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On characterizations of classes of metrizable spaces that have
transfinite dimension

by

Yasunao Hattori (Osaka)

Abstract. We are ¢oncerned with a characterization of two classes of infinite-dimensional
spaces. First, we characterize the class of metrizable spaces which have large transfinite dimension,
in terms of partitions, a special base and a dimension-raising mapping. Second, we give a charac-
terization of the class of metrizable spaces which have strong large transfinite dimension, in terms of
a dimension-raising mapping and a special refinement.

1. Introduction. In this paper we are concerned with a characterization of two
classes of metrizable spaces of transfinite dimension. We say that a metrizable
space is countable-dimensional if it can be expressed as the union of countably
many zero-dimensional subsets (in the sense of dim or equivalently of Ind). We
have been inspired by the following interesting theorem, obtained by J. Nagata [11]
and K. Nagami and J. H. Roberts [10], which characterizes the class of countable-
dimensional metrizable spaces.

THEOREM A. For a metrizable space X, the following conditions are equivalent:

(a) X is countable-dimensional.

(b) For every sequence {(A;, B)): i€ N} of pairs of disjoint closed sets of X,
there is a sequence {L;: i€ N} of closed sets such that each L; is a partition between A4;
and B; in X and the family {L;: ie N} is point finite.

() X has a o-discrete base # such that the family {Bd B: B € %} is point finite.

(d) There are a metrizable space Z and a closed continuous mapping f of Z onto X
such that dimZ <0 and f~1(x) consists of at most finitely many points, Jor each_
point x e X.

In [5], R. Engelking and R. Pol characterized the class of metrizable spaces
of large transfinite dimension by use of a strongly point finite family (see § 2 for the
definition) of partitions. But the concept of strong point finiteness cannot cfha:ac—
terize this class in terms of a o-discrete base. In Section 2 we characterize this class
in terms of partitions and of a ¢-discrete base simultaneously by use of a new coz%—
cept of “point finiteness”. A characterization of the same class in terms of a di-
mension-raising closed continuous mapping from a zero-dimensional metrizable
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space is also obtained. In Section 3 we give a characterization of a narrower class
than that considered in Section 2, namely, the class of metrizable spaces which have
strong large transfinite dimension, in terms of a dimension-raising closed continuous
mapping and of a special refinement of an arbitrary open cover.

Throughout the paper all spaces are assumed to be Hausdorff. Unless other-
wise stated the term dimension means the large inductive dimension Ind (and equi-
valently, the covering dimension dim for metrizable spaces). Let X be a space and 4
a subset of X. Then we denote by A (respectively Bd A) the closure (the boundary)
of A in X. Let N denote the set of all natural numbers. For a subset ¥ and a family .«
of subsets of a space X, we write o/ ¥ = () {4: AeA}and A|Y = {4 V: de o).
For a point x of X, the order of o/ at x, denoted by ord, 7, is the cardinality of the
subfamily {4 e &: xe A} of & and we write ords? = sup{ord,.o?: xe X}. We
refer the reader to [3], [9], [12] for the terminology and basic results on dimension
theory, and especially to [4] for transfinite dimension.

The author wishes to express his thanks to Professor J. Nagata for his valuable
advices.

2. Characterization of metrizable spaces which have large transfinite dimension.
A family of sets is called strongly point finite if it has no infinite subfamily having
the finite intersection property. This notion was introduced by R. Engelking and
R. Pol in [5] and, by making use of this notion, they characterized the class of metriz-
able spaces that have large transfinite dimension as follows:

THEOREM B ([S; Theorem 3]). A metrizable space X has large transfinite dimen-
sion if and only if, for every sequence {(A4;, B)): i€ N} of pairs of disjoint closed
sets of X, there is a sequence {L;: ie N} of closed sets such that each L, is a partition
between A; and B; in X and the family {L;: i€ N} is strongly point finite.

