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More on distributive ideals
by

C.A. Johnson (Kecle)

Abstract. In this paper we present further results concerning ideals on uncountable cardinals
whose quotient algebra is distributive. We show that such ideals are related to completely ineffable
and weakly compact cardinals, flipping properties, P-ultrafilters, ideal theoretic partition relations
and a closure property of the generic ultrapower.

‘ In [14] we commenced our study of ideals on uncountable cardinals whose quotient algebra
is distributive, and in particular we showed that distributivity is related to some ideal theoretic
partition propertics. In this paper we present some further resulis concerning such “distributive
ideals”, and whilst for the most part not strictly necessary, a familiarity with [14] would be useful.

In § 1 we show that if % is completely ineffable then  carries a natural normal (s, s)-distributive
ideal, the completely ineffable ideal. It is a well-known question whether matural normal ideals
(especially the non-stationary ideal) can ever be saturated (or precipitous). We answer this question
for the completely incffable ideal by showing it to be non-precipitous.

§ 2 contains some brief remarks connecting distributive ideals to V-ultrafilters and flipping
properties. Using distributivity, we also give a simple proof of a theorem of Kleinberg [18] charac-
terizing completely ineffable cardinals in terms of the existence of certain P-ultrafilters.

In § 3 we make some further remarks concerning normal WC ideals. It follows easily from
results of Baumgariner [2] and of [14] that the existence of a normal WC ideal on x is equivalent
to the weak compactness of x. Indeed, the existence of such an ideal may be regarded as a (normal)
ideal theoretic analogue of the “strong inaccessibility and tree property” equivalent of weak com-
pactness. This ideal theoretic analogue is shown to have considerable power easily yielding IT3-in-
describability and a combinatorial equivalent of weak compactness due to Shelah [21].

In § 4 various forms of weak distributivity are considered, and are shown to be related to ideal
theoretic versions of partition relations akin to those defining Rowbottom cardinals. Also, using
a forcing argument similar to that of [14, Theorem 9], we give a new proof of a partition theorem for
saturated ideals originally due to Solovay.

o §5 we briefly mention o connection between distributivity and a closure property of the
generic ultrapower,

§ 0. Notation and terminology. Our set-theoretical terminology is reasonably
standard (see [11]), and background results, notation and terminology not defined
here concerning ideals may be found in [5], [12] or [14]. .

Lower case greek lotters will denote ordinals and when a set of ordinals is written
as {ly, 0y, ., ()} it is assumed that ;<{;<..<{, and if m<n then
{81, Loy s G} Im = {{1, Cas vy L} Throughout the paper % will denote a regular
uncountable cardinal, and I a proper non-principal x-complete ideal on w (see
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{5 p. 7). NS, will denote the ideal of non-stationary subsets
I,={Xcu| |X|<x}, and R, = {E<u| & is regular},

If del* (=P()—1). then an I-partition of A is a maximal collection
W< P(4) NIt suchthat X n Yelwhenever X, Ye W, X # Y. The I-partial W is
said to be digjoint if distinct members of W are disjoint, and in this case for ¢ e uw,
W (&) denotes the unique member of W containing &, If W and T are I-partitions of A,
we say W refines T (and write /< T) if for each Xe W there is o Y e T such that
Xc Y. If BeP(A)nlI*, then Wt B= (Xe W| B Xel*)

DerNtTioN 0.1, For 2<% we say [ is (u, <n, A-distributive if whenever
Ael* and (W, a<p) is a sequence of disjoint /-partitions of 4 such that for
each o<y, |W,| <4, there isa Be P(A) n 1" such that |W, | B| <n for cach o < A
I is said to be (u, 4)-distributive if 1 is (u, <2, A)-distributive.

It is easy to check that for <%, A = x this definition is equivalent to that
given in [14, Definition 1]. Also as mentioned in [14], for A <, G, < n, A)-distri-
butivity is equivalent to the property obtained by omittin g the condition that each W,
Is disjoint (since, by x-completeness, any I-partition of cardinality <A has a disjoint
refinement of cardinality <), and hence 7 is (u, <7, 4)-distributive iff the Boolean
algebra P()/I is (i, <n, A)-distributive in the usual sense (although our notation
here may be slightly non standard).

DerNITION 0.2. (3) A function /i: 4 ~ % is said to be an T-small I-function
if 4eI* and for each g <, h™'({o}) e 1.

(b) An 7-small I-function / is said to be a minimal unbounded I-function if
there is no 7-small /-function fsuch that dom(f)  dom (/) and for each & e dom(f),
J(© < h(@). (Hence I is normal if the identity function id: % — % is minimal un-
bounded.)

(©) I'is weakly selective if every J-small J-function is injective on a set in I*.

of

A collection U< P(x) N Vissaidto be a Ve -complete ultrafilter on % (where Vis
our ground model) if U is a proper non-principal ultrafilter on P(x) N ¥ such that
whenever f<x, f: f— U and fe V then N{S@la<p}eU. Uis said to be
normal if Af = {¢<wu|Ya<¢, fef(®}e U whenever f: x — U, fe V.

Given U, we may form the (not necessarily well-founded) ultrapower V*/U
(see [12]). The ordinals of V*/U will contain an initial segment in order type %
(or x+1if, say, Uis normal) which we identify with » (or s+ D, and if j: V- VU
is the natural embedding then J& = & for each ¢ <.

R(I) is the notion of forcing whose conditions are sets 4 e I with 4 <4 il
A< A" 1f Dis R(I)-V-generic then Dis a V-x-complete ultrafilter on x extending /*,
the filter dual to J. f 7 is normal then 1 will be normal, and, in general, if 7 is weakly
normal (in the sense of [12]), then V*ID will contain & xth ordinal. I is said to by
pfecipitou&' if RU) IF “V¥D is well-founded”, and in this case we ideutify V*/ D with
Hs transitive collapse. For more on V¥ D see [12].

ForP, Q< P(), n<w and n<#, P — [Q]; <, denotes the assertion: whenever
AeP and f: [A]" - 5 is regressive (i.e. /'(x) < min(x)), there is a Be PA)nQ
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such that | f([B]M| <n. (Similarly with “<®” replacing “n".) In the case whare
P = {A} we writc 4~ [Q]} <, and when 5 = 2 we write P — [Q]}.

§ 1. The completely ineffable ideal. For o an ordinal define In] by induction
on a as follows: Inf = NS}, In¥ , = {Xcxl X [In%?} and for lim(x),
I = () {Inj| B <a}. Note that § <« implies Inj < Inj;, and hence there exists an o

for which In} = Tng. . )
In¥ is the set of ineffable subsets of %, and so the sets In; may be regarded as

. a means of iterating the operation which produces ineffable sets from stationary sets.

