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Forcing smooth square roots and integration
by

1. Moerdijk (Amsterdam), Ngo van Qué and G. E. Reyes (Montreal)

Abstract. This paper is concerned with models of Synthetic Differential Geometry (SDG, cf.
Introduction).

We give affirmative answers to the following questions:

1) Ts the existence of square roots of nonnegative (smooth) reals compatible with the axioms
of SDG?

2) Does the integration axioms (“every functions from [0, 1] into R has a unique primitive
vanishing at 0”) hold in the generic (local) Archemedean C*-ring?

Introduction. This paper is a contribution to the study of models of Synthetic
Differential Geometry (SDG). The aim of this theory is to give an intrinsic, naive
axiomatization of Differential Geometry as a foundation for the synthetic reasoning
used by people like Darboux, Lie, Cartan (as well as physicists and engineers) in
this field. Its basic notions are those of a commutative ring with 1, R (“the (smooth)
reals”) and its subset D of elements of square 0 (“infinitesimals of first order™).
The basic assumption, the Kock-Lawvere axiom, asserts that D is large enough to
make the map a: RxR — R® invertible, where a(a, b)(h) = a+bh, Yhe D. (“In
the infinitely small, any curve is a line”).

Since this axiom is incompatible with classical logic, no set-theoretical models
exist for this theory. On the other hand, several topos-theoretical models have been
constructed, showing the compatibility of SDG with intuitionistic logic. Many of
these will be described in this paper.

Further developments of SDG require, naturally, more axioms on R. We shall
assume that R is a local ring equipped with order relations < and < which are
compatible with the ring structure and with each other i.e. we assume the following

Axioms (¥):

0=1,
Vx e R(x invertible v (1—x) invertible),
0<1,

Vx,7e RO<xA0<y > 0<x+yA0<xy),
0<1,
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Vx,7e ROKx A0y » 0<x+y A0<xy),
Vxe RO <x = 0< ),

VYxe RO < x — T1x<0),

Vxe R(0 <x 3y (p invertible A x = %),
¥x e R(x invertible «» x <0 v x> 0).

(The first two axioms say that R is a local ring). For further information on SDG see
Kock [1981], as well as a forthcoming monograph Moerdijk~Reyes [to appear],
For further information on topos theory (in particular generic structures and classi-
fying toposes), see Johnstone [1977] or Makkai~Reyes [1977].

It is well known that for a smooth nonnegative function f: R — R, the function
x A/ f(x) need not be smooth (it need not even be C?). This implies that the
generic C®-ring R in the classifying topos for C*®-rings (see section 2) does not
satisfy the axiom

a VxeR(x>0-3yeR(x = 7).

In fact, this axiom also fails for the generic local C®-ring, the generic local Archi-
medean C®-ring, and for the models of synthetic differential geometry (SDG)
that have recently been studied, such as Dubuc’s topos ¥ (Dubuc (1981),
Moerdijk & Reyes (1984)) or the smooth Zariski topos & (Moerdijk & Reyes (1983)).
All these toposes will be described below, in Section 2.

Thus it can be asked whether it is consistent to add the axiom (1) to SDG, or
more specifically, whether there is a model of SDG in which (1) holds, and moreover
the category of manifolds is fully and faithfully embedded (really, one would want
the stronger condition that the category of finitely presented C ®-rings is fully and
faithfully embedded in the model).

A second, apparently unrelated question is whether the integration axiom of
SDG (first discussed in Kock & Reyes (1981)),

() VfeR" lge RO Yg0) = 0ng' =)

is true of the generic (local) (Archimedean) C®-ring R in the corresponding classi-
fying topos.

The aim of this note is to point out that both questions are easily answered
affirmatively, as a consequence of the following two results.

Lemma 1 (Whitney's lemma on even functions). Let fix,1): R*XR — R be
a smooth function such that f(x,t) = f(x, ~1). Then there is a smooth
g(x,1): R*<R — R such that f(x, t) = g(x, t2).

This lemma is a well-known consequence of the Mal grange preparation theorem,
but there is a simple direct proof, which we will give below for the sake of complete-
ness. The following lemma seems to be new. (Here C*(M) denotes the ring of

smooth functions on M, and for ¢ & C=(M), (p) = C*(M) denotes the ideal gene-
rated by ¢.)
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LEMMA 2. Let M be a manifold, and f, g e C*(M). Then
F()e(gx)—t?) = C*(MxR)
iff for some o€ C°(R) which vanishes on Ro, f(x)€(o(g ()} = C=(M).