In view of Theorems A and B, we may expect that a metrizable space X has
large transfinite dimension if and only if X has a o-discrete base & such that the
family {BdB: Be 4} is strongly point finite. But the following theorem makes
this conjecture false, because there is a complete separable metric space that has
small transfinite dimension but does not have large transfinite dimension (see
[4; Example 2.1]).

THEOREM C ([5; Theorems 1 and 2]). A metrizable space X is a subspace of
a completely metrizable countable-dimensional space if and only if X has a o-discrete
base B such that the family {BdB: Be @) is strongly point finite. Furthermore, if X
is separable, then X has such a base if and only if X has small transfinite dimension.

In this section, we obtain a characterization of the class of metrizable spaces
which have large transfinite dimension in terms of partitions and a o-discrete base
having a special property. For this purpose we need the following definition.

2.1. DEFNITION. A family ./ of subsets of a space X is said to be completely
point finite if, for every closed discrete subset F of X, sup {ord,s7: xe F} <.

Clearly, every completely point finite family of subsets of a space is point finite

icm
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and these concepts coincide in the case of families of subsets of countably compact
spaces. The following simple examples show that there are no relations between the
concepts of complete point finiteness and of strong point finiteness, in general.

2.2. EXAMPLEs. (1) Let X' = @ {I,: ne N} be the discrete sum of countably
many copies 7,, ne N, of the unit interval I. For each ne N and each i<n, let
Ay =[0,1/ilc1,, o, = {d}: i<n} and & = |) {o£,: ne N}. Then « is strongly
point finite but is not completely point finite.

(2) Let X =1 and 4, = (0, 1/n] for each ne N. Then & = {4,: ne N} is
completely point finite but is not strongly point finite.

Let us notice that the family described in Example 2.2 (2) consists of nonclosed
sets. For families consisting of closed sets of spaces, we have the following

2.3. PROPOSITION. A completely point finite family of closed subsets of a space
is strongly point finite.

Proof. Let & be a completely point finite family of closed sets of a space X.
Assume that & is not strongly point finite. There is a countable subfamily
{F,: ne N} of # which has the finite intersection property such that F, # F, if
m # n. By induction on n, we can find sequences {x,: ne N} of points of X and
{i,: ne N} of natural numbers such that x,e N {F;: i =1,..,4}, x, ¢ F;,,, and
i,<i, if m<n. Put F= {x,: ne N}. It follows that F is a closed discrete subset
of X such that sup{ord.#: xe F} = 0. This contradicts the complete point
finiteness of &.

Now, we are ready to give a characterization of the class of metrizable spaces
that have transfinite dimension. Recall from [13] that a metrizable space X satisfies the
condition (K) if there is a compact subset K of X such that Ind H <o for every
closed subset H of X which does not meet K. The following lemma is already known
(cf. [5], [7] and [13]).

2.4. LemMMA. For a metrizable space X, the following conditions are equivalent:

(a) X has large transfinite dimension.

(b) X is a countable-dimensional space satisfying the condition (K).

(¢) X is a countable-dimensional space which contains no discrete family
{U,: ne N} of open sets of X such that IndU,>n for each ne€ N.

2.5. THEOREM. For a metrizable space X, the following conditions are equivalent:

(@) X has large transfinite dimension.

(b) For every sequence {(A;, B;): i€ N} of pairs of disjoint closed sets of X,
there is a sequence {L;: i€ N} of closed sets of X such that each L; is a partition
between A; and B; in X and the family {L;: ie N} is completely point finite.

(¢) X has a o-discrete base B such that the family {BdB: B e B} is completely
point finite.