Baumgartner [3] defined % to.be completely ineffable iff ( is regular) and there exis%s
an ordinal o such that In} = Inf., # &. In [14, Corollary 3] we prov‘ed tha.t ® is
completely ineffable iff % carries a normal (x, x)-distributive ideal, and in pattlc':ulalr
we mentioned that if In} = InJ.., # @ then /= P(x)—In} is a normal (%, »)-distri-
butive ideal on %, and is indeed the minimal such ideal on x. If » is completely ineffable
we refer to this ideal as the completely ineffable ideal on s.

We first make the observation that the completely ineffable ideal may be charac-
terized in terms of an infinite game. For 4 < x define a game G4 between 2 players,
One and Two as follows: One plays first and chooses a set 4y € P(4) N NST. Two
then picks a regressive function fo: [d]? = %. One then chooses a set

Ay € P(4y) N NS;

homogeneous for f,. Two then chopses a regressive function fy: [Al]_2 néd anf:l
then One picks a set 4, € P(4,) o NS, homogeneous for f;. They continue in tl}lS
fashion to produce two sequences AR 4o 24, 2 ... and fy, /1, fo, .. If a'fter a finite
number of moves Player One cannot find the required set the game tcrm{nate? there
and Player Two wins. Otherwise the game continues for w moves and in this case
Player One wins. .

THeorREM 1.1. If In% = Ink,,, then A € Inf iff Player One has a winning strategy
in Gy. )

Proof. (—) Player One’s strategy is clear; since In; — [In}];, he may choose
cach of the sets 4, elIn}. o

(=) Suppose 4 ¢ In%. Firstly, if A € NS, then trivially Player Two has a wumu}rg
strategy in G, since there is no set 4, € P(4) N NS;, hence suppose A ,G NS, .
For BeP(4) n NS;, let f(B) be the least ordinal § such that B & In,{ , then
0<f(B)<ua, f(B) is a successor ordinal, say f(B) = y-+1, and hence there is a ri:-
gressive function g(B): [B]* - x having no homogeneous set Ce P(B)n In,..
In particular, if Ce P(B) n NS is homogeneous for g(B) then f(C) <f (B). g is
cdlearly a winning strategy for Player Two in G, for if g, g(do), 4y, g(dy), ... is
a play of G, in which Two plays according to the strate.gy g, then for each n,
F(4,)>f(4,+,), and hence the play must terminate in a finite number of moves. |

COROLLARY 1.2. For each A <wx the game Gy is determined.

COROLLARY 1.3. % is completely ineffable iff Player One has a winning strategy
in Gy.
4 — Fundamenta Mathematicae 128. 2
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COROLLARY 1.4. If % is completely ineffable and I is the completely ineffuble
ideal on %, then for each A = x, Al iff Player Two has a winning strategy in G .

We now turn to the main theorem of this section, the non-precipitousness of
the completely ineffable ideal. As mentioned by Baumgartner [3], if x is measurable
then % is completely ineffable and indeed s must be much greater than the least
completely ineffable; for instance, if U is a normal measure on % then {&<x| ¢ is
completely ineffable} € U. Our next theorem strengthens this remark and will be of
use later. Tt also gives additional information about the size of completely ineffable
cardinals. '

TugoreM 1.5. If 1 is normal, precipitous and (%, %) -distributive then {E <u| € is
completely ineffable} € I'*. :

Proof. By Eoé’s theorem it suffices to show that R({) k “¥*/D I # is completely
ineffable”, hence let D be R(I)-V-generic, M denote (the transitive collapse of) the
ultrapower V%D and let j: ¥ — M be the natural embedding.

By the remark following [14, Theorem 1], if f: % — » with fe M then fe V,
and conversely (since j  x is the identity) if g: 3 — x withg e V'then g = jg bxe M.
Hence it is clear that x is regular in M, P¥(x) = PM(%) and it is trivial to check (by
induction) that for each ordinal f, (In})” = (Inﬁ)M. Since » is completely ineffable
in ¥, there is an ordinal o such that (In%) = (In%,.,)" # @, and hence % is completely
ineffable in M. M

In fact, a version of Theorem 1.5 also holds in the case where the hypothesis
of normality is removed: if I is precipitous and (x, x)-distributive then I is weakly
normal (see [12, p. 13]) and (using [14, Theorem 9J) it is easy to show that if /& is
a minimal unbounded I-function then A (I) = {X<x| 1" (X)el} is a normal
(%, %)-distributive ideal on %. Hence % is completely ineffable and as in Theorem 1.5,
R(D &+ “V*/DE x is completely ineffable”.

THEOREM 1.6. If % is completely ineffable then the completely ineffable ideal
on % is not precipitous.

Proof. Suppose not; then by Theorem 1.5, if I is the completely ineffable ideal
onx, 4 = {{eR,| iscompletely ineffable} & I*. For £ € 4, let Jy be the completely
ineffable ideal on £; then as in the proof of Theorem 1.5, if D is R(J)-V~generic
and M denotes (the transitive collapse of) the ultrapower V*/D,

I=P"()- Q (n})¥ = PM()— p M = [ Ee A)].

Hence by Lo§’s theorem, if Xl then {¢ e d| X n Eelel* and if Xe /™ then
(L1 {tedlXnéelf}el*.

. Now suppose x is the least regular cardinal carrying a normal (%, x) - distributive
ideal I for which there is an 4 € I* and a sequence of ideals (/| £ & 4) satisfying (1.1).
If D is R(I)-V-generic then, as in Theorem 1.5, PY(%) = P(x) A V*.D, and hence
by (1.1), V¥ Dk “I'=[{Jd ¢ 4)] is a normal (x,s)-distributive ideal on %"
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Also if j: V' = V¥ D is the natural embedding then by strong inaccessibility of x,
VD E “E = j¢ is regular and J; = jJ; is an ideal on &, for each e 4. Hence
T ted) =j{Jd e A> P AeV¥D and it is now clear that I and (/| e )
satisfy (1.1) in ¥*D. By Lo§’s theorem this contradicts the minimality of ». H

Similarly we may prove that the completely ineffable ideal is nowhere preci-
pitous, i.e. for each del +, I|A is not precipitous.

As mentioned in the introduction, the question of whether natural normal
ideals can be saturated (or precipitous) is a common one. Certain (negative) results
are known (see [12] and [16, § 11]) but as far as we known Theorem 1.6 is the only
result in which a natural normal ideal is shown outright to be non-precipitous.

Of course, precipitousness is a well-known consequence of saturation. Another
such consequence is the completeness of the quotient algebra (see [16, § 11]).

COROLLARY 1.7. If % is completely incffable and I is the completely ineffable ideal
on %, then P(x)[I is not complete.

