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Generic properties of proper foliations
by

Kenneth C. Millett (Santa Burbara, Ca.)

Abstract. The basic result in this note is the existence of an open dense saturated subset of
aves without holonomy in a foliation of a paracompact manifold for which every leaf is embedded.
nder the additional hypothesis of codimension one, there is an open dense saturated subset con-
sting of lcaves having open saturated neighborhoods which are foliated as products.

Let M denote a paracompact m-dimensional manifold and § a codimension k&
foliation. A leaf of % is said to be proper if its leaf topology is the same as its sub-
space topology in M. If every leaf of a foliation is proper the foliation is said to be
proper. Examples of proper foliations include large classes of foliations: compact
foliations (in which all leaves are compact), closed foliations (in which all leaves
are closed in the subspace topology), Reeb type foliations of T2 or §?, as well as
two further examples worthy of special notice.

The first example is a closed foliation of R® by planar surfaces each of which is
diffeomorphic to the complement in R of the matural numbers on the x-axis.
A construction of this type was suggested by Palmeira. List the rational numbers
in R by {g}/2; and consider the foliation induced on the complement of
X ={(x,0,2)] x=jand zzq, for some 1SjSoo} in R® by planes of constant
z-coordinate. There is a diffeomorphism of R3*\X onto R?, such that every leaf
is closed, giving the desired foliation of R3. @

The second example is a foliation of T%x [0, 1], which could be “doubled”
to provide a foliation of T3 if desired, and which arises as a smooth deformation
of the longitudinal foliation of T'? by circles. This deformation is illustrated, in the
universal cover of 7%, in Fig. 1, where (i) denotes the initial longitudinal foliation
of T% % {0}, (i) denotes an intermediate foliation of T2 x {¢}, 0S¢ 1, and (jii) denotes
the limiting “Reeb type” foliation of 7% x {1}.

Although foliations in general can exhibit a startling complexity of structure
one might hopo for some sort of regularity in the context of, for example, compact
foliations. Indeed, this is the case for codimensions 1 and 2. The situation for co-
dimension 2 was first described by D.B.A. Epstein [2] via a suprisingly delicate
argument for 3-dimensional compact manifolds. This was later extended to higher
dimensions independently by Edwards, Millett, and Sullivan [1] and by Vogt [12].

§ ~— Fundamenta Mathematicae 128, 2
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Examples of Reeb [9] and Epstein [2] showed that 'such ‘structurc was not possible
for noncompact manifolds. Later an example of Sulflivan [;I(). 111, followed by cxam-
ples of Epstein and Vogt [5] and Vogt [13], showed that in general m.x‘c must expect
very complicated structure for compact foliations of compact manifolds.

(i)

{1}

{iii}

Fig. 1

There is a fundamental concept developed in Epstoin [2] whioh has proved
to be central to succeeding studies of compact foliations. This is the Epstein filtration
of the subset of leaves having holonomy. This arises by considering a fixed riemannian
metric on a paracompact manifold M, the induced riemannian metric on the tangent
bundle of the foliation and the subsequently induced volume function on each leal
of the foliation. Although the essential facts for his discussion will be presonted
below the reader is referred to Epstein [2, 3] or Edwards, Millott, and Sullivan 1],
especially sections 4 and 6, for a detailed discussion. This volume function is lower-
semicontinuous. As a consequence, it is continuous on an open dense saturated
subset M, of M. Because of the continuity the leaves of M, have trivial holonony
and, therefore, by the Recb stability theovem [9], are stable, i.c. have open saturated
neighborhoods in M which are foliated as a product, As & consequence one says
that the generic leaf of a compact foliation has trivial holonomy and, furthermore,
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is stable. The goal of this paper is the study of the extent to which this is also true
for proper foliations. i o

Returning to the definition of the filtration, let X, 1 = M M, denote the closed
saturated nowhere dense subset of leaves for which this volume function is discon-
tinuous. Since X, is locally compact, the restricted volume function is continuous
on an open dense saturated subset of X; and, as a consequence, there is an open
densc saturated subset of X; and, as a consequence, there is an open dense saturated
subset of M, M, containing M; such that M,\M; is an open dense saturated
of Xy of leaves with relatively trivial holonomy and therefore, by a generalization
of the Reeb stability theorem, having relatively open saturated neighborhoods
foliated as products, i.e. relatively stable leaves.

