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Man erhilt solche Beispiele fiir jeden Drehnenner m = p*p”m, fir den es
Zahlen a gibt mit der Eigenschaft:

i

a = +quadr. Rest modp®,

a

il

—quadr. Rest modp”,
a % +quadr. Rest modim, falls > 1,

z.B. fir m =21 = 7'3:
Nach Satz 2 gilt: Ly (1) xLy(1) = Ly (8) x Ly, (1),

denn 8 = 1 mod7,

und 8 = —1 mod3,
aber die Kongruenzklasse 8 (mod21) ist nicht enthalten in der Menge

{-tquadr. Reste mod21} = {1,4,5, 16,17, 20} .
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Dual properties within graph theory
by

T.A. McKee (Dayton, O.)

Abstract. Graph-theoretic duality lacks many of the nice features of matroid duality. In
particular, equivalent statements need not dualize into equivalent statements, and so properties
such as being eulerian cannot strictly be said to have graph-theoretic duals. Lacking natural examples
of this for the traditional circuit/cutset duality, an alternative duality between vertices and minimal
spanning sets of edges is discussed. In this context, completeness can be characterized in two natural
ways, which dualize in simple but quite nonequivalent ways.

1. Introduction. Graph theory is one of the most easily accessible, yet widely
applicable areas of discrete mathematics. Within graph theory, duality has become
so central a concept that it has been cited as being a major justification for even
calling graph theory a “theory.” Yet misconceptions abound concerning the uses
and limitations of graph-theoretic duality, largely due to confusion with a more
general notion called matroidal duality, which was partially created to “explain”
the graph-theoretic variety. Despite the frequency of reference to (and, at times,
invocation of) duality, surprisingly little attention has been paid to the phenomenon
itself (except for a few papers primarily interested in its applicability to electrical
engineering, such as [8], [9], [12], and [4]).

Section 2 describes this duality, emphasizing its seldom-realized limitation that,
within graph theory itself, concepts do not have dual concepts. This definitely con-
flicts with the way graph theorists commonly think and talk. It is rather only specific
syntactical formulations of concepts which can be dualized. The difficulty is that
statements which are equivalent for all graphs can dualize in nonequivalent ways.
Unfortunately, the only known examples of this behavior are quite contrived. Hence,
in Section 3 we introduce an alternative concept of duality, which has almost exactly
the same logical structure as the traditional duality, but in which these limitations
are nearer the surface and so can be naturally illustrated. Moreover, this alternative
duality has the advantage over matroid-based duality of being built around the
common notion of vertex. Precisely because it lacks an enveloping self-dual context
such as matroid theory, this vertex-based duality can serve as a laboratory for stu-
dying the problematic nature of traditional duality.
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2. The nature of duality. While many “dualities” have been observed in graph
theory (see, for instance, [2]), our concern is with the traditional circuit/cutset
(or cycle/cocycle) duality of Whitney, as is emphasized in [[5]. (We follow the no-
tation and terminology of that text, although the fundamental concepts which we
employ are common to almost every presentation of graph theory.)

The simplest approach to duality begins with plane graphs. Interchanging the
roles of vertices with faces while essentially preserving the role of edges produces
new graphs which are dual to the originals; see [15, Section 15]. In so doing, other
objects become interchanged; e.g., circuits with cutsets (i.c., with minimal discon-
necting sets of edges) and spanning trees with complements of spanning trees. Certain
properties of graphs are preserved and called self-dual, such as 2-connectedness:
other pairs of properties become interchanged, such as being culerian with bipzu’ti:
teness. If connectivity is assumed, then the dual of a dual is isomorphic to the original.
If at least 3-connectedness is assumed, then isomorphic graphs have isomorphic
duals, corresponding to the well-known duality of polyhedra.