Proof. Suppose P(x)/l is complete; then since P(®)/I is (%, »)-distributive
and (2%)*-saturated, it is clearly (x, o0)-distributive (see [6, p. 57]), and hence I is
precipitous contradicting Theorem 1.6. &

Given Theorem 1.6, one might wonder whether every atomless normal
(7, %)-distributive ideal on » must be non-precipitous. In fact, this is not the case,
and indeed in [15, Theorem 4.22] we showed (relative to the measurability of )
that » may carry an atomless normal ideal whose quotient algebra is (%, 0)-distri-
butive. We do not, however, know how to construct an atomless »*-saturated
(3¢, %)-distributive ideal on x. One remark which may be of use here is that if I is
such an ideal and 2% = x™, then P (x)/I has a dense subset isomorphic to a »*-Suslin
tree.

§ 2. Flipping properties and V-ultrafilters. n this section we show that distri-
butive ideals are related to flipping properties and V-ultrafilters.

Recall [1] that if f: g — P(x) then a flip of fis a function g: 4 = P(x) such
that for each a <, g(a) is either £(x) or x—f (). If f: — P(x) then

Af = {E<u| Vo<, Eef @}

TreoreM 2.1. T is normal and (¢, %)-distributive iff whenever fir u—> P(x) and
AelI* there is a flip of f, g such that A N Agel”.

Proof. (—) Suppose Ael* and f: % - P(x); then by (%, 2)- distributivity
there is a Be P(A) ~ I+ such that for each a <%, B—f@el or Bnf@el
Letg: » — P(x) be the flip of fgiven by g (&) = f (&) iff B— £ (@) e ; then by normality
C={¢eB| u<t, t¢g(@}el, and hence B—CcAn dgel”.

(«) Suppose A€ I" and h: A - x is regressive. For o <x let £(2) = A~ '({e})
and g be a flip of fsuch that A n4dg e 77 It is easy to check that h}Andgis
constant.

" Clearly, if I is (x, 2)-distributive then [/ is (%, x)-distributive; hence suppose
Ael* and (W]a<x) is a sequence of I-partitions of A with each |W,| =2,
"
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say W, = {X;, Xi}. Letf: % — P(x) be given by f () = X{ and g be a flip of fsuch
that 4 n 4g e ™. It is easy to check that for each a<x, [W,} AN dg} =1, m

Similarly for p <, Iis (1, 2)-distributive iff whenever /% u — P(x) and Ae 1™
there is a flip of f, g such that 4 n ) {g(@)| z<p}el™.

Now for the connection between V-ultrafilters and distributivity. For the re-
mainder of this section U will denote a V-x-complete ultrafilter on %. Since U itself
may not belong to ¥, properties which capturc more information about U inside ¥
are of interest. Property (2) of the following theorem was used by Kunen [19] in
his work on iterated ultrapowers.

THEOREM 2.2. For n<x the following are equivalent

(a) for each g eV, if g: n— P(x) then {a<y| g(@eUleV;

(b) for each fe V*|U, if f: n — 2 then fe V.

Proof(a) — (b). Suppose /1 & Vis such that /i: % — Vand V*U k “[A]: 5 — 27
then, by Lo§’s theorem, 4 = {& <x| h(&): n = 2} e U. For a <n let

g@) = {Led] h(&)(x) =0} ;
then {x<n| g(@)e U} €V, and hence if f: 5 — 2 is given by f(@) =0 iff gl@)e U
then fe V and f = [A].

(b) = (2). Suppose g: n— P(x), ge V. For £<x define h(E:n—2 by
() (@) = 0iff ¢ e g(a), then V*U E “[h]: n — 27, and hence there is an Jfe V such
that f: # — 2 and f = [h]. Clearly, for each x <y, g(x)e U iff S(@=0 MW

As in [14, Theorem 1], replacing # by % may render condition (b) meaningless
(as ¥*/U may not contain a xth ordinal). However, as in Theorem 2.2, we may show
that ¥V fe VU (if f: ju— 2 then f} xe V) iff VgeV (if g: x— P(x) then
{a<x gl@)e Ule ).

As in {14, Theorem 2] we may also prove the following

THEOREM 2.3. Suppose n is a cardinal, y < %; then the Jollowing are equivalent

(2) for each fe V*|U, if f- n - « then fe V;

) VE “Yi<u, "<x" and if e V¥IU then V¥UE “cfu>g”.

We leave the proof to the reader.

Kleinberg [18] proved that ¥ F “yx js completely ineffable” iff there is, in some
generic extension, a normal V-%-complete ultrafilter on %, U such that whenever
g7 %~ P(x) with ge V then {u<x| g(a)e Ule V. Using distributivity, we may
give a simple proof of this result. First recall ([14, Corollary 3]) that x is completely
ineffable iff % carries a normal (x, #)-distributive ideal. )

THEOREM 24. % carries a normal (x, x)-distributive ideal iff there is, in some
generic extension, a normal V-xu-complete ultrafilter on %, U such that whenever
g: %~ P(x) with ge V then {a < g(x)e UleV. ‘

Proof (=). Suppose I is a normal (%, %)-distributive ideal on %; then by the

remarks following Theorem 2.2 and [14, Theorem 1], if D is R(I)-V-generic then D is
the required ultrafilter.

e ©
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(+). Suppose P is a forcing notion and U e ¥* is such that P I+ “U is a normal
V-x-complete ultrafilter on % such that whenever g: % — P(x), ge ¥ then
{u<x gle)eUye V™

Let /= {XeP(x)n V|PI X¢U}; then clearly I is an ideal on ». Using
Theorem 2.1, we show that J is normal and (x, x)-distributive. Suppose f: % — P (%),
(feVyand de I then P “lo < x| f(a)e U} e V>, and hence we may find a con-
dition. pe P and a flip of £, g, with g € ¥ such that p I “4 & U and for each o <z,
g(eye U”. By normality of U, pIk “4ndgeU”, and hence 4 ndgel*. B

Note that in [18] Kleinberg proves a slightly stronger version of Theorem 2.4 («),
i.c. if in any extension of ¥ thoere is such an ultrafilter then x» is completely ineffable
in- V. However, it is not clear that this hypothesis gives rise to any particular
normal (%, x)-distributive ideal other than the completely ineffable ideal (see the
proof of [18, Theorem 2]).

§ 3. Normal WC ideals. In [14, Definition 1] we defined I to be WC if
3.1y T is (u, x)-distributive for cach p<ux,

(3.2) whenever Ade ™ and (W, o <x) is a sequence of disjoint I-partitions of 4
such that for each o < ff <x, W, < W,, there is a sequence (X,| o <) such
that X, e W, and X, < X, whenever o« < ff<x.

(Such a sequenoe of I-partitions is said to be decreasing and the sequence (X,| « <x)
is said to be a branch through (W, o <x).)