Proof. Let X be a metrizable space of large transfinite dimension. By Lemma 2.4,
there is a compact subset K of X such that IndH <oco for every closed set H of X
which does not meet K. For each ieN, we put H;, = X—S(K, 1/i), where
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S(K, 1)i) = {xe X: g(x, K) < 1/i} and ¢ is a metric on X. Since Ind H; <0, we
can put H; = {Hy;: j=1,..,k} for some k,eN, where IndH ;<0

foreach j = 1, ..., k;. Define a function g: {(i,/): j<k,andie N} = N as follows:
i1

g(,j)=j for j<ky and g(i,j) =Y k,+j for j<k; and i>2. Renumber

m=1
{Hip: j<k; and ieN} as follows: {G,: neN}, where n=g(i,j). Let
K=\ {K;: ie N}, where IndK;<0 for each ie N and put X,;,_, = K, and
X,; = G;. Let {(4;, B)): ie N} be a sequence of pairs of disjoint closed scts of X.
By [12; 1IL.4 (A)], there are closed sets L;, i€N, such that each L; is a partition
between 4; and B; in X and

ord{L;n X,: ie N}<n—1.

To show that & = {L;: ie N} is completely point finite, let F be a closed discrete
subset of X. Put F; = Fn K and F, = F—K. Since K is compact, it is clear that
sup{ord, #: xe F;} <o0. On the other hand, since F, is a closed set which does
not meet K, there is a natural number n, such that F, < |J {Xy: n= I s mph.
Therefore sup{ord,#: xe F,} <ny—1. Hence sup{ord,%: xe F} <oo. This
completes the proof of the implication (a) — (b). ;

The implication (b) — (c) is proved in the standard way. We prove it for the
sake of completeness. Let % = |J {#;: ie N } be a ¢-discrete base of X, where
each #%; = {U;: .eA;} is a disorete family of open sets of X. For each
rel {4;: ieN},ie;:t_ Up=U{U,,;: je N}, where U, ;, jeN, are open sets
of X such that U, ;< U, ., for each jeN. Put 4,; = (U, ;: Ae A, and
B ;= X—=U{U,js1: 2e4;}. Since 4, ; and B, ; are disjoint closed sets of X,
by (b), there are closed sets L, ;, i, /e N, of X such that each L, ; is a partition
between 4, ;and B, ;in X and the family % = {Li;:i,jeN} is éompletely point
finite. Let P; ; and Q, ; be disjoint open sets of X such that X—=L;;=P ;0 Q;
A ;<P ; and B, ;= Q, ;. For each i,jeN and each ie A;, “we pl..lt Vv, ,:J-
=P;nU,and ¥ = {V,;;: AeA,and i, je N}. Tt is clear that ¥ is a ¢-discrete
bage for'X. We shall show that the family %" = {Bd V': Ve ¥} is completely point
finite. Since for each Ve ¥, there is an L(V)e & such that BdV < L(V) and
{Vi1;: AeA}} is discrete in X, it follows that ord, 07" < ord,.# for each point
X e X. Hence, £ being completely point finite,

sup{ord,d¥": xe F} <supford, #: xe F} < co,
for every closed discrete subset F of X,

To show the implication (c) - (a), let & be a o-discrete basc for X such
Fhat the family 0% = {BdB: Be %} is completely point finite. By Theorem A,
it f(l)llows that X is countable-dimensional. Suppose that X contains a discrete
family {U,: ne N} of open sets of X such that IndU,=n for each neN.
For each ne N, we put &, = {BnU,): Be#}. Since %, is a o-discrete
base for U,, by Morita’s theorem (see [12; Theorem II. 9]), there is a point
% of U, such that ord, {Bdy(Bn U,: Be #}>n, where Bdy(Bn U,)

iom
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denotes the boundary of B n U, in U,. Since Bdy (B n U,) = Bdy B for each Be &,
it follows that ord, 0% > n for each ne N. Put F = {x,: ne N}. Then Fis a closed
discrete subset of X satisfying sup{ord.0#: xe F} = oo. This contradicts the
complete point finiteness of the family %. Hence, by Lemma 2.4, X has large
transfinite dimension. This completes the proof.

We also have the following characterization of the same class. For a mapping f of
a space Z to a space X and a point x of X, we denote by ord, f the cardinality of
f~1(x) and we write ord f = sup{ord,f: xe X}.

