Remark on the multiplicity of a partition
of a group into cosets®

by
Marc A. Berger, Alexander Felzenbaum and Aviezri Fraenkel (Rehovot)
1. Abstract. We find a lower bound for the multiplicity of a coset partition of a group. This

proves the conjectures of Burshtein and Herzog-Schénheim in a special group setting. Our result
applies to finite groups which satisfy a chain condition similar to solvability.

We shall concern ourselves with finite groups G which contain a chain of sub-
groups

6)) {1} =6G,cGr1c...cG;cGy =G
with
@ [Gi-1: G =p(G—4]), I<k<n,

where p() denotes the least prime factor of m. Such groups will be called pyramidal.
It is well known that the condition (2) implies that Gy <0 G—y, (e.g. [5, Exer. 3.43]),
so (1) is a composition series for G, and G is necessarily solvable. Any supersolvable
group is pyramidal. Our main result is

THEOREM. Assume K, ..., K; are subgroups of and a , ..., a, elements of a pyramidal
group G, such that (C; = a;K;: 1 <i<t) disjointly partition G. If t > 1 then at least

P )
(3) X = [M] +1
of the K; have the same order, where

R L/
god(Kl: 1<i<t)’

@

Here P(m) denotes the greatest prime factor of m, ¢ is the Euler totient function
and [-] denotes the greatest integer function. Note that x = 2, so this Theorem proves

* Research supported by, United States-Ysrael Binational Science Foundation Grant
No. 85-00368 (all three authors).

1 — Fundamenta Mathematicae CXXVIIL 3


GUEST


140 M. A. Berger, A. Felzenbaum and A. Fraenkel

the conjectures of Burshtein [2] and Herzog-Schonheim [4] for pyramidal groups.
In [1] we proved this result for finite nilpotent groups.

The Herzog-Schonheim conjecture asserts that if the cosets (¢,K;: 1<i<1),
t> 1, disjointly partition a (finite or infinite) group G then at least two indices
[G: K] coincide. (It is known that these indices are necessarily all finite, and there
are examples where the K; themselves are all distinct. See [4].) The Burshtein con-
jecture concerns disjoint covering systems of residue classes of integers -— equi-
valently, disjoint coset partitions of cyclic groups — but it readily extends to the
general finite group setting. It concerns the case where g.c.d. (|Kj|: 1<i<t) = 1.
It states that none of the prime divisors of |G| exceed g1, Where 2=q,, q;, ...
is the consecutive enumeration of all the primes, M is the largest number of the X;
all having the same order, and

k=1

%#(M) =min(keN: (g,—1) i1;[1(1——q;1) =M).

Thus, for example, M =1 is impossible, if M = 2 then P(|G|)<7 and if M =3
then P(|G|)< 13. See [2] for a brief discussion of this function %. This (extension
of the) Burshtein conjecture can be considered a strengthening of the Herzog-
Schonheim conjecture for finite groups.

We need several lemmas.

LeMMA 1. Let K, L be subgroups of a finite group G, and let a, be G. Then
aK n bL is either empty or a coset of K~ L, in which case
©) laK A BL| = |K A L]

Proof. If ceaKnbL then aK = cK, bL = cL. Thus aKnbL = cK N cL
=c¢(KnLl). B

LemMA I Let G be a finite group with a subgroup Gy of index p(|G|). For any
subgroup K< G and any ae G, either
©) aK<aGy or aKNbG, £ G, foral beG.

Proof. Let aK intersect precisely r distinct left cosets of G4. By Lemma I
) K] = IaKI =FlEnGy.
Thus r“GI. Since r < p(|G|) we must have r = 1 or r = p(|G]). ®

Lemma INN. Every pyramidal group G contains a unigue Sylow P(|G|)-subgroup
(which is therefore normal).

Proof. We use induction on |G|. The case |G| = 1 is trivial, so we proceed to the
induction step. If G is a p-group then G is its only Sylow subgroup, so we may assume
® (G < P(Gl).

Let G have the chain (1). By the induction hypothesis G,, being pyramidal, contains
a unique Sylow P(|G4]) = P(|G])-subgroup S. Since G, < G and (Sylow’s theorem)
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any two Sylow P(|G|)-subgroups are conjugate, it follows that S is the only Sylow
P(|G])-subgroup of G. B
Introduce a measure y on N through

® u({m}) = o(m) .
For any nonempty subset R <N define
(10) D(R) = {deN: djm for some me R},

and set D(Q) = @. Observe that

an D(Ry U Ry) = D(Ry) U D(Ry),
and
(12) R < D(R) <= D(kR)

for any ke N. From Gauss’s identity ([3, p. 542])

(13 p(DEmY) = m
one can establish that for any keN
(14) u(D(kR)) = ku(D(R)).

LemMA IV. Let G be a pyramidal group, let Ky, ..., K, = G be subgroups and let
ayy ., € G. Then

(15) |L.)1 4Kl = #(D(R))
where
(16) R={K|:1<i<t}.