Baumgartner [2] showed that every weakly compact cardinal carries a natural
normal ideal, the JI}-indescribable ideal (= {X<x| X is not ordinal 11} -indes-
cribable}). Tt follows easily from (the proof of) [2, Theorem 3.2} that if » is weakly
compact and 7 is normal and extends the IT !.indescribable ideal on x, then
I* = (I'*, %) This partition property is related to WC in that ({i4, Theorem 8])
I = (I't, %)% iff I is weakly selective and WC, and hence from indesoribability) con-
siderations we have that » is weakly compact iff » carries a normal WC ideal.

However, the existence of a normal WC ideal on » may also be regarded as
a (normal) ideal theoretic analogue of the “strong inaccessibili"ny and tree pro?erty”
equivalent of weak compactness. Firstly, note that in (3.2) we have a tree of height »
whose levels are of cardinality < x (rather that <, as in the tree property). How-
ever, since there arc no J,~partitions of cardinality exactly s, x has the tree property
iff I, satisfies (3.2) iff % carries an ideal satisfying (3.2). Also by [14, Theorem ‘2]
(and the remark following), % is strongly inaccessible iff I, satisfies (3.1 iff » carries
an ideal satisfying (3.1). : )

Tn this section we show that this normal ideal theoretic analogue is rather pow-
erful, easily yielding IT*-indescribability and a combinatorial equivalent of weak
compactness due to Shelah [21]. ) o

Baumgartner [3, Theorem 2.1] showed (via two cqtmvalent F11a1‘acte1-1zat10115)
that if X< and X — (NSJ, »)? then X is (strongly) IT 1-indescribable, and hence
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it follows that the IT:-indescribable ideal is the minimal normal WC ideal. We
first give a direct proof of this result.

THEOREM 3.1. If I is normal and WC then x% is It - indescribable and T extends
the II}-indescribable ideal on x.

Proof. Suppose Scx, VXO(X, V) is ITl, (#,2 S)EVXP(X,S) and
A={a<xl (@& Sna)k TVXP(X,Sna)}el™. By (14, Theorem 2], R,e [*
and for each € R, n A let T, = a be such that (o, &, S na, T,) F 19(T,, S ~ a),
and f;: @ — o be normal and such that for each & <o, {/(0), 8,5 N f(, T, A
ALO) E1P(T, A f(8), S N f(8)) (see [16, § 1]).

Since 7 is normal and (u, %)-distributive for each i <, we may find a decreas-
ing sequence of disjoint /-partitions of R, n A, {(W,| v <), such that, for cach
v<u, if Xe W, then E2v, Tonv= Ty v and f; bve=f, t v whenever &, ye X,
By WC there is a branch (X,| v <) through {W,[ v <) and let TS, f: % —
be such that whenever v<, £ e X,; then T v= Tsnvand fhve=f}v. Now
0, 6,8, T)k&(T, S); hence C = {f<| B.e,SNB.TAREBTALSAP
e NS¥ and by Loé’s theorem, :

R,O0Al “VIDEB.e,SAB, TP EDTAR, SR
and

([7160), .8 0 LAI®), [T A LLIG) k19T, A [410). S A [L1E)”

for each d <x and feC. .. (3.3)

S is clearly normal, and hence pick y < such that S e C and ¢ such that
7./ () <e<x But then if D is R(I)-V-generic with X,e D then in V*D,
[Tdne=Tno, [f]te=s}ae and hence by (3.3), (7 (). 2, 8 nfG), TAf(p)k
ETS(T S (), S nf(@), contradicting f(y) e C.
. Hence % is ordinal IT1 -indescribable. By [14, Theorem 2], % is strongly inaccess-
ible and hence IT} -indescribable. M

In [21] Shelah gave a combinatorial proof that » is strongly inaccessible and has
the tree property iff
(3.4) for every family of functions £, o — o (2 < %), there is a function [ix—-n
such that (Yoc<z)(ﬂﬁ)(a</f<z and f b o= f} a)

.We will sho\tv ‘that the property (3.4) is related to normal WC ideals and in
pa.rtlcular the IT;-indescribable ideal. Firstly (3.4) follows very easily from the
existence of a normal WC ideal.

THEOREM 3.2. [f I is normal and WC, then Jor each A e I'" and fumily of functions
fot o= o (<) there is a function f+ % — % such that (Vo < WEAfed) (u<p<n

ard fy b o= f} «).

Proof. Suppose 4 € I* and for each o <1, Jut 2= o As in Theorem 3.1 wc.

may find a decrc.a.‘,ing sequence of disjoint /-partitions of A, {W,| v <) such that,
for each v<x, if Xe W, then £ v and fz b v = 1, b v whenever &, y & X. By WC
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there is a branch {X,| v<x) through {(W,| v<x) and let f: »x — » be such that
whenever v <% and £ € X, then f; } v = f |} v. Clearly, f is our required function. M

Conversely, (3.4) naturally gives risc to a normal WC ideal.

THEOREM 3.3. If (3.4) holds then x carries a normal WC ideal.

Proof. Let 1 be the set of subsets S of % such that (3.4) is not satisfied if we
replace “(Va < %) @B)...” by “(Va<x) (3peS)...". Shelah [21] showed that I is
a normal ideal on %. We show that I is WC.

Firstly, % is strongly inaccessible for if u<x and g: % — 2" is injective define
a family of functions f,: o - a (xex—u) by f,(5) = g(@) (@) if 6<p; f,(6) =0
otherwise. Clearly, {f,| oex—pu} then contradicts (3.4).

Suppose now that n < x; then for é € 4 = {y <x| cfy = n} let f; be any function
fe & — Esuchthat f; } yis cofinal in £, The family { fil &e A} is easily seen to witness
that 4 & /, and hence, by [14, Theorem 2] and normality, I is (i, %)-distributive for
each <.

Finally, suppose that Ae/* and (W, 6§ <x) is a decreasing sequence of
disjoint I-partitions of 4. Let #: |J {W;| & <x} — # be injective; then, by normality,

B = {éed| for each § <&, Ee ) Wy and h(Wi(&) <&} e T|A*.

Hence by the definition of 7 there is a function f: % — x such that (Vo <x)
@At eB—a) (V6<0) (f©) = h(Wy)). For each §<x let X;& W; be such that
F @)= h(X,). If §<y<x then we may find ¢ e B—(y+1) such that f(y) = A (9)]
and f(8) = h(Wy£)), and hence since W, < W; and W, is disjoint, we must have
X, = W,E) S Wy&) = X;. Therefore (X, d<x) is a branch through
(W 8 <x).

Note that by Theorem 3.2 the ideal I given in the proof of Theorem 3.3 is the
minimal normal WC ideal on x, and hence is the H i-indescribable ideal.