1. Proof of the two lemmas. First of all, we point out that Whitney’s lemma follows
easily from Borel’s theorem, which states that the Taylor-expansion at 0 in the
t-coordinate

C*(R"xR) 2 C=R™[[1]

is a surjective ring-homomorphism (see e.g. Martinet (1982), VI 7.4). To see this,
suppose f(x, 1) = f(x, —1). Then To(f) must be of the form Y ,50¢,(x)?>". By
Borel’s theorem, there exists an s e C*(R"xR) such that To(h) = Y56 0u(x) 2"
Then k(x, ) = h(x, t*)—f(x, 1) is flat (i.e., all partial derivatives vanish) at (x, 0)
for every x, and from this it follows easily that the function /(x, t) = k(x, v 12)}
is smooth. Moreover, f(x, ) = h(x, t?)—I(x, t?). This proves Whitney’s lemma.

The proof of lemma 2 uses a result on flat functions which we state below as
lemma 3. First, some notation. If Xis a closed subset of R”, we let LY be the sct of
locally bounded functions f on R" which are flat in the sense that

YrneNVe>035>0(d(x, X)<6— | f(x)ld(x, X) " <e).

LemMa 3. Let X, Y be closed subsets of R", R™ respectively, and let { f,.}, be a se-
quence of functions in Ly« y . Then there are nonnegative (smooth) functions ¢ € C°(R™),
W & C®(R™) vanishing only on X and Y respectively and such that

S )

‘peN N —
VPN Ve YOI

whenever d((x,3), Xx Y) — 0.

Proof (in sketch). By considering the sequence { f,,”q} 5> Which is stillin Ly,
we may assume that g = 1.

We distinguish two cases: if X, ¥ are both compact, thisis proved in Qué-Reyes
[1982, Lemma 2]. ‘

For the general case, let {U,};, {¥;}; belocally finite bounded open covers of R”,
R™ respectively, and let {g,};, {v;}; be partitions of unity subordinated to them. We
further let, for ezch 7 and j,

X, = X nsupport(g;), = Y support(¥)) .

Since X,, X; are compact. we can find (by the first case) functions ;€ C*(R"),
Y; € C°(R™) satisfying the conclusion.

We define ¢ (x) = 3 0,00 i(x), ¥(0) = 2 v(»)¥«») and check that

i J

SFolx, )

— 0, whenever d((x,y), ¥xY)—-0. B
o)+ () (
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Next, we prove the second lemma stated above. It suffices to consider the case
M = R™ Note that < is obvious, since if ¢(x): R — R vanishes on R, then
o(x)e(x—13) = C™(R?). For =, suppose f,g: R"— R are smooth, and
f(x) = A(x, )(g (x)—1?) for some smooth 4: R"xR — R. We first prove that

©)] F(¥)e(g"(x)= Co(R" xR), for all n,

by defining by induction functions B,(x, ) such that
(N 9"(x) B,(x, 1) (g (x)~ %) = £ (x).

For n = 0, note that £ (x) = $(4(x, 1)+ A(x, —1))(g(x)~%). By Whitney’s lemma,

$(AGx, )+ A(x, —1)) = By(x, t?) for some B,. If B, is given such that (4), holds,

then by putting ¢ = 0, we find g"(x) B,(x, t*)(g (x)—17) = ¢"* '(x) B,(x, 0). Writing

B,(x,5) = B(x,0)+5B,.4(x,5), we get g (x)B,.1(x,1%) = g"(x) B,(x, t?), so

by (4), we conclude that f(x) = g"*1(x)B,s1(x) (g (x)—2?), i.c. (4),,; holds.
Clearly, from (3) we derive by induction on |«| that

() Dfe(g"

for all n, and all multi-indices o = («y, ..., a,). Let F= {x| g(x) >0}. Since
D*f(x) = 0 if g(x) = 0 by (5), while D% (x) = 0 if g(x) > 0 (since by assumption,
f vanishes on {x| g(x)>0}), f is flat on F.

Now define for Ne N~ {0}, o = (¢, ..., ), and £ 0,

oxt) = sup{|{ DT @)|: [XISN,g(x)=~1},
and put ¢3(z) = 0 for 1< 0. We claim that for any ¢ >0,

1Y)
1¢%

©

-0 whenever t > 0.