To be maximally useful, more conventions are needed. For instance, if isthmuses
are to be allowed, then we must also allow their dual structures; loops. Similarly
allowing vertices of degree two can necessitate allowing multi ple edges. In other WO]'d’i‘
if: we allow cutsets of sizes one and two, then our notion of graph should also allo;\;
circuits of sizes one and two. If nonplanar graphs are to be aliowed, then we must
also allow their dual structures, but it is well-known that these dual structures cannot
be graphs.

Thus attempts to approach duality by means of dual structures require more
general sorts of structures and so a more general theory. The theory of matroids [(4]
has become the traditional answer to this need. (We suppose, but do not directly use
some b:ftsic knowledge of matroid theory as in [15] or [16]; [13] provides a com:
prehensive treatment.) Although faces no longer have any meaning, and vertices
have no general matroidal counterpart, Whitiey showed that interchanging the
Taatrmdal counterparts of circuits and cutsets still allows all matroids to dualize
into rt}atroids, with all graphs interpretable as special (graphic) matroids and with
l'f]atrold‘d.l duality agreeing with the geometric duality for planar graphs; see [15, sec-
‘fxon 32]. Assuming at least 3-connectedness again insures that dual’ity pres"ervcs
isomorphism. M

Th.e d.uality of eulerian and bipartite disappears, however, in the matroidal
generalization: the dual (matroid) of an eulerian matroid need not be bipartite. If
we further assume that the matroidal counterparts of circuits and cutsets ntlway$

intersect evenly, as they do in graphs, then we are in the context of binary matroids
and the eule‘rian/bipartite duality is restored. But the point is, the duality of these
;}vo propertl(?s depends upon the context in which we' are generalizing graphs.
eu;rc?over, ;htl,s stn}ctural approaf::hAdoes not directly discuss in what sense (if any)
rian and bipartite are duals within the theory of graphs itself despite the common
tendency among graph theorists to think of them as duals.
The approach using dual structures to dualize concepts such as eulerian thus
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fails, duc to the family of graphs not being closed under dualization. It is natural
to switch instead to a syntactical approach, looking at statements about graphs,
rather than at graphs themselves. Given a statement mentioning only edges, circuits,
cutsets, and basic set-theoretic notions such as membership and cardinality, we can
produce a dual statement by simply interchanging all mentions of “circuits™ with
mentions of “cutsets.” For instance, the characterization “every cutset is even”
of eulerian dualizes to the “every circuit is even” characterization of bipartite. This
approach is very attractive to graph theorists, promising to transform concepts into
dual concepts and theorems into dual theorems, just as in projective geometry;
there is a clear hope of “something for nothing.” But while, with due caution, this all
happens in projective geometry (and in matroid theory), we shall see that graph-
theoretic duality is a very different matter.

Caution is always needed in using duality whenever statements involve notions
other than the basic fixed and interchanged elements: edges and circuits/cutsets in
our case. For instance, “subgraph” cannot be left unchanged, since it involves edge
deletion, which matroid theory demands is dual to edge contraction. Thus it is na-
tural to look at other notions as abbreviations of their definitions in terms of the
primitive notions. For instance, an isthmus can be defined as an edge which is in
no circuit, and so mentions of isthmuses could be replaced by mentions of edges
which are in no circuits and so dualized to edges which are in no cutsets; i.e., to
loops. But isthmuses can be characterized in other ways; e.g., as singleton cutsets.
What if isthmuses could be characterized in terms of edges, circuits and cutsets in
such a way that this characterization dualizes to something other than loops? Or,
more realistically, what if a graph property such as eulerian could become dualized
in nonequivalent ways? To justify a “replacement” technique for defined terms, we
would have to know that equivalent statements (i.e., statements equivalent for all
graphs, although perhaps not for all matroids) dualize into equivalent statements,
and so that dualization is well-defined. But, in fact, duality runs into just this sort
of trouble.