§ 4. Weak forms of distributivity. In this section we present some results con-
cerning the weak forms of distributivity given in Definition 0.1, and in particular we
we will show that such forms of distributivity are related to partition relations of the
form I'* - [I*T} ..

Firstly we mention the corresponding versions of [14, Theorems 1, 2 and 4]
which hold for “weakly distributive ideals”. As the proofs are similar to those in [14]
we leave the details to the reader.

THEOREM 4.1. Suppose p<, 1, A<x; then I is (u, <1, 2)-distributive iff
whenever D is R(I)-V-generic and fe V¥ D with f: i — A, there exists g € V such
that g: pu — P() and for each o.<p, lg@)|¥ <n and f (@) e g(«).

A similar result may also be stated for the case p = x» (see [14] or §2).

TrroreM 4.2. Suppose 1t is a cardinal, p<; then Iis (u, <o, x)-distributive
iff for every minimal unbounded I-function h, {£e dom (/)| f(h(®))<mel

COROLLARY 4.3. For p<u, Iis (u,x)-distributive iff YA<u(¥ <x) and I is
(i, <=, %)-distributive.
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CoOROLLARY 4.4. If I is normal and (n, <, x)-distributive for each p <y,
then R, e I*.

Recall that Gy is the ideal game studied by Galvin, Jech and Magidor [10].
In [15, Theorem 2.10] we showed that if Nonempty has a winning strategy in G,
then for every minimal unbounded /-function f, {¢edom{h)| cf(h(&)) = w)eT;
hence we have

COROLLARY 4.5. If Nomempty has a winning strategy in Gy then [ is
(w, <u,x)-distributive.

We now move on to partition relations. We wish to show that weak forms of
distributivity are equivalent to simultancous partition relations. Firstly we need the
following

LemMa 4.6. Supposé n is regular, 1 < A <x and I is weakly selective. Then the
Sollowing are equivalent:’ :

@) I'is (%, <n, A)-distributive;

() if A€T* then for any SJamily of functions f,: A — A (x<3), there is
a BeP(4) NI and a function t: % — x such that for each o < x, | f{B—t(@) <7;

(©) if AelI”™ then for any family of functions Sgr &= A (E<n), there is
a BeP(A) N I* and a function s: x —~ [A]™" such that for each (€, xle B, if
a<¢ then so) € s().

Proof (a) — (b). Suppose A&t and f,: 4 — A for cach o <x. By »x-com-
pleteness, for o<z, W, = {f;7({e})| e <iand £ (oM e I*} is a disjoint I-par-
tition of A of cardinality <A, and hence by (x, <n, A)-distributivity there is
a CeP(d) n I such that for each <, |W, } C| <n. For each £e C let g(&)
be the least o such that £, *({ f(&)}) ¢ W, } Cif such an o exists; g(¢) = % otherwise.
Clearly each | f,(g™*({%}))} < n, and hence if g~ *({x}) & I'" we are finished. Otherwise,
g7 {xel, E= C—g~'{x))eI* and g } E must be I-small. Hence by weak
selectivity there is a Be P(E) n I'* such that ¢ | B is injective and so we may find
a function f: % — % such that for each o <% and e B—t(n), g(&) >« and hence
| f(B—t@)| <.

(b) — (c). Suppose Ae I'* and sgr &= A for cach £ <u. Fora<wu and £ d
let £,(€) = sg(o) if a<&; f,(&) = 0 otherwise. Let Ee PAYATT and ¢: %~ % be
such that for each o <, s(a) = f(E~1(c)) has cardinality <. Let

C={6<u| Va<d,t{x)<d};
then C'is closed unbounded in %, and so by weak selectivity there is a Be P(E)Y N I

such that for each {, x} € [B)*thereisa d & Cwith & <§ < ¥ (see [5, p. 60, Lemma)).
Hence if {¢, x} € [B]* and a< ¢ then t(x) < ¥ and therefore

50 = £.00 e f{E~t @) = 5() .

(©) — (a). Suppose 4 e I* and (W,| a <x) isa sequencs of disjoint Z-partitions
of 4, each of cardinality < . For o < let byt W, — 2 be injective, and for £ e 4
let se: &= 4 be given by s,(B) = h(Wy(©) if ¢ Wy sB) = 0 otherwise. If

©

icm

More on distributive ideals 123

BeP(A)nI" and s: x — [A]" are such that for each {€, 2} e[B]* and B <,
5,() e s(B), then clearly for each a<x, |W, } B|<y. W

In fact we will not make further use of property (c). It is included here as it
clearly relates to Theorem 4.1 and also to a combinatorial equivalent of weak com-
pactness due to Baumgartner [2, Theorem 5.4].

THEOREM 4.7. Suppose n is regular, n < 1 < x, and I is weakly selective. Then I is
(%, <n, W)-distributive iff whenever Ae IV, n< w andf,: [A]" - A(a<n)isa Sfamily
of functions, there is a Be P(A) " I and a function t: % - % such that for each o < %,
[£L[B=1()]")| < n.

Proof (=). By induction on n; the case n = 1 is proved in Lemma 4.6; hence
suppose AeI* and f,: [A]"*! — A for each o <. For cach (x, &) exx A define
gz: [AT" = A by
if min(a) > ¢,
otherwise

o _ JSE va)
gia) = 10

for each a e [A]". By inductive hypothesis there is a Be P(4) n I'* and {hel @<}
such that for each (z,{)exxd, h,: A—» and |g{([B—h(OT) = t5i<n. By
Lemma 4.6 there is a Ce P(B) n I and a function ¢: % — % such that for each
a<x {1§ ¢eC—1t(@}e[n]™", and hence since y is regular,

0 =U{t EeC—tw)}<y.

For (v, &) e nx(C—1()) let §: o, » gi([B—h(O)]") be onto and for a <,
B<o, and £eC let
if £x1(a),
otherwise .

50 = {(’f(ﬂ)

By Lemma 4.6 we may find an E€ P(C) n I™ and {o§| o <x, f<g,) such that
op<w and |sz(E—of)| <n whenever a<x and p<g,. Let o, = | {0}l f<a,}
then o, <x and | () {j(E—0) B<el<n.

For a<x let C, = {6<u| VEedn A4, h(&) <5} and

C,={0<x| Yu<d,0eC,},

then C, is closed unbounded in » and as in Lemma 4.6 we may find an Fe P(E)n I't
such that whenever {¢, y} € [F]* there is a §& C, with E<d<y.

Suppose a<x and {&} uae[F—(au t(@) ue)lt with ¢<min(a). Pick
d€ C, such that £<§<min(a); then 6>a; hence deC, and h(& <d. So
g¥(a) € gi([B—h(5)]") and since &3> t(x), there is a B < g, such that gi(a) = t3f)
= s5y() e U [sH{E~0,)| B<g.}. Also f({£} U a) = g¥(a), hence

IA(lF= (v t@ v eI ) <.