Indeed for arbitrary fixed ¢ >0 there is (by compactness) an x, with |x| < N and
—1<g(x) <0 such that @}(t) = | D% (x)|. and
DGl | D% (x|
g L . - . Lo
S el g (k) Ay a G, OIS 1 |A gy (e, D]

where A, is the function witnessing D% e (g**?), see (5). Since x, is bounded,
[Ags1(xe, 7)] does not depend on ¢ so (6) follows.

By Lemma 3 there is a smooth function ¢: R — R, flat and vanishing only
on Ry, such that for all «, N and ¢,

ox(t)

@ LN
) @)

0  whenever ¢t — 0% .
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The function @(f) = @ (—1¢) is the one we need to prove the lemma. The function

ko) — {f(X)/go(g—g(x)) if () <0,

ifg(x)=0

is smooth on R", for if {x,} is a sequence of points converging to x & F, then without
loss [x,| < NV for all n, so

1D (el <sup{|DF O IV SN, g(0) 2 g(x)} = oi(—g(x)),
and hence

DG _ lei(—sCs)l
lo{—gE)* ~ lo(—gGe))?

0 ifn-w

by (7).

This completes the proof of the lemma.

Remark. The same proof gives the following generalization of Lemma 2
for a symmetric neighborhood ¥ of 0 (i.e., 1€ ¥V = —t € V) instead of R (since only
symmetry is needed to apply Whitney’s lemmay).

LeMMA 2'. Let M be a manifold, and f, g€ C*(M). Then

Ff@el@E-1HeCo(MxV)
iff for some g € C*(R) which vanishes on R, f(x) € (Q(g(x))) < C=(M).

2. Description of some smooth toposes. We briefly recall the definition of some
relevant toposes. References are given at the end of this section.

The category L of loci or formal C*®-varieties has as objects formal duals A
of finitely generated C®-rings A, i.e. rings 4 (isomorphic to ones) of the form
C*(R")/I, where n>0 and I is any ideal. Morphisms in L from one such dual

C*®(R"/I to another C“(R™)J are equivalence classes of smooth functions R LR
with the property that feJ=>fo ¢ el, where two such functions ¢ and ¢ are
equivalent if n,0 9—m;0 9" €1, i =1,...,m. F is the full subcategory of L whose
objects are (up to isomorphism) of the form C*®(R")/I where [ is a closed ideal (in
the Fréchet topology on C*®(R") of uniform convergence of functions and their
derivatives on compacta). G is the full subcategory of L whose objects are (up to
isomorphism) of the form C*(R")/I where I is a germ-determined ideal (i.e. fe I <
«VxeR*3Agelgl, = fls, (=)|x being the germ at x). Furthermore, let C be the
full subcategory of Lwhose objects are of the form C®(R"/I, where I is a finitely
generated ideal. We have F< G and C = G.

Each of the categories C, G, F, Lresults in a presheaf topos Sets®”, Sets®™”,
Sets™™, Sets™”. Sets®” is the classifying topos for the algebraic theory of C®-rings,
and is also denoted by £ [C*].
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Each of these four categories can be equipped with the finite open cover topology.
For L, this is the Groethendieck topology generated by the basic covering families
isomorphic to ones of the form

® {CHIAUY) “— C=RY s

where Uy U ... v U, 2Z(J) for some finitely generated ideal J =1 (U, are open sub-

sets of R"); Z(J) = {xe R"| VfeJf(x) = 0}. (Note that C®(UY/I|U, is isomorphic
to an object of L). The category of sheaves for this topology on L is the smooth Zariski
topos Z. For C, this Grothendieck topology can be described by taking as basic
covering families those of the form (8), but now we (can) require ZHcsU,u

U ... 0 U. The category of sheaves on C for this topology is the classifying topos
for local C™-rings, and is denoted by &[C2.]. For G, the covering families for the
finite open topology are of the form

© {CoUYIUY™ e CoRY I}y

where ZU) = Uy U ... U Uy, and (J|U)" is the smallest germ-determined ideal in
C*(U;) which contains (I|U). The resulting topos of sheaves is the topos %,
For F, we take the covering families as for G, but with (J /U~ replaced by the closure

(flU,.) in the Fréchet topology. The resulting topos is denoted by #in. On each
of C, G, F, L, the finite open cover topology is subcanonical,

Analogously, one can define the open cover topology on C, F, G, where basic
covers ‘of an object C®(R")/I come from (countable) covers {Ulzew of Z)<=R".
This results in the following toposes of sheaves: for C, it gives the classifying topos
for Archimedean local C*®-rings & [C2, 1oc]» fOT G it gives the topos %, and for F the
topos #. On each of C, F, G this open cover topology is subcanonical. Not so for L,
however, and consequently we will not consider the corresponding topos.