This process may be ocontinued to define an ascending family of open dense
saturated subsets {M,},<, indexed by a countable ordinal y, such that (i) M, =@,
(i) M, = M, (iii) if o is a limit ordinal then M = U My, and (iv) if o is not a limit

p<a

ordinal and is not 0 then M,\M,_; is an open dense saturated subset of leayes
of M\M,_, having relatively trivial holonomy. This family is related to the “fine”
Epstein filtration [1] of the set of leaves having holonomy by taking complements,
i.e. X, = M\M,. Such a family of dense open saturated subsets need not exist in
general, even for smooth codimension 1 foliations of compact manifolds, as exhi-
bited by the examples in Epstein, Millett, and Tischler [4] where the following theorem
was proved:

THEOREM. Let M be a paracompact manifold with a foliation of codimension k.
Let T be the union of «ll leaves with trivial holonomy. The T is a dense Gy in M.

In an example in [4] the set T has no interior. This occurs, essentially, because
the leaves without holonomy are not proper. Even in the case where the leaf is proper
and the holonomy group is trivial there are still problems as shown by a recent
example of Inaba [8]. In an earlier paper [7], Inaba shows that there is, however,
a natural condition which implies openness, at least for codimension one foliations.
Employing the definition of the holonomy pseudogroup provided in [4], we shall
say that a leaf L of a foliation (M, ) has locally trivial holonomy pseudogroup if
there exists an open transversal, 2({p} x Q) which intersects L and such that each
Jeaf of (M, &) mests the transversal in at most one point. It is easy to see that if
a leaf has locally trivial holonomy pseudogroup, then its holonomy group is trivial.
The converse is not true, even for proper leaves.

TrHeOREM (Inaba [7]). Let M be a smooth manifold and let § be a continuous codi-
mension 1 foliation. If L is a proper relatively compact leaf with locally trivial holonomy
pseudogroup then L is contained in an open saturated neighborhood foliated as a product,
ie. L is stable.

The example of the smooth codimension 1 closed foliation of R3, described
earlier, has the property that all leaves are closed and have locally trivial holonomy
pseudogroup and yet no leaf is stable. In the second example, giving a proper foliation
of T? % 10. 1], the non compact leaves are relatively compact and have locally trivial
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holonomy pseudogroup and yet not stable showing the necessity of the condimen-
sion 1 assumption.

A foliation will be called relatively compact if each leaf of the foliation is relatively
compaot, i.e. is contained in a compact subset of the manifold. The following theorem
is an extension of the holonomy theorem of Epstein, Millett, and Tischler stated
above.

THEOREM 1. Let M be a smooth paracompact manifold and let & be a proper
relatively compact continyous codimension 1 foliation of M. There is an ascending
family of open dense saturated subsets {M,}af_ y indexed by a countable ordinal, v, such
that (i) My = @, (i) M, = M, (iii) if o is « limit ordinal then M, = U My, and

f<u

(iv) is not a limit ordinal and is not 0, then M\M,.., is an open dense saturated subset
of relatively stable leaves of M\M,..,. :

COROLLARY 2. The genericr‘ leaf of a proper relatively compact C° codimen-
sion 1 foliation of a smooth paracompact manifold is stable.

The corollary is simply the existence of M, in the theorem, For higher codi-
mensions and for not necessarily relatively compact foliations we are not able to
employ Inaba’s stability theorem. There is, nevertheless, the following generaliza-
tion of the holonomy theorem whose statement and conceptual approach is modeled
on the corresponding result of Glimm [6] for locully compact transformation groups.

THEOREM 3. Let M be a paracompact manifold and let & be a continuous co-
dimension k foliation. Then the following are equivalent

(D) § is a proper foliation,

(2) for each leaf of the foliation there is an open transversal meeting the leaf in
exactly one point,

(3) each leaf is relutively open its closure,

(4) the leaf space M| is T,

(5) there is an ascending family of open dense saturated subsets {M.}ue, indexed
by a countable ordinal, y, such that (i) My = @, (i) M, = M, (iii) if o is & limit ordinal
then M, =ﬂL<) My, and (V) if « is not a limit ordinal and is not 0, then MNM, . is

12

an open dense saturated subset of leaves having locally trivial relative holonomy pseudo-
group in M\M,..,.
As above we have the following:

COROLLARY 4..The generic leaf of a proper foliation of a paracompact manifold
has locally trivial holonomy pseudogroup.,

With these theorems and current examples of proper foliations, it appears reason-
able to conjecture that Theorem 1 can be extended to higher codimensions. This
seemns, at least for the present, an attractive conjecture since the present proof applied
to various test examples gives precisely the property.