. 2.6. THEOREM. A metrizable space X has large transfinite dimension if and only

if there are a zero-dimensional metrizable space Z and a closed continuous mapping f
of Z onto X such that for every closed discrete subset F of X sup{ord, f: xe F} <oo.

Proof. Let X be a metrizable space of large transfinite dimension. We use
the notation introduced in the proof of the implication (a) — (b) of Theorem 2.5.
By [12; 111 7 (B)], there is a sequence {#;: ie N} of locally finite closed covers
of X which satisfies the following conditions:

(2.1) For each x € X and each neighborhood U of x, there is a natural number i
such that St(x, # ;)< U.

(22) F; = {F(ay, -, 0): 0, €Q and k= 1,...,7}, where F(oy,...,0;) may
be empty.

(2.3) Foty, ooy ) = U {F(ey, ... &y, B): BeQ} for each ie N.

(2.4) ord, & ;< n for each point x € X, and each ie N.
Let N(Q) be the Baire’s zero-dimensional space and put

= {(ty, &35 ) EN(Q): N {F(aty,....;): iEN} # B} = N(Q).

Define a mapping f of Z to X as follows: f(2;, %, ...) = ) {F(&y, ..., %): i€ N}.
As shown in the proof of [12; Theorem VI. 4], f'is a closed continuous finite-to-one
mapping of Z onto X. Now, let F be a closed discrete subset of X. An argument
similar to that used in the proof of the implication (a) — (b) of Theorem 2.5 shows
that sup{ord, f: x € F} <co. This completes the proof of the “only if” part. On
the other hand, by an argument similar to that used in the proof of the implica-
tion (¢) — (a) of Theorem 2.5, we prove the “if” part of the theorem; but now we
use [I12; Theorem VI. 4] and [12; Theorem III 8] instead of Theorem A and
[12; Theorem 1I. 9] respectively.

3. Characterization of metrizable spaces which have strong large transfinite
dimension. The objective of this section is a characterization of the class of metrizable
spaces which have strong large transfinite dimension. This class is narrower than
the class considered in the previous section. We begin with definitions. For each
ordinal number «, we write % = A(ct)+n (), where Z(x) is a limit ordinal number
or 0 and n(x) is a nonnegative integer. For any normal space X and an nonnegative
integer n, we put '

P(X) = {U: Uis an open set of X such that IndU <n}.
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3.1. DEFINITION ([2]). Let X be a normal space and let « be either an ordinal
number >0 or the integer —1. Then' the strong small transfinite dimension sind
of X is defined as follows:

(i) sind X = —1 if and only if X = @.

(i) sind X <o if X is expressed in the form

X=U (P E<a}, where Py = Pyy(X—U {P,: n<A())).

If there is an ordinal « such that sind X <«, we say that X has strong small
transfinite dimension.

3.2. DErINITION. We say that a normal space has strong large transfinite
dimension if it has both large transfinite dimension and strong small transfinite
dimension.

Spaces that have strong small transfinite dimension have been studied by
P. Borst [2] and the author [6]. As noticed in [7], for a strongly hereditarily normal
space X, X has strong small transfinite dimension if and only if D(X) < 4, where
D(X) is the D-dimension of X defined by D. W. Henderson [8]. Some characteriza-
tions of the class of metrizable spaces that have strong large transfinite dimension
have been obtained by the author in [7]. We now give other characterizations of
this class. A normal space X is called strongly countable-dimensional if X can be
expressed as the union of countably many finite-dimensional (in the sense of dim)
closed subsets of X.

3.3. LemMA ([7; Propositions 2.2 and 2.3]). Let X be a metrizable space. Then
the following conditions are equivalent:

() X has strong large transfinite dimension.

(b) X is a strongly countable-dimensional space satisfying the condition (K).

(©) X is a strongly countable-dimensional space which contains no discrete family
{U,: ne N} of open sets such that IndU, > n for each ne N.

The following lemma, which is a modification of Morita’s theorem (see
[12; Theorem IIL. 8]), can be easily verified.