Some references: for L, Sets™” and %: Qué and Reyes (1982), Reyes ( 1983),
Moerdijk and Reyes (1983). For G and %: Dubuc (1981), Moerdijk & Reyes (1984).
For %;,: Moerdijk & Reyes (1984). For &, Bélair (1981), Kock (1981). All the
toposes mentioned above are also extensively discussed in Moerdijk & Reyes (to
appear). In these references, the toposes are studied as models for SDG. The classi-
fying toposes have hardly been studied in the literature, (One reason may be that the
validity of the integration axiom had not been established so far, so that their interest
as models for SDG was not clear.)

3. Forcing smooth square roots. We will now point out how the first problem
mentioned in the introduction, namely whether (1) is consistent with SDQ, is solved
by Lemmas 1 and 2. What we need is the following theorem. As usual, we write R for
C*®(R) and R, for Cw(R)/mf?,,_*), mpo, - being the ideal of functions which vanish
on [0, )< R. The inclusion R>o“— R in L(or F, or G) represents the preorder

x>0 in any of the models &, &, ¢, & fins Dein Of SDG that were mentioned in
section 2.
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THEOREM 3. The map R — Ry in L which is induced by t v t* is a stable effective
epimorphisni.

Proof. Let 4 L Ry, be any map in L, where 4 = C*(R")/I, say. So by defini-
tion of L. gogel for every gemfy . Consider the pullback square

- g

A—m——m Ry
:rxl ‘tz

B P R

where B = C™(R"x R)[(I(x), g(x)—1%). We have to show that for anmy given
Ce Land B5 T, if fep, = fop, then there exists a unique / such that

home = f:

- = P - I, -
Brxghm———tf—— =2
P2 e
,
-
f //;'
Y

It is easy to see that it suffices to prove the special case wherc.a C = R. Since
B x 3B is the dual of C®(R"x R x R)(I(x), g (x)—t2, 1*—s), the existence of k can
be formulated as
(10)  flx, )—f(x,9)e(I®),g(0)—1*1>~s%) =Th(x) f(x, )—h)

e(I(x), g(x)—1?).
The uniqueness of h comes down to
(11 k(x)e(I(x), g(x)~t*)=>kel.
Now (10) follows easily from Lemma 1: write f(x, ) = 3(f(x, tz)+f G, =)+
3(f(x, £)—f (x, —1)). By Lemma 1, 3(f (x, 1)+f (x, —1)) = F (x, %) for some f, so
S0, )=F(x, 1) e (I(x), g(x)—17), and we can put a(x) = Fix,g(x).

Lemma 2 was formulated precisely to prove (11). Indeed, suppose
k() € (I(x), g (9—12), say k(x) = 3, A(x, 1)9,(x)+ BCx, )(g(x)— %), where ;e I.
Using Lemma 1, =1 2

k@) = 3 34, O+ A4x, D)o x)+3(Blx, )+ B(x, —))(g(x)—1%)

=Y Afx, )00+ B(x, 1) (g () —1?).
Since 4(x, g (x)—4(x, 1% € (g (x)—1?), we can write k(x) = 3 Ax, (X)) o)+
Cix,tH(g(x)—1*). By Lemma 2, C(x, ) (g)~t*)e(eg(x) for some
Q€M y. But gogel, and therefore k(x)el
This completes the proof.
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. 12
THEOREM 4. The map R — Ry is also a stable effective epimorphism in F and
in G.