Since Theorem 1 follows directly from Theorem 3 and Inaba’s Theorem, the
remainder of this note will be devoted to the proof of Theorem 3.
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(1) ~ (2). Suppose that § is a proper foliation, i.e. that each leaf of § has the
subspace topology of M. Thus, given xe L e § and a euclidean neighborhood of x
in L, there is an open subset of M whose intersection with L is precisely the neigh-
borhood. Within this open set there is an open transversal meeting the leaf in exactly
the point x. B

(2) — (3). Let L be a leaf of § and x € L having an open transversal Q such that
Q n L = {x}. The saturation of Q, U, is an open saturated subset of M containing L.
Suppose that ye U n (L\L) # @. Then L,, the leaf containing y, is contained in
U n (INL) since it is a saturated set. Therefore, Vo€L,nQ #@. Let J be an
open transversal at y. Since y € I\L, there is a sequence of points {x;}i2y in § n L
converging to y. The holonomy pseudogroup map taking a neighborhood of y in §
to a neighborhood of y, in Q takes a final segment of the sequence {x:} to a sequence
{xi} converging to y, in Q. Since {x}cLn Q= {x}, this is impossible because
L,# L. Thus Un(I\L) = &, and hence L is relatively open its closure.

(3) = (4). Suppose that L, and L, are two distinct leaves of §. If L, L, there
is a saturated open set U = M\L, such that L,cUand L, n U = @. This provides
an open subset of M/§ containing {L,] and disjoint from [L,]. If, however, L,cL,
there is, by (3), an open set U of M such that U n L, = L_. Its saturation, U, gives
a saturated open set containing L, and missing L, and, therefore, a neighborhood
of [L,] missing [L,] in M/&. Therefore, M/F is T,. W

(4) -+ (5). Suppose that M is T;. Let {Q;};c; be a collection of transversals
arising from a locally finite family of foliation charts such as constructed in [4] for
a locally compact Hausdorff paracompact foliated space, hit Q= R*. Let Q denote
the disjoint union of the Q; and let # denote the equivalence relation induced on Q
by the foliation, ji.c. (x,»)e # < Qx Q if and only if x and y lie in the same leaf
of §. Then Q/Z is naturally homeomorphic to M/F.

Let |lu~v]| denote the standard norm on R*. Define a family of functions

0t 0;x0;,—~[0,0) by
odx, ¥) = max{d(x, y), d(y, ¥}

where
d(x, p) = int {7 =h OGN | (9, ) R A Qix 0} .

LumMA 1. (e, ) = O if and only if (x,y)e B Q;x Q,.

Proof. If (x, ) e # n Q,x Q;, then d(x,y) = 0, and hence o,(x, y) = 0. If
(. N¢ERNQxQandpx,y) = Othen L, # L,, L =L, and L, L. Thus [L,]
and [L,] are two distinct points in M/§F and any saturated open subset of M contain-
ing L, contains L, and vice versa. Thus there is neither an open subset of M/ con-
taining [L,] and not [L,] nor vice versa. This contradicts the assumption that MJ/§
is 7,.

LemMMaA 2. p; is upper semicontinuous.
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Proof. First note that d(x, y) is continuous in x. To show that d(x, ) is upper
semicontinuous it, therefore, is sufficient to show that it is upper semicontinuoys
in y, i.e. we must show that for any se R the set {y|d(x, y) <} is an open subset
of Q;. Thus suppose we are given Xy, o) € Q; such that d(x,, y,) = < 4. By the
definition of d there is a 3" € Q, such that (yy, ) e # n Q;x Q, and H/z,(x(,)-h[(y')“
<1+ (s—1)/4. There is an open neighborhood of y, & Q;, U, and a holonomy pseudo-
group map of this neighborhood to a neighborhood of ' such that the diameters
of the images of these neighborhoods in R* under 4, arc less thun (s—#)/4. Then,
if we U,

d(xy, w) < [[(x) =N+ (s~ )4 < 14 (s=1)2 < s ,

so that (xy, yo) € U {yld(x,, p) < s}, and henee d is upper semicontinuous, Since
the maximum of two upper semicontinuous functions is upper semicontinuous,
g; is upper semicontinuous. B

