consequence of Theorem. (5.9) (cf. also Theo-
rem (6.9) of the next section): If f'is an isometry of a finitely totally bounded metric
space (M, o) into itself and it b(M) # &, then

M7 = w(M)Y =b/(M) =

In particular, / maps M onto a dense subset of itself (cf. (c) of Remark (2.2)).

The following corollary is immediate from Theorem (5.12) and the remark
.above.

(5.13) CorOLLARY. Under the assumptions of Theorem (5.12), f is an isometry
if and only if M¥ = M.

Remark. Let f'be a mapping of a metric space (M, g) into itself. If fis a locally
nonexpansive (resp. a uniformly locally nonexpansive) mapping which is defined by
«condition (1) with the strict inequality sign for all x,y e K,(z,8), x % y, then f'is
said to be lacally contractive (resp. uniformly locally contractive). it follows from
‘Corollary (5.6) (cf. also Remark (2.4)) that if f is a locally contractive (resp. uniformly
contractive) and if (M, @) is finitely compact (resp. finitely totally bounded), then
w(M)” is the set of all periodic points of f and it is a discrete subset of M. A similar
‘statement can be formulated for g-locally contractive mappings.

6. Decomposition theorems for local isometries. We introduce the following

(6.1) DEFINTTION: Let f be a mapping of a metric space (M, ) into itself. Then
for every A< M we denote

Al =4dnMf fori=0,1,..
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where -

v fo ifi="0,
=M M) i i > 0.

(6.2) Remark. Let / be a mapping of a metric space (M, ¢) into itself and
let A = M. Then

(a) the sets 4f, i = 0,1, .., are disjoint,

(b) if £(4) < 4, then f(Af)cAf and f(4f )= A fori=0,1,,.

(6.3) Remark. It follows from (a) of Proposition (5.3) that if £ is a uniformly

locally nonexpansive mapping of a finitely totally bounded metric space (M, g)
into itself, then

w(M)” )
I MY I (w(m))

Sl ifi=0,
A0k { ifi>0.

Recall that, for a uniform local isometry f of a metric space (M, g) into itself
and for a bounded set 4 = M, &, denotes a positive number so that the restrictionf|
is an g4-local isometry. The followmg lemma is an immediate consequence of
Theorem (3.4) of [6]. o

(6.5) LEMMA, Let fbe a zlmform local isometry of a finitely totally bounded metric
space (M, @) into itself and let A be a bounded subset of M such that f(4) = A. Then

A =
i

4f

ics

and the sets AL, T= 0,1, ..., are &, separated. Moreover, there ewsts an’ integer
i/ S0 such that A = wa every 121,.

T
We are now in a position to state and prove the following decomposition theorem
for uniform local isometries.

(6.6) THEOREM. Let f be « tmﬁorm Incal

isometry, of a finitely totally bounded
metric space (M, o) into itsclf. Then ' ' V

B (M) = u B,
and the seti [PI(M)Y, i=0,1, ...

Proof. Let A,n=0,1,..,bea sequence of bounded and open sets satisfying
cpnditions (3)-(5) (see (c) of Proposition (4.1)). It follows from> Lemma (6.5) that
the sets (d4,)], n,’f = 0,1, ..., are opén. Using (5) and Definition (6.1), we ‘have

. . : : . . i

. are open and disjoint.

® 0 Al = U 4, Mf = b0 ~ Mf = BT,
N ' =0 r=0 B
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for every i = 0, 1, ... Hence the sets ()}, i=0,1,.., are open and disjoint
((2) of Remark (6.2)). Using (5) and Lemma (6.5) and (8), we obtain
@0 @ L) N el o 0
pMy=U4,=U U)X =U U =Urpony.
n=0 n=0 i=0 i=0 n=0 i=0
This completes the proof.'
As an immediate consequence of Theorem (6.6) we get
(6.7) COROLLARY. Let f be a uniform local isometry of a finitely totally bounded
metric space (M, o) into itself. If bI(M) = M, then
0
M= UM,
i=0
and the sets M{,i=0,1, ...
We have the -following immediate consequence of Corollary (6.7) and
Lemma (5.8).
(6.8) COROLLARY. Let f be a nonexpansive uniform local isometry of a finitely
totally bounded metric space (M, o) into itself. If bi(M) # O, then

, are open and disjoint.