(+) is immediate from Lemma 4.6. W
Note that to obtain an equivalent of (%, < 5, 2)-distributivity we have had to
use » many partitions. Whilst it is easy to show that just one such partition implies


GUEST


124 C. A. Johnson

(o, <, 2)-distributivity (using the fact that if {W,| n<w} are I-partitions of
cardinality <2 we may assume, by refining if necessary, that Wy = W, = W, » .)
we do not know that, say, (w, <7, A)-distributivity is implied.

Similarly we may prove the following.

THEOREM 4.8. Suppose y is regular, 1 < x, then I'is normal and (%, <y, x)-distri=
butive iff whenever AeI™, n<w and f: [AV = % (@ <) is a fumily of regressive

Let us say that 7 is strongly (%, <, »)-distributive ilf whenever A e 1" and
(W, w<uy is a sequence of disjoint I-partitions of A, there is a Be P(A) A [*
and a A<w such that for each ¢ <, |W, } Bl <A

TueorEM 4.9. [ is normal and strongly (%, <, w)-distributive iff whenever
Ael*, n<o and f: [A" = % (e <) is a fumily of regressive functions, there is
a BeP(A) 1" and a l<n such that for each o<x, | f,([B— (41" < A,

We leave to the reader the proofs of Theorems 4.8 and 4.9 and also the deri-
vation of the analogues of Lemma 4.6 (c). .

Of course, if [ is n-saturated it is clearly (%, <y, %)-distributive, and in this
case it is known that a stronger partition property holds.

TreoreM 4.10 (Solovay). Suppose n is regular, w <n <3 then 1 is normal and

<o

n-saturated iff w — [I*]72,.

Using a forcing argument similar to that of [14, Theorem 9] we give a new proof
of Solovay’s theorem.

Proof (—). By x-completeness it suffices to show that x — [} <} holds for
each n <. We proceed by induction on #; the case n = 1 is immediate from nor-
mality and n-saturation.

Suppose f: []"*! — x is regressive. Then R(J) |- “if: [jn]*** — Jx 18 regressive”.
Let D be R(I)-V-generic then by a well-known lemma of Prikry (see [16, § 11])
and [13, Theorem 2.1], in ¥'(D), I generates 2 normal n-saturated ideal J, and hence
by inductive hypothesis applied in V(D) there is an X eJ* and an § < » such that
ISP® <y and for each {tis e, LY e [XT, I Gy, Lv))e S. By
n-saturation and the definition of Jthereis a Ye PXynVnI*andaTePG)n V
such that |7|" <% and ST

Hence R(I) forces these facts, and so in ¥ now we may find an I-partition of %,
1B e<p<n} and sets {¥,| a<p}cI* and {7} a< f) < [%]°" such that for
cach a<fand {{1, {ay e, LY € LXL Btk “f({L11 Lay oo, Ly ) € T

Let V= N {Y,| a<p} and T= J{T,] «<p}. Then Yer* IT)Y <%, and

for each {{1. Lo, ., LY IXTS RV 9 (L5 Loy o Ly, ®)eT™.
Suppose

C={e YA, by LY e LY N &, £ ({L1s Loy on L, BeTrel™;

then by normality there is a {4,850 s {,} € [Y] such that

E={e Y (L1l i by, E) ¢TI,
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and hence E - “jf ({{;. {50 {y ¥} €T = T”, a contradiction. Therefore Ce J,
Y—Cel* and f([Y-CI"*HeT

(=) is trivial. B

Trivially, Theorem 4.10 could be strengthened to accomodate many such
partitions since, by normality, if g: 2 — I* then 4g e I'*. Also Theorem 4.10 suggests
the problem of obtaining an equivalent of I* — [I*]7 <, (or of % many such parti-
tions) in terms of distributivity. However, the natural candidate for the analogue of
(w, %) <°-distributivity (see [14, Theorem 12]) seems rather artificial and so we omit
the details.

The next theorem gives us additional information about the partition property
It - [l*],.z‘q, and also brings us to (x, <, x)-distributivity.

TaEOREM 411 If It - [I*12 <, then

(a) R, el*;

(b) whenever Ael™ and {Si| Ee A) is a sequence such that for each Ee A,
[Sel = €] and S <&, there is a Be P(A) n 1™ such that |S; A S,| = |E| whenever
€. e (B

(c) s has the tree property;

(d) I is (%, <=x,%)-distributive.

Proof (a). Clearly, I is normal; hence if R, ¢ I* there is a u < such that
A= {E<x| coff = p}el*. Forecach & e 4 let S; = & be cofinal in ¢ in order type p,
and for {&, x} € [4]? let f({€. 1)) = U S 1 S,. f is regressive and so we may find
a BeP(A)nI" and ¢ <x such that f([B]*) =¢. Hence if g(&) e Sy—(o+1) for
each £ e B—(p+1), then g is regressive and injective, contradicting the normality
of I.

(b) This is similar to (a); if (S &e A) is as given then for {£, v} e [4 n R,]?
define f({&, x}) = 0 if |S;n S, = &; f({&, 1)) = U S: 0 S, otherwise.

(c) Suppose T = (%, <yp is a tree of height » such that for each a <x, T,
(the ath level of T') has cardinality <. For £ <x let S; = {{ <#| { <z¢&}. Clearly,
we may assume that for each &<, ¢e{J {T,| a<<¢&}, and if w <z, lim(x) and
¢, xeT, with Sy = §, then ¢ = y. By normality,

A={¢eR) teT; and S;c=&}el*,

and so by (b) there is a BeP(4) nI* such that [S;n S, =¢ whenever
{¢, x} € [B)®. Clearly B forms a branch throngh 7.

(d) Suppose 4 e I'* and {W,| «< ) is a sequence of disjoint 7-partitions of 4.
We first construct a sequence of disjoint /-partitions of 4, (T, « < ») such:that for
each o< f<u, T,< W, and |T, } X| < whenever Xe T;. Let T, = W,; hence
suppose < x and we have coustructed (T,| « < f) satisfying the given properties.
I f=y4+1 let Ty={XNnY| XeT,,YeW,and X Yel*}. If lim(f) let
h: U {T,] « < B} — xbe injective; then by x-completeness E = {¢ & 4 n R,| Vo< §,
EeUT, and h(T(8) < &} e (1] A)*. For ek let k(&) = | {A(TL) x<pB}; then
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by normality T = {k~'({o})] o<x and k™ '({eD e 1"} is a disjoint I-partition
of A such that for each 2 <fB and XeT, |T, } X| <x. Let

Ty={XnY XeT,YeWand Xn Yel™}.