Since @;x Q; is a locally compact space, the sct of points of continuity of p, is
a dense Gy subspace, Wy, of Q,x Q,. Since M/ is T}, % is nowhere dense in ;% 0,.
Therefore, W; = W/\(@ n Q;x Q) is a dense subsct of Q;x Q; and g, is positive
on W;. )

LeMMA 3. For each i there is a dense subset of points, Y, < Q,, such that each
ye Y has a neighborhood U, such that U,x U, \ & = A.

Proof. Suppose that (x, p)e W), i.e. (x,)) is a point of continuity of g; of
nonzero value &. There are neighborhoods U, and U,, of x and J, respectively, whose
images under /; have diameter less than ¢/100 and such that if (u, v) e U, x U, then
loitx, »)—a.x, ¥)| < £/100, Suppose that

(u, ) e (.%\A) NUXU, and  (v,v)e(@\4) N U,xU,.

Then (u,v), (u,v"), (', v)e U, x U, A & that g(u, v) < ¢/100 since
0i(, v) <max{[|h,v) -, < ¢/100, |12y )— h,(u")]| < &/100}

b?r the ’deﬁnition of g;. But 99¢/100 < g, (1, v) < 101¢/100 by the continuity. Thus
.elther‘Uxx U, 0 % < 4, in which case we place x in a set Y/, or UyxU,n R4,
in whlllcl? case we place y in 2 set ¥/". Since X, is dense in Q, x @, then either ¥/
or ¥ is dense in Q;, Let Y, denote one of these which is dense. W

The union of all neighborhoods associated to all points of all ¥, gives a dense
open subst of Q whose saturation in M is a dense open saturated subset, My, of
M = M\M,.

LeMMA 4, The leaves of M, have locally trivial relative holonomy pseudogroup.

Proof. We need to show that for a leaf of M\\M,, say L, there is a point
xeLn Q rand a relatively open subset of M 1 M @y, ¥, such that each leal of M|\M,
meets V'in at most one point. This follows directly from the fact that we may choose

icm

©

Generic properties of proper foliations 137

x < Uy = Q; for some y € Y, for some y. Since U, x U, N % < 4 cach leaf of M,\M,
meets U, in at most one point. @

At this point we have M, = @ and have defined M,. We define X = M\M,,
a closed nowhere dense locally compact saturated subset of M. The process is then
repeated with M replaced by .Y, to define M,. Transfinite induction is then employed
to define the collection {M,},<, for some, possibly uncountable, ordinal » satisfying
the conditions of statement (5). :

The fact that y is countable result from a fundamental observation employed
in Epstein, Millett, and Tischler [4] to the effect that the collection of a/ holonomy
maps in a foliation of a paracompact manifold is countable, say {f;};en. Since
each domain and runge is homeomorphic to a subset of R* they have second countable
topologies {Upiey and {Vileay. For cach i there is a maximal «, a;, such that
the holonomy map f; is trivial on M,\M,_,. For each § <« there is a Upe {Uphien
such that f = max{6|U; = M;}. The assignment of f§ to Uj is one-to-one so that «
has a most countably many predecessors. Since the correspondence 7 to o; is a ter-
minal sequence, we scc that y has at most countably many predecessors and, hence,
is countable.

(5) —~ (1). Suppose that L is a leaf of the foliation &. The there exists 2 minimal 8,
which cannot be a limit ordinal, such that L = M. Thus L = M;\M;_,. By prop-
erty (iv) for each x e L there is an open transversal to L contained in M such that
each leaf of M;\M,_,, including L, meets the transversal in at most one point, Thus
any sufficiently small neighborhood. of x in L is the intersection of its product with
a small neighborhood of x in the transveisal. Therefore L has the subspace topology.
Since L was arbitrary, § is a proper foliation. M
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