Proof. Let us first consider the case of F. Reasoning as in the proof of Theorem 3
. il
existence now means that for a given closed ideal I,

(10)  f(x, D~f (x,8) € CUI(x), g (=12, 12— 5?) =
=3h() fx, ~h(x) e CUI), g(x)—17)
where Cl denotes the closure in the Fréchet topology), while uniqueness comes
down to )
11 k() e QUI(R), g(0)—1D) = k(x) e 1.
(10%) is_proved just as (10), but using the following:
SUBSTITUTION LEmMA. Let J be a closed ideal in C “(R™), and I

X ‘ ) . ) 2 ez (p(x3 J’ y

V(x,3): R"xR* = R, u(x): R" - R* be smooth Sunctions. If :
o (x, v) e CU{IT(x), ¥ (x,
in C°(R™%), then { )
o(x, u(x)) e CL{IT(x), ¥ (x, u(;
in C®(R™). ) ( ® l/(x “(T))

) This lemma is obvious from the fact that substitution is continuous for the
Fréchet top.ology. For (11'), we use the fact that any ideal in C *(R™) which is gene-
rated by finitely many analytic functions is closed (see Malgrange (1966), chapter VI:
or Touge.ron (1972)). So to show (11'), suppose k(x) e Cl{I(x), g (x)—1?). Using
the notation of the proof of Theorem 3, and writing

B = CoR"™*Y/CI(I(x), g(x)—~1?),

.B' C— B, we have that Zc °ofiyoi =0 in the diagram below. To show that ke ],
l.e.thatk = O as amap 4 — R, it suffices to show (since I is closed, see Reyes (19815
or Xock (1981)) that for any Weil algebra W and any wia ke = 0. Let
C=WxzB. If w= C=(R™/J, we may assume J is generated b;/ finitely I.nany
polynomials, and g¢ is represented by a polynomial R™ pg)R :

a
/// F
s i
/”
.t r A '
& R
q xx #?
W. R
? g Reo
k
F
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Thus C'= C”(R':‘_“)/(J(y),p(y)——tz), and (J(3), p(»)—1?) is closed. Hence C By

factors through B’ as indicated in the diagram. So k¢g = 0 since km,i = 0. But

- 1 ., . . .

C — W is an effective epimorphism by Theorem 3, so k¢ = 0. This proves (11).
Next, we prove the case of G. We have to show that for a given germ-determined

ideal T < C(R",

107y fx, )=f(x, ) e(I(x), g(®)—1%), 1>~ =
=3h() fx, -k e (), g(x)—t)7;
11"y k) e(I(x),g@)—13)" =>k(x)el.

(10" is proved as (10) and (10"), now using a substitution lemma as above, but with
CI( ) replaced by ( )™. For (11"), suppose k(x) e (I(x),g(x)—t%)~. We have to
show k(x) el Since I is germ-determined, it suffices to show that for x, € Z(J),
the germ Kly, is in J|x,. So choose x,eZ(I), and let #, = </g(xo). Since
k(x)e (I(x), g(x)—1?)", there are neighbourhoods U, and ¥, with k()| Uy,
€ (IUsy, (g ()= 1)) Uy x V) as ideal in CP(Uyx Vi) If 15> 0 it is clear that
k|Uyy € (INUyy). If 1o = 0, we apply Lemma 2’ with M = Uy, and V = V4, and
conclude that k(x)|U,, € (I|Uy) as in the proof of (11).
This proves Theorem 4.

COROLLARY 5. The Grothendieck topology on L (or G, or F) generated by the
P2

finite open covers as in section 2 and the singleton cover {R — Ry} is subcanonical.
Similarly, the Grothendieck topology on G (or F) generated by arbitrary open covers

12
and {R — Ry} is subcanonical.

Proof. Since the open cover topologies are subcanonical (section 2), this is
clear from Theorem 3 and Theorem 4.

COROLLARY 6. The condition
(6] VxeR(xz0-3AyeR x =%

is consistent with SDG.

More precisely, in the toposes of sheaves on the sites described in Corollary 5,
(1) holds. Moreover, since these sites are subcanonical, the usual proofs for the
SDG-axioms in &, F, %, Fiin» %in (such as the Kock-Lawvere axiom, com-
patibility of < and < with the commutative local ring structure of R, and the
integration axiom) remain valid. See the references cited for L, F, and G in section 2.
For the integration axiom, see also the next section.

Furthermore, the category of manifolds is fully and faithfully embedded in
each of the toposes corresponding to the sites of Corollary 5.

One of the typical properties of the models of SDG that have been considered
so far is the existence of “the amazing right-adjoint”. In all the toposes mentioned
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in section 2, the exponentiation functor ( —)D (D = C*(®/(x*)) does not only have
a left-adjoint (—)x D, but also a right-adjoint (—)p,

{(=)x D—| (=)’ —{(=)p.
This fails, however, in the models described by the sites in Corollary S. Indeed, sur-
jectivity of R 5 Ry, is inconsistent with (—)” having a right-adjoint. For (—)°
2

sends R — Ry, to the map “compose with #2”: R® — (Ry,)", which corresponds
by the Kock-Lawvere axiom to the map

RxR— RygxR, (a,b) »(a* 2ab)

and this cannot be a surjection.
Going back to Theorem 3, it is natural to ask the following question.
QUESTION 7. Is the map R — R induced by t" (n odd) a stable effective epimor-
phism in L (in I, in G)? And is the map R — Rsq induced by t" (n even) one?