Proof. We use induction on |G]. The case |G| = 1 is trivial, so we proceed to the
induction step. Let G have the chain (1), and let the distinct left cosets of G be
b,Gy, ..., b,G, where p = p(|G]). According to Lemma II each set a;K; either lies
entirely within a single coset b;G;, or else intersects all p of them. Let

an Ry = {IK: ¢,k 0 b;Gy # B, 1<j<p},
18) Ry = {IK}l: ¢,k cbG}, 1<j<p.
Then
p
19 R= U R;.
j=0

1*
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Since G, is pyramidal we can apply the induction liypothesis to each coset b;G,,
obtaining

(20) |igi 4K > ZP:H(DG) Ry U RJ.)> = zp<DeRo) v D(Rj)>
=1

> -vu(p{ER))en(p(sx) o §, 2iw)
= pﬂ(b (lp RD>)+ u(jgl D(R)) ~ y(D G; RO) r\j Q D(R,))

1 » P
> p,u(D(; R(,)>+u(.U1 D(R))—u(D(Rp) N _U1 D(Ry).
i= i=
We have used here (11), (12) and elementary properties of measures. Using (11),
(14), (19) we now obtain (15). B
Proof of Theorem: We first make an observation relating to x. If [ has the
prime factorization

m

@n I1=T]pY Py <.-<pum

j=1
then

PDOe® ot -
(22) y= —T— = (pm'— 1) JLIl (1 —Dj l) .
Thus for any de N whose prime factors form a subset of {py, ..., Pp-1}
d;
@) o> 2.
pm_l

We use induction on |G]. The case |G| = 2 is trivial, so we proceed to the induction
step. Let S< G be a Sylow P(|G[)-subgroup, and set

29 I={i:|S|]IK4}.
It follows from Lemma IIT that if j¢ I then
25) S<K;.
In particular SC; = C; for j¢ 1, and we conclude therefore that
26) Uc; =y S¢.
iel iel

If 7 = @ then we can apply the induction hypothesis to G/S. Indeed, according to
Lemma IIT some G, = S, and we have

@n {1} = GYS=Gy_y/Sc ... <GS,
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showing that G/S is pyramidal. According to (25), (¢; K/S: 1< i< ) forms a coset
partition of G/S. Furthermore the number [ given by (4) does not change, since
everything is divisible by |S].

Assume then that 7  @. This ensures that

28) PG = P(D) = pn -

Let H = G be a p,,-complement. (Its existence is ensured by Hall’s Theorem since G is
solvable.) Then G is the semidirect product of S by H (see [4, p. 136]), and

(i) |SX| = |S||SX n H| for any subset X< G.

(i) |H] =[S X||SX n H| for any subset X< G with Sn X # &.
Using (i), we obtain

@9 !.UI SCi| = 1511 ,UI(SC,- nH)|.

Since S <1 G each SC; n H is a coset in H of the subgroup SK; n H.So according
to Lemma IV

(30) LU (5C:n B)I > #(D(R))
where

3D = {|SK;n H|: iel}.
Fach subgroup K; has cardinality (using (ii) above)
(32) [Kil = pulSK; 0 H|

for some k>0, pf,<|S]. The prime divisors of |SK; n H| form a subset of
{P1s s Pm—1)» and so (23) applies to each de R. If the conclusion of the Theorem
were false then no more than y subgroups K; could have the same cardinality. It
would then follow from (12), (23), (28), (32) that

) 1S
(33) K} <y l4+put+...+ p_ d
ier "

deR

M=t st (si=1 er(d)
pm'—l

deR deR
= (S]-DpR <(S|-Du(D®).
Together (26), (29), (30), (33) form a contradiction. B
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Forcing smooth square roots and integration
by

1. Moerdijk (Amsterdam), Ngo van Qué and G. E. Reyes (Montreal)

Abstract. This paper is concerned with models of Synthetic Differential Geometry (SDG, cf.
Introduction).

We give affirmative answers to the following questions:

1) Ts the existence of square roots of nonnegative (smooth) reals compatible with the axioms
of SDG?

2) Does the integration axioms (“every functions from [0, 1] into R has a unique primitive
vanishing at 0”) hold in the generic (local) Archemedean C*-ring?

Introduction. This paper is a contribution to the study of models of Synthetic
Differential Geometry (SDG). The aim of this theory is to give an intrinsic, naive
axiomatization of Differential Geometry as a foundation for the synthetic reasoning
used by people like Darboux, Lie, Cartan (as well as physicists and engineers) in
this field. Its basic notions are those of a commutative ring with 1, R (“the (smooth)
reals”) and its subset D of elements of square 0 (“infinitesimals of first order™).
The basic assumption, the Kock-Lawvere axiom, asserts that D is large enough to
make the map a: RxR — R® invertible, where a(a, b)(h) = a+bh, Yhe D. (“In
the infinitely small, any curve is a line”).

Since this axiom is incompatible with classical logic, no set-theoretical models
exist for this theory. On the other hand, several topos-theoretical models have been
constructed, showing the compatibility of SDG with intuitionistic logic. Many of
these will be described in this paper.

Further developments of SDG require, naturally, more axioms on R. We shall
assume that R is a local ring equipped with order relations < and < which are
compatible with the ring structure and with each other i.e. we assume the following

Axioms (¥):

0=1,
Vx e R(x invertible v (1—x) invertible),
0<1,

Vx,7e RO<xA0<y > 0<x+yA0<xy),
0<1,
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