It is easier to look at the broader question of whether every theorem dualizes
into a theorem. The answer is “no”; as a counterexample, suppose x is a statement
asserting the existence of exactly ten edges forming 37 circuits and 15 cutsets precisely
as in K5 (the complete graph on five vertices), and let x* be the dual statement.
Then % contains more than enough to characterize being isomorphic to Ks and,
since no graph is dual to Ks, TIx* (the negation of x*) is a theorem, yet
(T1%%)* (= 71%)is not a theorem. While working graph theorists rightly object to
the artificiality of this example, it illustrates how more natural theorems may well
to carry over to dual theorems. There is, of course, no logical boundary separating
artificial from natural examples.

This situation is very different from that in projective geometry or matroid theory
where there are self-dual axiomatizations which force thaorems to dualize into theo-
rems. There is no self-dual axiomatization of the edge/ciruit/cutset structure of graph
theory, unless we are willing to extend the theory into matroids or perhaps to restrict
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it to the plane. Things stop sort of complete chaos, however: while the dual of
a theorem need not be a theorem, it will at least still be true of all planar graphs and
so cannot be inconsistent.

As a special case, equivalent statements do not necessarily dualize into equiv-
aleut. statements. Hence, in the nonself-dual setting of graph theory, instead of
dualizing a concept such as eulerian, we can only dualize a specific formulation. If
a concept can be characterized by a statement entirely in terms of edges circl.lits
and cutsets (and it is an interesting question which concepts can be so charac,:terized)
then it is trivial to find the dual statement. But it is quite possible that the conoept,
could be characterized in a second way (although the equivalence of the two would
not hold in the more general, and so weaker, theory of matroids) which would have
a different dual statement. It is not clear how to illustrate this phenomenon for
graph theory without imposing major artificiality (e. g., conjuncting statements with
the valid statement “1%* used earlier). It would be very interesting to find a natural
example, but since such an example would have to somehow involve nonplanarity,
there is most likely no simple natural example. We shall be able to give very simv le,
natural examples for the alternative duality discussed in Section 3. e

Wx? are not meaning to suggest that duality is at all useless, but only to emphasize
that it is usually matroidal or planar duality which is really being used, rather than
gre.xph—theoretic duality. Yet the dual of a theorem is at least a good c’andidate for
being a theorem: to show that it is, we can either show that the original theorem holds
more broadly—say for all binary matroids—or show that the steps of the original
f;oof can each be modified so as also to prove the dual; see [12). But, either way,
Iatei ;zcc:’r;dt }t}l;eg:;liln:ﬁes not follow automatically from the mere syntactical formu-

3. A vertex-based duality. The matroids based on circui )
are not tl?e only matroids definable on the edges of a graph; seL:t[sl la]ljfl dTh(::lll ;?Z?ﬁ
minance is at least partly due to the naturalness of the concept of circuit. Vertices
are.equally natural, but are pointedly absent in matroid theory. Thus it ;rvould bé}
desirable to consider a notion of duality which interchanges vertices with somethin
Vertex/face polyhedral duality is one possibility; another is the vertex/edge dualitg :
of Ox:e [10] which, although it has led to the important topic of line graphs, is no};
sustainable as an actual “duality.” But it is Ore’s book which takes the'ﬁr;t steps
toward what can be viewed as another duality based on vertices. ?
" We cag justify calling tl}is a “duality” within an even more general context
an matroid theory. Following Woodall [17], two families # and #F* of sets of
edges’ ofa gral?h are said to be Menger duals of each other if and only if the members
ot: &' are precisely the minimal sets of edges which have at least one edge in common
w1th.each member of &, Matroid duality can be viewed as a special case of Menger
duality by focusing on a distingnished edge. e
In' our a:lternative duality, vertices are viewed as sets of edges having a common
endpoint, with vertices of degree one forbidden since they would, as edge sets, be
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contained in other vertices. The objects (Menger) dual to vertices are minimal
spanning sets of edges (called “minimal covering graphs” by Ore and “minimal line
covers” in [3]); we call them minimal covers. Thus, vertices are minimal edge sets
which meet every minimal cover at least once, and minimal covers are minimal edge
sets which meet every vertex at least once. This duality is particularly intriguing
because of the local nature of vertices versus the global nature of minimal covers.