In either case it is easy to check that (7| o< f) has the required propertics,
lhence we have our sequence {7, «<x). For each a < let g,: T, — % be injective
and such that ¢,(T;) N ¢4(Ty) = & whenever o < f<x, then by normality

B={teAnR|Vu<é, EcUT, and g(TL)) <&} e (1] A)" .

For £e B let S = {qT (&) a«<&}; then by (b) we may find a Ce P(B)n It
such that for each {&, z}e [CT% |Sen S = &

Given o <, pick € e C—(a+1). Then for each x e C—(&-+1) there is o f8 such
that e < f < & and Ty(&) = Ty(y). Hence C— (&1 & U {TY(d)] a < fi <&} and since
|T, } T4l < = whenever & < f < &, we must have |7, b C| <. Finally since T, < W,,
W, }Cl<x &

We will see shortly that the converse of Theorem 4.11 (d) does not hold.

THEOREM 4.12. The following are equivalent

@) I is normal and (%, <x, x)-distributive;

(b) whenever Ae 1%, m<w and f: [AT""" — % is such that f(a) < max(a) for
each ae[A]"*, there is a« Be P(A) n I and a function g: [B" — x such that
Sor each ac [BI"*?, f(a) < g(alm).

Proof (a) — (b). Suppose AeI* and £ [4]""" — » is as given. For g & [A]"
and g<x let Xf = {{ed| £>max(a) and f(a U {¢}) = o} and

W,={X}| g<x and Xlel"}.

By normality W, is a disjoint I-partition of 4; hence there is a Be P(4) n I such
that for each ae [A]", |W, } Bl <=x. Let g: [4]" — % be given by
g(@ = Ule<ul XfeW,}B). Then by normality we must have that

C={{eB|Ibe[Br ", JbulEh>gbel,

and hence B—C is our required set.

(b) — (a). Normality is clear from the case m = 0. We first show that R, & [*.
Suppose not; then by normality there is a v < 3 such that 4 = {E<m| ofé == vielt,
For e A let {&| a<v) be a strictly increasing sequence cofinal in & and for
{&, 1) e [41* let £({&. ¥}) = 7, where o is the least ordinal less than v such that
%> & By hypothesis there is 8 BeP(A)n /% such that for. cach te B,
@) = U {fU& DI xe B=(E+ 1)} < Pick {£% §<v} < B such that for cach
<y, € U {g(&")| f<8}; then for each f<y <

P<fe en<a <& <sen ey,

Hence, for each a<v, &< U {gEh) B <v} <&, contradicting the choice of

&l <),
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Suppose now that 4 eJ* and (W,| <) is a sequence of disjoint I-parti-
tions of 4. As in the proof of Theorem 4.11 we may assume that for each « < f < s,
| W, + X| <x whenever X e Wy, and if q: U {W,] « <x} — » is injective then by
normality, C = {ye 4| Ya<y, xe U W, and g(W, (1) < x} € (/|4)*

For {&, z} € [CT%, let f({&, x}) = q(We(x)); then by our hypothesis we may
find an Ee P(C) n I such that for each &€ E, |{f{E Dl re E—(E+D} <,
and ‘hence |W,}E|<x So, given «a<x, pick feE—(a+1); then
W, tEc U{W, } X| Xe W, } E} and since |W, } X|<x for each XeW,,
[W,}El<x. R

It is immediate from Theorems 4.8 and 4.9 that a version of Theorem 4.12
() — (b) also holds for (%, <#,3x) and strong (¢, < x,x)-distributivity. For
example,

THEOREM 4.13. If 1 is regular, § <» and 1 is normal and (¢, <n, %)-distributive
then whenever Ae i+, m,n<o and f: [4]"** — % is such that for each ae [A""",

f(@) <min(a—alm), there is a BeP(4) n I such that for each b e [BI",

Hf@ v a) ae B, min(a) >max(B)} <7 .

Again just one such partition does not seem to imply the appropriate form of
distributivity. Also the corresponding version of Theorem 4.13 for normal
(%, < 2x,%)-distributive ideals does not hold in the case when n3> 2: Consider the
case where x is strongly inaccessible and I is normal, atomless and x-saturated;
then trivially I is (%, < x, %)-distributive but by Theorem 4.11 (¢), I* +~[I +],2,<,,
(since I naturally gives rise to a x-Suslin tree, see [20, p. 50]).

However, in the case where x is weakly compact, (%, <, »)-distributive
ideals on % do satisfy a partition property.

THEOREM 4.14. If % is weakly compact and I is weakly selective and (%, <%, %)-di-
stributive then 1T — (I'", %)%

Proof. By [14, Theorem 8] we need to show that Jis WC. By Corollary 4.3 I is
(u, %)-distributive for each p < 1, 50 suppose 4 € I'* and {W,| « <) is a decreasing
sequence of disjoint I-partitions of 4. By (¢, <u,x)-distributivity there is
a BeP(4) n I't such that for each o <, | W, } Bl <3, but then () {W, } B| a <}
naturally forms a tree (whose «th level is W, } B) which, by weak compactness, has
a branch {(X,| ¢<x). Clearly, {X,| «<x) is a branch through {(W,] a<x). B

Hence, by Theorem 3.1, if » is weakly compact and I is normal and
(%, <u,x)-distributive then I extends the IT I-indescribable ideal on x. Indeed,
even in the case where x is not weakly compact, normal (¢, <3, x)-distributive
ideals have properties reminiscent of indescribability.

TueoreM 4.15. If I is normal and (%, < %, x)-distributive then for each Se NSt
{£eR,) S EeNS}elx

Proof. Suppose not; then by Corollary 4.4 there is an Se NS such that
4={EeR] SnEeNSel". Foréedlet C; = ¢ be closed unbounded in £ such
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that C;nS =@, and let fy: ¢ — ¢ be the normal enumeration of Cs. Then
AW “[fe VD and [ f]: % - %7, and so by Theorem 4.1 there is a Be P(4) A [+
and a function g: » — % (g € V) such that for each a<x, Bl “[£](x) < g ()",
Hence by normality, E = {¢ € B| Va < ¢, fu(e) < g(0)} & (1| B)*.

Let C= {6 <x| Va <4, g(x) <3} then Ce NSy, and so we may findade C n §.
Pick & € E—(d+1), then for each o < J, fia) < g () < & and hence, since i is normal,
4 = f{8)e C; 0 S, a contradiction. B

COROLLARY 4.16. (V= L) If I is normal and (%, <, x)-distributive then
It = (I, x)%

Proof. This follows immediately from Theorems 4.14, 4.15 and Jensen’s
tesult [9] that if ¥ = L, then x has the stationary reflection property iff » is weakly
compact. W

Recall [8, Definition 0.1], % is 0-Mabhlo iff » is regular and for o > 0, 3¢ is o~ Mahlo
iff for each f<u, {£<x| & is B-Mahlo} & NS;f. Theorem 4.15 easily yields the
following

COROLLARY 4.17. If I is normal and (%, <x,x)-distributive then

{&€ <u| & is &-Mahlo) e 1%,

T is said to be an M-ideal if M(X) = {& <u| cf¢>w and X N & is station-
ary in E}el* whenever Xel* It is well known (see [16,§ 11]) that if A e NSF
then NS,|4 is not an M-ideal, and hence we have

COROLLARY 4.18 (a). If I is normal and (x, <, x)-distributive then I is an
M-ideal.