3.4. LeMMA. A metrizable space X satisfies the inequality Ind X < n if and only
if there are a zero-dimensional metrizable space Z and a closed continuous mapping f
of Z onto X such that, for each x € X, there is an open set U of Z with U n f~'(x) # @
and ord f|U < n+1.

3.5. THEOREM. A metrizable space X has strong large transfinite dimension if
and only if there are a zero-dimensional metrizable space Z and a closed continuous
Jinite-to-one mapping f of Z onto X which satisfy the following condition:

(*) For every closed discrete subset F of X, there are an open set Uy of Z and
a natural number ng such that U n f~1(x) # @ for each x € F and ord f| Uz < np.

Proof. Let Z be a zero-dimensional metrizable space and f a closed continuous
finite-to-one mapping of Z onto X, which satisfy the condition (x). By [14; Theorem 2],
it follows that X is strongly countable-dimensional. Suppose that X contains a discrete
family {U,: ne N} of open sets such that Ind U, ># for all ne N. For each ne N,
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we put f, = fIf X U): f~'(U,) = U,. By Lemma 3.4, there is a point x,¢€ U,
such that ord f,|V, > n+1 for every open set ¥, of f~*(U,) with ¥, n f; *(x,) # 9.
Put F = {x,: ne N} and let ¥ be an open set of Z with ¥V nf~!(x) # & for any
xe F. For each ne N, V, = Vnf~'(U,) is an open of f~1(U,) and ¥V, f; *(x,)
# @. Hence, ordf|V, = ord f,|V,>n+1 for each ne N. Therefore, F is a closed
discrete subset of X such that ord f| ¥ = co. This is a contradiction. Therefore, by
Lemma 3.3, X has strong large transfinite dimension. Conversely, let X be a metri-
zable space that has strong large transfinite dimension. By Lemma 3.3, there is a com-
pact subset K of X such that Ind H <co for every closed set H of X which does not
meet K. Let K = ) {K;: ie N}, where cach K is a finite-dimensional closed set
of K such that ord {K;: ie N} <2.Put H, = X—S(K, 1) and H, = S(K, 1/(i—1))—
—S(K, 1/i) for i>2. Furthermore, we put X,,_; = K; and X,; = H; for each
ie N. Thenall X,, i€ N, are closed finite-dimensional subsets of X, X = (J{X;:ie N}
and ord{X;: ie N} <2. Let IndX;<n,;. By [9; Theorem 12-9], there are locally
finite closed covers &; = {F,: a € A;} of X, ie N, and transformations pi: 4;— 4,
for j> i, which satisfy the following conditions:

(3.1) mesh#,;, — 0, as i — 0.

(3.2) ord# | X;<n;+1 for each i, jeN. )

(3.3) For each i, je N with i<j and «e d;, F, = U [Fp: pi() = a}.

For every ieN, aed; and j<i, we put G,=F,, Gujp=F.n X},
B, = A, u(4;x{1,..,i}) and %, = {G,: Be B;}. For cach i, ke N with i<k,
we define a transformation 7nf: B, — B, as follows: For any o€ 4,

| m (@) = pi(e)
and
v o _ JPE@. D) if <,
n’,‘((oc,;)) - {pf(oc} ifi<j<lk.

Then, it follows that each %, is a locally finite closed cover of X which satisfies the
following conditions:

(3.4) mesh@; = 0, i — co.

(3.5) For each i, je N, ord¥%;|X; <3(n;+1).

(3.6) For cach ie N, feB; and k>i, G, = U {G,: n(y) = B}.

Let Y be the inverse limit of the inverse sequence {Bj, 7f}iien. Let
Z={(By.P2,-)eY: (\{Gy: ie N} # @} be a subspace of Y. We define a map-

ping f of Z to X as follows: f((By, B2, -.)) = ) {Gp: ie N} Tt is well known
that fis a closed continuous finite-to-one mapping of Z onto X (cf. [9; Theorem 12-9]).