In addition to forbidding vertices of degree one, we assume that all graphs
discussed are connected (preventing awkward multiplication of the number of minimal
covers) and that there are neither loops nor multiple edges. Theorem 13.2.1 of [10]
characterizes minimal covers as spanning forests of diameter less than or equal to
two; i.e., as spanning families of vertex-disjoint star subgraphs.

Completeness can be characterized as “every two vertices contain a common
edge”, which is easily seen to be equivalent to “every vertex contains a minimal
cover.” (This sort of syntactic transformation is not only common to, but is the
logical essence of both traditional duality and all Menger dualities; see [6, 7].)
These two characterizations of completeness happen to have graph-theoretically
equivalent duals, which are the subject of the following theorem.

THEOREM [10, Theorem 13.2.3]: For any graph G, the following are equivalent.

(i) Every two minimal covers of G contain a common edge.

(ii) Every minimal cover of G contains a vertex.

(iii) G is simply an odd circuit graph.

1t is important to realize that this theorem does not mean that odd circuit graphs
are somehow “duals” of complete graphs: as in Section 2, the concept of completeness
will not have a dual within graph theory. This corresponds to graphs not having
“dual graphs.” (While you could start with a graph G and imagine forming a new
graph having vertices corresponding to the minimal covers of G, it is unclear what
the edges would be and how the process could be made idempotent.) Conceivably,
our context could be enlarged (much as matroid theory enlarges graph theory) so
that graphs could be vertex/minimal-cover duals of some sort of nongraph structure.
But it is not clear what this extension beyond graph theory would involve, except
that it should be closed under duality. This means that the glaring disparatenéss
between vertices and minimal covers would have to be resolved; e.g., the cognates
of edges would have to be capable of being in several .of the cognates of vertices,
just as edges can be in many minimal covers. Thus this extension beyond graphs might
involve hypergraphs.

The hest way to see that being an odd circuit graph is not the dual of being com-
plete isto see that a characterization of completeness can be dualized inta.something
else—in fact, gompleteness can, easily be characterized in a self-dual manner, thus
dualizing into itself. This follows from the following proposition, observing that
dualizing clauses (i) and (ii) trivally characterizes completeness.

PROPOSITION. A graph G is complete if. and only {f there is a Samily & of minimal
covers of G such that:
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(i) every edge of G is in exactly two minimal covers from &, and

(ii) every two minimal covers from & contain exactly one edge of G.

Proof. If G is complete, take & to be the family of all vertices of G. Conversely,
suppose there is such an & and consider the graph G’ having vertices which corres-
pond to the minimal covers in &, with two vertices of G’ adjacent if and only if the
corresponding minimal covers intersect. By (i) and (ii), the edges of G’ correspond
to the edges of G, and so the completeness of G’ implics the same of G.

One interesting question suggested by this self-dual characterization of complete-
ness within this alternative duality is whether every concept has a self-dual charae-
terization. The same question is, of course, much more interesting for the traditional
circuit/cutset duality, Coming from a completely different point-of-view, [5] charuc-
terizes those graph-theoretic concepts which have self-dual characterizations within
the narrower context of planar graphs.

While there are many questions which this alternative duality suggests for study,
we conclude by merely mentioning an intriguing possibility. Woodalls’s notion of
Menger duality itself has a dual, which is called Konig duality. (Konig duality is
obtained from Menger duality by replacing “minimal” with “maximal” and “at
least” with “at most™; see [17] or [6].) This is especially nice in our vertex-based
setting: the Konig dual of vertices are maximal matchings (i.e., maximally inde-
pendent sets of edges). Hence the theorem of Gallai [1] is relevant: The sum of the
minimum number of edges in a minimal cover with the maximum number of edges
in 2 maximal matching—i.e., the sum of the extreme sizes of the Menger and Konig
duals of vertices—always equals the number of vertices,
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