(b). If Ae NS, then NS,|4 is not (x, <=x, a¢)~distributive.

% is said to be weakly ineffable iff whenever {Ss| &<y is a sequence such that
for each & <, Sy = |£| and S: ¢, there is a Be NS such that |8 S, = [¢]
wfenevei 2{6, 1} e [BP. It follows immediately from Theorem 4.11 (b) that if
IT - [I*] <, then % is weakly ineffable and indeed a more detailed examination
re'veals that the weak ineffability of s follows from i —» [NS.) ]f, <x- This together
with Theorems 4.11 and 4.15 casily yields the following corollary whose proof we
leave to the reader.

COROLLARY 4.19. If I — [[*P ., then [E<x| & is weakly ineffuble} e I*.

§ 5.. Cl(')s.ure of 'the generic ultrapower. In this section we briefly mention a form
of: dlsFrlbutmty which characterises a closure property of the generic ultrapower.
117 ;ald tobe (4, <y, co)-distributive iff I'is (u, <, A)-distributive for each ordi-
nal A

THEOREM 5.1. For p<u, Iis (u, <x*, oo)-distributive iff R(I) I
. , , , 0)~di tive i Ik “for each f,
i f: > VD then fe V¥ D",

Proof (~). If Ael* and fis an R(J) nume such that A |- “fr = VD
then for each @ < u we may find an I-partition of 4, W, = {XJ 8 <3,} and a family
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of functions {g% §<84,} such that for each §<§,, dom(gl) = » and
X2 f (@) = [g3]" ‘
By hypothesis there is a Be P(4) n I'* such that for each x <, |W, | Bl <x, say
(relabelling if necessary) W, } B ={XJ| <, <x}. For é€B and a<pu let
h(E){(@) = gi(&) where § is the least ordinal less than f, such that & e X2; h(£)(x) = 0
is no such § exists. It is now easy to check that Bl “Va <p, f(2) = [#]()".
(+). The case u <o is trivial; hence suppose u 2w, de It and (W] « <y
is a sequence of I-partitions of A. Clearly, 7 is precipitous and if cfy < then
R I+ “jy=U {jv| v<y}” (see [12, Lemma 2.2.3]). Hence we may find an injective
funotion
. w} U a<p} - {yeOrd RID I “y =9}
Also A “Ya<u,|W,n D| =17, and so we may find a BeP(A) nI* and
a function g: x — V (ge V) such that for each &<x, g(€): u— Ord and
B “Ya< u([gl(@) = h(X) iff Xe W, n D)”. Suppose e < pu and Xe W, | B then
Bn Xk “Xe W,n D", and so, by Lo§’s theorem

Wt Bes{XeW] IeB, 9O = h(X)}.

Hence (W, } Bl<x. M

Theorem 5.1 has also been proved (independently) by others. The theorem may
also be proved for the case u = x.

In [4] Baumgartner and Taylor defined an ideal I on w, to be presaturated iff I is
,-preserving (i.e. R(I) I+ “wY is a cardinal™) and precipitous. It is clear that if J is
an (o, <o,, ©)-distributive ideal on «, then I is presaturated - (since
R IF “|o}| = @”, see [5, p. 52]), and that the converse holds for w;-saturated
ideals (see [4, Theorem 4.2]). Also, as in [4, Theorem 5.10] we may show (see
[15, Theorem 1.17]) that (w, < w,, o0)-distributivity is a strictly weaker notion
than o,-saturation, but are unable to construct a presaturated ideal which is not
(w, < w,, o)-distributive.

Baumgartner and Taylor also proved [4, Theorem 4.3] that if I is an @, -pre-
serving o,,-saturated ideal on w, such that for 1 <m<a, R(I) “cf((oZ)> ",
then I is presaturated. The following strengthening of this result is clear and we
leave the proof to the reader.

THEOREM 5.2. Let I be an w,,-saturated ideal on oy, then I is (0, < 0, 00)-distri-
butive iff for each natural number m>1, R(I) I “of (wh) > .
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Generic properties of proper foliations
by

Kenneth C. Millett (Santa Burbara, Ca.)

Abstract. The basic result in this note is the existence of an open dense saturated subset of
aves without holonomy in a foliation of a paracompact manifold for which every leaf is embedded.
nder the additional hypothesis of codimension one, there is an open dense saturated subset con-
sting of lcaves having open saturated neighborhoods which are foliated as products.

Let M denote a paracompact m-dimensional manifold and § a codimension k&
foliation. A leaf of % is said to be proper if its leaf topology is the same as its sub-
space topology in M. If every leaf of a foliation is proper the foliation is said to be
proper. Examples of proper foliations include large classes of foliations: compact
foliations (in which all leaves are compact), closed foliations (in which all leaves
are closed in the subspace topology), Reeb type foliations of T2 or §?, as well as
two further examples worthy of special notice.

The first example is a closed foliation of R® by planar surfaces each of which is
diffeomorphic to the complement in R of the matural numbers on the x-axis.
A construction of this type was suggested by Palmeira. List the rational numbers
in R by {g}/2; and consider the foliation induced on the complement of
X ={(x,0,2)] x=jand zzq, for some 1SjSoo} in R® by planes of constant
z-coordinate. There is a diffeomorphism of R3*\X onto R?, such that every leaf
is closed, giving the desired foliation of R3. @

The second example is a foliation of T%x [0, 1], which could be “doubled”
to provide a foliation of T3 if desired, and which arises as a smooth deformation
of the longitudinal foliation of T'? by circles. This deformation is illustrated, in the
universal cover of 7%, in Fig. 1, where (i) denotes the initial longitudinal foliation
of T% % {0}, (i) denotes an intermediate foliation of T2 x {¢}, 0S¢ 1, and (jii) denotes
the limiting “Reeb type” foliation of 7% x {1}.

Although foliations in general can exhibit a startling complexity of structure
one might hopo for some sort of regularity in the context of, for example, compact
foliations. Indeed, this is the case for codimensions 1 and 2. The situation for co-
dimension 2 was first described by D.B.A. Epstein [2] via a suprisingly delicate
argument for 3-dimensional compact manifolds. This was later extended to higher
dimensions independently by Edwards, Millett, and Sullivan [1] and by Vogt [12].
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