M =bl(M) = UOM{,
i=
and the sets M{ ,i=0,1, ..., are open and disjoint.

Remark. It follows from Remark (2.4) that Theorem (6.6) and Corollaries (6.7)
and (6.8) remain true for local isometries of finitely compact metric spaces. Thus,
these results extend and give simplified proofs for Theorems (3.1) and (3.2) in [5].

We can now prove our decomposition theorem for g-local isometries.

(6.9) THEOREM. Let f be an e-local isometry of a finitely totally bounded metric
space (M, @) into itself. Then

B(M) = bI(M) = G M,

and the sets [MN\bS(M)], M{, M, ..., are &-separated.
Proof. By (a) of Theorem (5.9), bf(M) = b/(M). Thus, M{ =b/(M) and
hence [b” (M)]’ MY for every i = 0,1, ... Thus, from Theorem (6.6), we have

(M) = U M.
i=0

To show that the sets [M\b5(M)], M}, M{, ..., are e-separated, let x,ye M
be such that, for some integer i, x € M{ and y ¢ M{. If y ¢ bi(M), then from the
above and Proposition (4.3) (or, Corollary (5.10)) we have o(x, y) = . If y € bi(M),
then it follows by (c) of Proposition (4.1) that there exists a bounded set 4 = M such
that x,y e 4 and f(4) = 4. Thus xe 4f and y ¢ 4. Hence, from Lemma (6.5)
(with &, = &) we infer that g(x, y) >¢. This proves the assertion.

As an immediate consequence of Theorem (6.9) and Corollary (6.8) we get
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(6.10) - CorOLLARY. Let f be & nonexpansive e-local isometry of a finitely totally
bounded metric space (M, o) into itself.. If b{(M) # @, then

= pon = UM,
i=0

and the sets M{, i=0,1,..., are &-separated.

Remark. In [5] it is shown that if f is a local isometry of a finitely compact
metric space (M, @) into itself, and if 5'(M) = M, then there exists a unique de-
composition of M into open and disjoint sets, M = M, U M, U ..., such that
maps M, injectively into itself and f(M;4 ) = M, for i = 0,1, ... It follows from
Corollaries (6.7) and (5.6) and Remark (6.2) that in this case we have M; = MY
for each i = 0, 1, ... Thus, Theorem (6.9) can be reformulated as follows: Let f be
an g-local isometry of a finitely compact metric space (M, g) into.itself. Then there
exists a unique decomposition of M into open and disjoint sets, M = Mo U M; U
U ... UM, such that (i) f maps M, injectively into itself and f(M;.,) = M; for
i=0,1,..,and (i) if x € M; for some i = 0, 1, ..., then the sequence {f"(x)},=¢ is
bounded, w]:ule if xeM,, then no subsequence of {/* (x)},,_ is bounded.
Moreover, the sets M;, i = 0,1, ..., are e-separated.

7. Some conditions under which local isometries are isometries. In this section
we first give some conditions under which decomposition theorems reduce to the
equality M = b/(M) = M7. Then we apply the results of § 4 and 5 to obtain an
answer to question B of the Introduction. As a consequence of Theorem (6.6) we
have

(7.1) THEOREM. Let f be a uniform local isometry of a connected finitely totally
bounded metric space (M, ¢) into itself. If /(M) = M, then the induced metric g,
is a metric on M such that

(a) ¢ and ¢ are locally identical on M (in particular, rhey are topologically
equivalent), :

(b) the space (M, oy) is finitely totally bounded,

(c) f is an isometry with respect to gy.

Proof. Since M is connected and 5/(M) = M, Corollary (6.7) implies that
M = b/(M) = M!. Thus (a) and (b) follow from (b) of Proposition (4.1) and the
fact that ¢, > ¢ (cf. Remark (2.6)), while (c) is a consequence of Proposition (5.3).