Furthermore, we shall show that
(3.7) for each ie N and xe X;, there is an open set V, of Z such that

V.nf Yx) # @ and ord f|V,.<n+1.
To show (3.7), let ie N and xe X;. There is an x € 4, such that xe F,.
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Then x€F, N X, = Gun Put Ve=m *((e, i)) N Z, where m;: Y — B, is the
canonical mapping. Then (3.7) follows from (3.2) and the definition of ;. Now,
let Fbe a closed discrete subset of X. Put F; = Fn K and F, = F-K, Put
U, = U (V,: xeFy}, where V, is given in (3.7). Clearly,U; nf~(x) # @ for
each x € F,, and since Fy consists of at most finitely many points,

ordf|U; < ), (mm+ 1),

xeFy

where #(x) is a natural number with X € Xj(). Since F; is a closed set of X which does
not meet K, there is a natural number i, such that F, < U {Hi:i=1, ...}
For each i< ip, we put F; = F 0 H; = F, 0 Xy;. Let {W,: xe F,} be a discrete
family of open sets of X such that x e W, for each xe F,. Let V. be an open set
of Z described in (3.7). We put U, = ¥, n f~'(W,). Then U, is an open set of Z
such that U, nf~1(x) # @ and ord f| U, <ny,;+1 for every point x € Fi. Hence
Ui = J{U,: xe F}}satisfies Uy 0 f~*(x) # @ for each xe Fzand ord f]| Us <yt 1.
Therefore, the open set Up = U, u U {Uy:i=1,...,0} of Z and the natural

i
number np = Y (m+1)+ Y, (ny;+1) are the desired ones. This completes the
i=1

xeFy
proof.

By the argument of A. Arhangel’skii ([1; Theorem 3.7]), it follows that a metri-
zable space X is strongly countable-dimensional if and only if there is an integer-
valued function ¢ on X such that for every open cover % of X there is a o- discrete
open cover ¥ such that ¥ is a refinement of % and ord,¥" < ¢ (x) for each xe X.
(The reader should be warned that the term “weakly countable-dimensional” is
used instead of “strongly countable-dimensional” in [1].) Now, we give a similar
characterization of the class of metrizable spaces that have strong large transfinite
dimension. The following lemma is a direct consequence of [12; V 3 (A)].

3.6. LeMMA. Let X be a metrizable space and F a closed subset of X withInd F < n.
Then for every open cover U of X there is a family ¥ of open sets of X such that V" is
a refinement of U (V" is not necessarily a cover of X), F=V" * and ¥ is the union
of at most (n+1) discrete subfamilies.

3.7. THEOREM. A metrizable space X has strong large transfinite dimension if
and only if there is an integer-valued function ¢ on X such that, for every open cover U
of X, there is an open cover ¥ of X such that ¥ is a refinement of %, V" is the union
of finitely many discrete subfamilies and ord,¥” < ¢ (x) for each x € X.

Proof. Let X be a metrizable space of strong large transfinite dimension. By
Lemma 3.3, there is a compact subset K of X such that Ind H < co for every closed
subset H of X which does not meet K. Let K = |J {K;: ie N}, where each K; is
a closed set of X with IndK, <m,; <co. For each ie N, let H; = X—S(K, 1/i) and
Ind H; < n; <oo. For each xe X, we put

) = min{i: xe K;} if xek,
~ |min{i: xe H;} if x¢K.
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We define an integer-valued function ¢ of X as follows:

i(x)
Y, (mi+1) if xek,
i=1

{P(x) = i(x)
Y (m+n+2) if x¢K.
i1

Let # be an open cover of X. By use of Lemma 3.6, we can find sequences
{B,;: ie N} and {#";: ie N} of families of open sets of X such that, for each ie N,

(3.8) K,—U {K;: j<i-1}caf < S(K, 1]i),

(3.9) H— U {H;: jgi-1}cWf < X-S(K, 1]i),

(3.10) 2 n (U {K;: j<i-1})) =@,

@1 wEFn(U{H;: j<i-1}) =9,

(3.12) #, and ¥, are refinements of  and are the unions of finitely many
discrete subfamilies.