4. Integration in smooth toposes. We will now show how Theorem 3 and The-
orem 4 imply that the integration axiom

V) Ve R 31ge RO (g(0) = 0 A g’ = f)

is valid in all the models described in section 2. For the toposes of sheaves over the
sites with underlying categories L, G or F this is known (see the references in
section 2, in particular Qué-Reyes), but the argument does not apply to the classifying
toposes with the smaller underlying category C, in which [0, 1] is not representable.
The argument below applies uniformly to all toposes.

We will use the following “synthetic” argument of Reyes (1981). It essentially
reduces the verification of the integration axiom to the density of the squares in R,
in the sense of (iii) below. In Reyes (1981), (iii) was verified in the “cahiers-topos”
of Dubuc (1979), as well as in a generalization of it. (These two earlier models do
not occur in section 2.)

Let R be “the line” in 2 model of SDG. So R is a commutative ring satisfying the
Kock-Lawvere axiom R® = Rx R by which differentiation is defined, and R is
equipped with order relations < and < which are compatible with each other and
with the ring-structure of R. (L.e., R satisfies axioms (x) of the Introduction). Now
consider the following axioms:

@) Vxe R(x*>0);
- (i) Ve RY(f(x) = f(~x) » 3Fe R (x) = F(:)));

(i) Vfe R*>(¥x f(x®) = 0 —» f = 0);

(i) Y/eR® 31 geR¥(g(0) = 0 A g’ = f).

Lemma 8 (synthetic). Suppose (i)-(iv) hold for a ring R as above. Then the integra-
tion axiom (2) holds.

Proof. (a) We first prove an integration axiom for Ry = [0, ),

@) Vfe R0 NgeR**g(0)=0ng =1).
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Indeed, given f: Ry — R, ({)~(iii) imply that fcan be extended to Fe R¥. (Let R 4 R
be defined by g(x) = f(x?). Then g(x) = g(—x), so g(x) = F(x?) for some F;
by (iii), Vx>0 F(x) = f(x), so F extends f7) By (iv), there is a G: R — R with
G(0) = 0, G' = F. Then g = G|R;, shows the existence part of (2'). For uniqueness
in (2, suppose geR*° is such that g0 =0 and ¢’ =0. Let A(x) = g(x*,
h: R— R. Then /' = 0. So by (iv), 2 = 0, and hence g = 0 by (iii).

(b) Now we prove (2). For existence, suppose f: [0, 1] — R. By using the iso-

morphisms [0, 1) — [0, —) given by x ~ 1—_:; and [0,1) 5 (0, 1] given by x » 1 —x,

(2")implies that there are unique functions g: [0, 1) - Rwith g(0)=0,4" = f'[[0, 1),
and A: (0, 1] - R with A(1) = 0, &’ = f|(0, 1]. Since R is a local ring, [0, 1) U
v (0,11 = [0, 1], and therefore

9(@) if refe, 1),
EO+9@—h@) for 1€(0, 1]

defines the function required in (2). Uniqueness of F is obvious from uniqueness
of g and A, again since [0,1) L (0, 1] = [0, 1].

LEMMA 9. Axioms (x) (¢f. Introduction) as well as (1)-(iv) hold in the following
models of the Kock-Lawvere axiom: %, 9, %uns F» Frins L [Cioels F [Chs 10l

Proof. As far as (*)V see Kock [1981] and Qué-Reyes [1982]. (i) is clear. (ii) is
a direct translation of Lemma 1, (iv) is trivial. The only problem really is (iii). In
those toposes where [0, —+) = Rs, is representable, (iii) follows from Theorem 3
and Theorem 4. For the classifying toposes, whose sites C are too small to con-
tain Ry, We need a little argument to show that Ry, “acts as a representable”. So let
7€ R*>%(4) where A C, i.e. T is a natural transformation