Remark. It follows from Remark (2.4) that the above theorem remains true
after replacing “uniform local isometry” and “finitely totally bounded” by “local
isometry” and “finitely compact”, respectively. However, as Example (3.2) shows,
the assumptions of Theorem (7.1) do not imply that 57(M) = M and that gy is finite
on M (where f is the extension of f to the completion (M, g) of (M, ).

As a consequence of Theorem (6.9) we get
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{(7.2) THEOREM:Letf be an e-loce! isometry of an e-chainablz and finitely. totally
bounded mctric space (M, o) into itself. If bl (M) # @, then the induced metric Qrls
a metric on M such that

(2) ¢y and g are e-locally identiccl on M (in particular, they are topologically
equivalent),

(b) the space (M, g;) is finitely totally bounded, and

) fis an isomelry with lespect o oy

Furthermore, lhen B M) =

Proof. Iff (M g) is, £-chainable and if b{(M) # O, then Theomm (6.9) implies
that M .= b’ (M) M. 1. Thus (a) and (b) follow . from Proposition (4. 3) (cf. Re-
mark (2.6)), while. (c) follows from Proposfuon (5.3) (cf. also (b) of Theorem (5.9)).
This completes - the proof

“Remark.-Under the assumptlons of Theorem (7 2) the sequences { /() hLo,
X eM, are bounded in:both metrics ¢ and g, (cf. (d) of Remark (2.7)).

A metric’ space (M @) is said. to be connected (resp. convex). dafter completion,
if the ‘completion(’; g)-of (M, @) is connected (resp. convex). Observe that, by
Remark-(2.10), a finitely totally bounded metric space (M, o) is convex after comple-
tion if and only if (M, @) is e-convex for each &> 0. Thus, Remark (2.4) and
Coroﬂary (6. 7) and Theorem (6.9) together with Theorem. (5.12) imply

L' f be a mapping of 'a metric space (M, @) into n‘selj If
10 af the following condrtzons holds:
(a) f isa umfmm local zsomem and (M o) is ﬁmtely totally boum[ea’ and cornvex
after completion,
. @ [ is a nonexpansive uniform local isometry and (M, o) is finitely totally
bounded -anil” (onurzcted after completion,
(b) f is“a local isometr voand (M, @) is finitely compact and convex,
(b*) f is a nonexpansive local isometry and (M, Q) is finitely compact,
- (©) fisanus-loeal isometry, and (M, @) is finitely totally bounded and &-convex,
(c*®) [ is @ nonexpansive s-local isometry and (M, 0) is finitely totally-bounded
and e-chaincble, o

then f is an isometry and, moreover, b (M) = M.

- Remark.: Under!ithe assumptions of Theorem (7. 3), MY = M and f( M is
a dense subset -afi: M. Moreover, if (M 0) is finitely compact, then f (M)
(cf.. Corollary (5.7)).

Let us note the;following special cascs of Theorem (7.3).

(7.4) COROLLARY( Let f be a uniform local isometry: into itself of a metric spce
(M, o) finitely t«-jmlly bounded dand convex afrer cwnplettan Iff has a fixed (m periodic)
poiit, then f IS an tsanvezry :

(7.5) COROLLARY Let f be a local isometry of a finitely compacr and convex
metric space (M, g) into itself. If f has a fixed (or periodic) point, then f is an isometry.
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(7.6). COROLLARY. Let f be an.g-local isometry of a finitely totally bounded and
&-convex metric space (M, @) into itself. If f hes a fixed (or, periodic) point, then f is
an isometry.

We now give an answer to question B of the Introduct]on Wc will say that
a metric space (M, ¢) has a transitive group of isometries if for every two points x
and y of M there exists an isometry g of M onto itself such that g(x) = y.

(7.7) TuEOREM. If a metric space (M, @) finitely totallp bounded and convex
after completion hes a transitive group of isomeltrics, then every uniform local isometry
of (M, @) into itself is an isometry.

- Proof. Let f be a uniform local isometry of (M, g) into itself and fix a point x,
of M. Then there exists an isometry g of (M, g) into itself such that g (f (x)) = xo-
Thus gof is a uniform local isometry with a fixed pomt xo. It follows by
Corollary (7.4) that g o f is an isometry. Therefore fis also an 1sometry, which com-
pletes the proof.