Since K is compact and |) {#;: ie N} covers K, there is a finite subfamily ¥",
of |J {#,;: ie N} suchthat K< ¥{. Put H = X—97{ and let i, be a natural number
such that Hc H,,. Let ¥ = ¥, v U {#;: i = 1,..., §y}. Clearly, #" is an open
cover of X, which is the union of finitely many discrete subfamilies. On the other
hand, it is easy to see that ord,¥ <ord (U {#;: ieN}u U {# i ieN}) <o)
(cf. the proof of [7; Theorem 3,12]). Conversely, let ¢ be an integer-valued function
of X which satisfies the condition stated in the theorem. By [1; Theorem 3.7], X is
a strongly countable-dimensional space. Suppose that X contains a discrete family
{U,: ne N} of open sets such that IndU,>n for each neN. Since IndU, = n,
there is a family %, of open sets of X such that U, =%, and ord ¥, > n for every
open cover ¥, of U, which refines %,|U,. We can assume that % n % = @ if
m#n Put % =) {@,: neN}u{X—(U {U,: neN})} and let ¥ be an open
cover of X which refines #. For each ne N, ¥'|U, is an open cover of U, which
refines #,. Thus ord#"|U, > n and hence ¥~ cannot be expressed as a union of finitely
many discrete subfamilies. This is a contradiction. Therefore, by Lemma 3.3, X has
strong large transfinite dimension. This completes the proof.

3.8. Remark. By the proof of Theorem 3.7, we have the following: A metri-
zable space X satisfies the condition (K) if and only if every open cover of X has
an open refinement which is the union of finitely many discrete subfamilies.
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On the relationships between shape properties of
subcompacta of S" and homotopy preperties of
their complements

by

Slawomir Nowak (Warszawa)

Abstract. Taking for the set of morphisms from X to ¥ the direct limit of the sets of all homotopy
classes or all weak homotopy classes or all shapping between the n-fold suspension of X and ¥ we
obtain (respectively) the stable homotopy category & or the stable weak homotopy category #w(,
of open subsets of S" or the stable shape category & &h, of subcompacta of S™.

We prove that there exists an isomorphism Zy: PSP hy — Fwlly such that Dn(X) = S™X.
If we limit ourselves to movable compacta, then & w(, can be replaced by a suitable full subcategory
of &. These facts generalize the classical Spanicr-Whitehead duality.

Applications to the ordinary shape theory are also given. In particular, if 1 < k<»n and X C $"is
an approximatively 1-connected continuum, then Sh(X) = Sh(S*) iff $™X and S™.S* are iso-
morphic in .

The relationships between shape properties of closed subsets of S" and pro-
perties of their complements have been studied by many mathematicians ([Sh]).
If X, Y= 8" are compacta with sufficiently large codimension and X, ¥ satisfy some
conditions concerning the way in which they are embedded in S", then
Sh(X) = Sh(Y) iff S™\X and S™\ Y are homeomorphic ([Sh]). In the case when
1#k<n>5and ¥ =S (see [R]), or more generally, ¥ is an S*-like continuum
(see [V]), the assumption concerning the codimension of X and ¥ may be eliminated.

We begin with cxamples. They will illustrate and motivate some of the problems
which will be discussed here.

The Alexander duality theorem states that the Cech cohomology groups (which
belong to the most important invariants of the shape theory) of a closed subset X
of S* are uniquely determinated by the topological (homotopical) type of S"™\X.
Since the second suspension Z%(X) of a compactum X # @ is an approximatively
1-connected continuum, Fd(Z*(X)) = Fd(£*(Y)) if X and ¥ are subcontinua of S"
with homotopically equivalent complements ([N], p. 35).

Similarly, if 2*(X)e FANR and S™\X is homotopically equivalent to
S"\Y [G-L], then Z*(Y)e FANR.

On the other hand, if S®\K is a 3-cube with a knotted channel joining two
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