F(@t) = {

C("' » X)XL(i(_)s R?O) - C(_ 3 R)

where i1 C<-> L is the inclusion-functor. We claim that t is induced by a morphism
Ax Ry, —{> R in L (which would complete the proof, since then—Theorem 3 is ap-
plicable again). To see this, apply = to the pair (tz, t%) at stage Ax R e C, and write
g = tixr(ny, t?): Ax R —~ R. Now consider the diagram

LT Axf o
Ax (Run” R)?‘]BAKR————'A*R»
f
g
R

where 4, 7,5 is the kernel-pair of Ax 2 (Note that RX g»o R is an object of C,
although R, is not.) By naturality of 7, g ¢ Tz = g © M3, SO by Theorem 3 thfzre
is a unique map f in L making the triangle commute. Now 7 comes from composing
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_ ) . ) =
with f. Indeed, suppose B — AX Ry, is 2 map In L, where Be C. To show that
15(h, %) = fo (b, x), it suffices by Theorem 3 to prove that t5(k, x)ep,
= fo(h, x)° py, Where

(h,x}

w)

AxRyq

Axt? g

»
—

e AXR

Pz

(211

this square is a pullback. But this is clear from the definition of g and the naturality
of .

COROLLARY 10. The integration axiom (2) holds in all the models described in
section 2.

The models referred to in Corollary 10 are, besides those mentioned in Prop-
osition 9, Sets*”, Sets€™, ¥ [C™]. The integration axiom (2)is seen to hold in Sets*™,
say, from the validity of (2) in the corresponding model of Proposition 9 (in this
case & < Sets™*") since the Zariski topology on L which defines & is subcanonical.

Finally, we wish to point out that for the case of toposes over F, there is a very
simple proof of the validity of the integration axiom along the lines of Lemma 8,
since Lemma 9 (or more precisely, the validity of (iii) there) is much easier for these
toposes (in particular does not depend on Theorems 1, 2, 3, 4), as we will now explain.
For definiteness, let us treat the case of #.

LemMA 11. Let X 5 Y be a morphism in the topos F of sheaves on F (see Section 2).
Then R*: R¥ — R* is a monomorphism in & iff I'(R): & (Y, R)—F(X, R) is
a monomorphism in Sets, where I' is the global sections functor.

Proof. = is clear, since the global sections functor I" has a left-adjoint. For <=
suppose I'(R?) is mono, and take 4 € #. Suppose u, v e R'(4) and R3(u) = R3(v),
ie. u,v: Ax Y — R and the composites

— Axa _ .,
AxX - AxY 'R
are equal. We show that # = v. Take an element (f,y) of Ax Y at stage BeF,

R €13 ) I =
i.e. B — Ax Y. Bcorresponds to a closed ideal, so to show thatue (f, ») = vo (£, )

it suffices to prove thatu e (f, ¥) e @ = vo (£, ) o o for every W L Bin F, where W
is a Weil algebra. By assumption, we (fox Y)o (Wxa) = vo(fox ¥)o (Wxa),

Aux—E | Gyt R
14
foxX foxy
(73—

Wre
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so by exponential adjointness, uy oo = g © «,
a o —
XYY RW
vo

where u, is the transposed of Wx YN—tYZx Y—u> R, and similarly for uv,.
But R” = R for some n, so by composing with each of the n projections
R¥ = R and using that I'(R%): # (Y, R) — # (X, R), we conclude that u, = p,.
Hence ue(fooxY)=uvec(foxY), and therefore uo(f,»)c0 = 1t(f,3) o0,
which was to be shown. :

COROLLARY 12. Let M L Nobe a smooth map of manifolds. Then @ (M) is dense
in N iff R®: R®™ o R s g monomorphism in F.

COROLLARY 13. In &, the following are valid.

(i) V/e RO (Vte R(ft™ = 0)»f=10)

(i) Ve R{ (Ve R(f(t*"*") = 0) » f = 0).

In particular, Corollary 13(i) takes care of the difficult part of Lemma 8, namely

. validity of (iii), in the case of & (and similarly in the casc of Sets™", F ).

Acknowledgments. We would like to thank J. Pelletier: Lemma 11 was inspired
by discussions with her.

The authors acknowledge financial support from the Netherlands Organization
for the Advancement of Pure Research (ZWO), the National Science and Engineering
Research Council of Canada, and the Ministére de I’Education du Gouvernement
du Québec.

References

L. Bélair, Caleul Infinitésimal en Géométrie Différentielle Synthétigue, M. Thesis, Univ. de Montréal,
1981.

E. J. Dubuc, Sur les modéles de la Géométrie Différentielle Symthétique, Cahiers de Top. Géom.
Différentielle 20 (1979), 231-297.