The same argument applied to Corollary (7.5) and Coro]lary (7.6) glves

(7.8) THEOREM. If a finitely compact and convex metric space (M, ¢) has a transi-
tive group of isometries, then every local isometry of (M, @) into itself is an isometry.

(7.9) THEOREM. If a finitely totally bounded and &-convéx' metric space (M, @)
has a transitive group of isometries, then every g-local isometry of (M, @) into itself
is an isometry. g

Next, we consider the case of surjective local isometries. (Note that only this
case was studied by Busemann [2], [3], Kirk {9]-[11] and, Szenthe [12]-[14]). Given
a metric space (M, o), one says that x, € M is a correr point of (M, o) if for every
x € M there exists an isometry g of (M, g) into itself such that g(x,) = x.

Remark. If a metric space (M, ¢) has a transitive group of isometries, then
every point of M is a corner point of (M, ¢). However, there exists a metric space
(M, @) with a corner point and such that the only. isometry, of (M, @) onto itself is,
the identity mapping id,,. The space M = L.?c € R: x>0} with absolute value dis-
tance gives a simple illustration of this.

Corollaries (7.4), (7.5) and (7.6) and the same argument as in the pxoof of
Theorem (7.7) imply the following results. ‘

(7.10) THEOREM. If @ metric space (M, o) finitely totally bounded and convex
after completion has a corner point, ther every uniform local isohzet‘r‘y; of (M, @) onto
itself is an isometry. ' o B _

(7.11) THEOREM. If u finitely compact and convex metric space (M, @) has u corner
point, then every local isometry of (M, @) onto itself is an isometry.

(7.12) THEOREM. If a finitely totally bounded and &-convex metric space (M, @)
has a corner point, then every g-local isometry of (M, ) onto itself is an isometry.

Remark. It follows from Theorem (7.3) that Corollarles (7. 4)—(7 6) and
Theorems (7.7)-(7.12) could be stated (with weaker assumptmps on, the space (M, )
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for nonexpansive uniform local isometries, nonexpansive local isometries and non-
expansive &-local isometries.

8. Final comments. In this section we give some questions related to question B
of the Introduction.

(8.1) QuEsTION. Do Theorems (6.6) and (6.9) remain true if the assumption
that the space (M, g) is finitely totally bounded is replaced by the (weaker) assump-
tion that for every point x of M the set {f"(x): n >0} is finitely totally bounded?

Next, consider the following question of A.D. Aleksandrov (which appears
in [12]):

(8.2) QuesTioN.: Under what conditions is a mapping of a metric space into
itself which presérves unit distances an isometry?

‘We make some remarks concerning Question (8.2). Given a metric space (M, o),
let us say that (M, @) has property P if every mapping of M into itself which preserves
unit distances is an isometry. We will say that (M, ¢) has property P* (tesp. pro-
perty P}) if every mapping of M into itself which preserves unit distances is locally
nonexpansive (resp. e-locally nonexpansive). We will say that (M, o) has property Q
if, for every x, y € M such that 0 < g(x, ») < 1, there exists a point z € M satisfying
one of the following conditions:

e +ely, ) =elx,2) =1, or o(r,x)+el,2)=0(y,z)=1.
It easily seen that if (M, @) has property Q, then every nonexpansive mapping of M
into itself which preserves unit distances is a 4-local isometry. Thus, by Lemma (4.4),
if (M, g) is convex and complete (resp. e«convex)‘ and if it has property Q, then
every locally nonexpansive (resp. e-locally nonexpansive) mapping of M into itself

which preserves unit distances is a 4-local isometry. Hence, Theorems (7.8) and (7.9)
have the following consequences:

(8.3) THEOREM. Let (M, @) be a finitely compact and convex metric space which
has a transitive group of isometries. If (M, o) has properties Q and P*, then (M, o)
has property P.

(8.4) TrEOREM. Let (M, @) be a finitely totally bounded metric space which has
a transitive group of isometries. If (M, @) has property Q and if for some ¢, 0 < &< 1,
it is e-convex and has property P}, then (M, @) has property P.

In view of this, it seems appropriate to pose the following question:

(8-5) QuesTION. When does a metric space (M, ) have property P* (resp.
property P¥)?
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