— C%-schemes, Amer. J. Math. 103 (4) (1981), 683-690.

P.T. Johnstone, Topos Theory, Academic Press, 1977.

A. Kock, Synthetic Differential Geometry, Cambridge University Press, 1981.

A. Kock and G. E. Reyes, Models for synthetic integration theory, Math. Scand. 48 (1981),
145-152.

A. Makkai and G. E. Reyes, First Order Categorical Logic, Lecture Notes in Mathematics 611,
Springer-Verlag, 1977,

B. Malgrange, Ideals of Differentiable Functions, Oxford University Press 1966.

J. Martinet, Singularities of Smootl Functions and Maps, Cambridge University Press, 1982.

1. Moerdijk and G. E. Reyes, Smooth spaces versus continuous spaces in models of synthetic
differential geometry, Journal of Pure and Applied Algebra 32 (1984), 143-176.

— — A smooth version of the Zariski topos, Amsterdam report 83-24, to appear in Adv. in Math.

— — Models for Smooth Infinitesimal Analysis, to appear in Springer-Verlag.

9%


GUEST


icm
158 I. Moerdijk, N. van Qué and G. E. Reyes

N.van Qué and G. E. Reyes, Smooth functors and synthetic calculus, in the L. E.J. Brouwer
Centenary Symposium, A. S. Troelstra and D. van Dalen {eds.), North-Holland, 1982,
377-395.

G. E. Reyes, Synthetic reasoning and variable sets (Models for synthetic differential geometry),
in Categories in Continuum Physics, Lecture Notes in Math. 1174, Springer-Verlag, 1986,
69-82.

— Analyse dans les topos lisses, Cahiers de Top. et de Géom. Differentielle 22-2 (1981).

J.-C. Tougeron (1972), Jdéaux de fonctions différentiables, Springer, Berlin 1972.

Pointwise limits of subsequences and X} sets
MATHEMATISCH INSTITUUT 2

UNIVERSITEIT VAN AMSTERDAM

Roeterstraat 15

1018 WB Amsterdam . .

The Netherlands Howard Becker* (Columbia, S. C.)

DEPARTEMENT DE MATHEMATIQUES

UNIVERSITE DE MONTREAL

Case postale 6 128, Succursale “A” . ! i -

Canada H3C 317 Abstract. The following representation theorem for Z; subsets of the space C[0, 1] is provad,

and some applications of it are given. For any Xy set .§ C C[0, 1], therc exists a sequence { £y of

continuous functions such that S is the set of all continuous pointwise limits of subsequences of < £i5.
§ .

by

Received 23 May 1985,

in revised form 26 May 1986 § 1. The Main Theorem. A Polish space is a topological space homeomorphic

to a separable complete metric space. In this paper all spaces are Polish. For any
e space X, let X denote the topological product of countably many copies of X.
Let C be the space C[0, 1] of continuous real-valued functions on the unit interval,
with the uniform metric. This paper is mainly concerned with the two spaces C
and C®. The elements of C® are sequences of functions; our notation for these
sequences is (£, {g;) -
A pointset is I if it is the projection of a Borel set (in some product space).
A I} set is the complement of a I} set and a 3%, set is the projection of a II% set
(in some product space). A set is 4} if it is both Xf and IT3. This is the logicians”
notation — the classical names for X}, I}, X3, I3, X3, ... are 4 (analytic), CA
(coanalytic), PCA, CPCA, PCPCA, ... Any two uncountable Polish spaces are Borel
isomorphic, and these classes are all preserved under Borel isomorphism, so as far
as the abstract theory of X5 sets is concerned, there is only one space. Hence descrip-
tive set theory, the study of pointclasses such as X%, is frequently presented in the
context of one fixed space, »® (Baire space), where wis the natural numbers with the
discrete topology. A good reference for descriptive set theory is Moschovakis [12],
whose notation and terminology will be used in this paper.

1.1. DeFNrrioN. Let {f;» € C°. Then A¢s, denotes the following subset
of C: :
{he C: there is a subsequence of {f;) which converges pointwise to A}.

Note that for any ¢ f;), the pointset A,y is 23, uniformly. (This is proved
by the methods of [12, 1C and 1E]) The main theorem of this paper is the con-
verse — every X5 set can be represented in this manner.
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