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A note on martingale transforms and A,-weights
by
RODRIGO BANUELOS (Pasadena, Cal,)

Abstract. We study martingale transforms and A,-weights on the d-adic filtration. The
functions in Muckenhoupt's 4, class are characterized by the boundedness of the d-adic Hilbert
transform and more general nondegenerate martingale transforms.

A positive locally integrable function Win R" is in the (Muckenhoupt)
class 4,(R", p>1, if

sup(—1~ |‘Wzbc)(l [W"”""“a’x)la—1 <,
r M 1y

the sup being taking over all cubes I with sides parallel to the axes.

A well-known result of R. Hunt, B. Muckenhoupt, and R. Wheeden [5]
says that the Hilbert transform H characterizes 4,(R) in the following sense:
WeA,(R), p> 1, if and only if H is bounded on L?(Wdx). In R", n > 1, the
Hilbert transform is replaced by the Riesz transforms and we have a similar
characterization: We A,(R", p > 1, if and only if the Riesz transforms are
bounded on LP(Wix). The relationship between A,-weights and more general
singular integral operators was established by R. Coifman and C. Fefferman
[3] who showed that if We A,(R"), p > 1, then any singular integral operator
of Calderén~Zygmund type is bounded on LP(Wdx). (See E. Stein [9] for the
definitions and properties of Calderén-Zygmund operators) On the other
hand, given p > 1, it is not difficult to construct a W ¢ A,(R" and Calderén—
Zygmund operators which are bounded on L?(Wix). Thus not every singular
integral operator characterizes A,(R"). As far as we know, no one has given
precise conditions on a Calderén-Zygmund kernel in order for the
corresponding singular integral operator to characterize A,(R™. In this note
we approach this problem in the martingale setting. We look for necessary
and sufficient conditions on a collection of matrices in order for their
martingale transforms to characterize the J-adic A4,. In § 1, we prove the
analogue of the Hunt—Muckenhoupt-Wheeden result in terms of what we
call the “d-adic Hilbert transform™ In § 2, we define what it means for a
collection of matrices {A,, ..., 4, to be nondegenerate and prove that this
is a sufficient condition for the boundedness of their martingale transforms to
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characterize the d-adic 4, We also give examples which give strong
indications (but no proof) that the nondegeneracy condition is necessary.

1. The d-adic Hilbert transform and A,-weights. Let (2, #, P) be a
probability space and {#,} an increasing sequence of g-subfields in % such
that &, is generated by d” disjoint atoms of probability d™", d a fixed integer
greater than or equal to 3. Thus an atom Q of &, is the union of d atoms of
F.+1 which we denote by Q,,..., Q,. There is no loss of generality in
- assuming that our filtration is the usual d-adic filtration of (0, 17 with the
Lebesgue measure dx as P. To obtain this filtration fix n and for each
1j<dy let A(j, n)=((j—1/d" j/d"]. Let F, be the trivial &-field
{@,(0,1]} and if n 1, let #, be the o-field generated by the d” intervals

A(j, n). Finally, let # =a(|) F,).
nz0

We now define the martingale transforms. If feL!'(#), we put f,
= E(f|#,), the conditional expectation of f given %,. Observe that on any
atom Q of &, f, is constant and f,., takes d values. Hence in studying one
atom only the martingale difference f,.; —f, may be regarded as a vector in
R (we assume our functions to be real-valued), which is called the local
difference of f on Q. It is easy to see that every local difference is actually a

[xeR": Z x =0}. Let A be

a linear operator on V. Define A«f to be the functxon whose local
differences are obtained from those of f by the operator 4. We also require
our martingale transforms to start at 0, that is, E(4 #f) = 0. As is customary,
we extend A to be an operator from R to R* and represent it by a matrix
(@) such that ) a;; = Za,J = 0. In this way, for example, the identity from V

vector in the (d— 1)-dimensional subspace V =

to Visgiven by I = (au) with a; = (d—1)/d for all i and a;; = —1/d for i #].
The martingale transform that corresponds to the identity is I« f = f—Ef.
In what follows we will always assume that our martingales are

uniformly integrable. We define f* = sup| fil and f* = sup| fil- We denote

the difference sequence by d, = 4f, = fk fk 1 and set

8(N) =(k; @y, o(f) = (,‘Z1 E(d{| Fy- 1))

S(f) is called the area function and o (f) the conditioned area function.

If W is a positive function in L' () we say that Wed, {#), p>1,if

there exists a comstant K such that

sup||[E (W/w)He=1 g )] oo <K.

When p =1, we say Wed, [#) if W*
The 4,

< KW modulo null sets.
condition for general martingales was first considered by
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M. Izumisawa and N. Kazamaki in [6]. See also [1] or [4] for more on Ap-
weights and martingales.

We set some notation. Throughout this note, £ will mean expectation
with respect to the weighted measure dP = Widx. K will always refer to some
numerical constant which may not be the same at each occurrence but which
is independent of the functions f involved. Finally, for any atom Q and

integrable function f, E(f; Q) = | fdx, E(f]Q) =|Q|! {fdx = f,.
Q Q
23 an odd integer we define the matrix HY by .

For d
0-1 0 0 1t
0-1 1 1 0 0 0-1
H=| 1 0-1|, H= 0 0 0-1 1],
-1 1 0 0 0 1 0-1

-1 1-1 1 0

We call H? the d-adic Hilbert transform. As in the case of the classical Hilbert
transform, H? characterizes the d-adic BMO (see S. Janson [7] for this). We
have the following analogue of the Hunt-Muckenhoupt-Wheeden result
mentioned above. To simplify notation set H = H¢,

TueoreM 1. The following are equivalent for p > 1.
(a) Wed,{F)}.
(b) EI(H =/ P < KEIfI”

) P{H=f)*>2} < Elfl”
KElf]”.

K
< FE [fIR.
When p =1, (a), (c), and (€) are equivalent.

Before proving the theorem we need to recall a
LEmMMaA. If Wed, (F), p>1, then

Ela(f)P = EIS(N)” = EIf*” =~ EIfI",

(@) E|H +f1? <
(&) P{H /| > 1)

where A =~ B means that there exist constants K, and K, independent of f
such that Ky A<B< K, 4.

For the proof of this lemma see [8]. We remark that the equivalence
E|f* ~ E|f|” may not be true if the filtration {#,} is not regular as shown
by Uchiyama [10].

Proof of Theorem 1. Assume p > 1. Let A be any linear operator
from Vto ¥, not necessarily H. Let Ag, denote the martingale differences
of Axf. Then for any atom Qe %, ,,
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1 d
E(4g,*|F-1)(Q) = E(144,%1Q) = 2; E(4g.1712)

d

14 2l AT (002
=E,.Z|Z a A, (@) = 1i4ll d,;[ 1f, ()

=1 j=1
= || AIPE(4f)* | #u-)(Q),
where ||4|| is the norm of the matrix A. From this it follows that
o(Axf) < ||Alje(f). By the Lemma, if WeA,|#],
Ef(Axf)*F <K Elo(Ax/)" < ||4I”K Elo ()" < A" K E| f|7.

Thus (a)=(b). Clearly (b)=>(c)=(e) and (b)=(d)=>(e). Therefore to
complete the equivalence for p > 1 we need to show .(e)=>(a). ‘

Let Qe %, be any atom and @, ..., Q, the atoms in F,+, whose union
is 0. We claim there are constants K, and K, depending only on W such
that

(1 K E(W; Q) < E(W:; Q) S KL E(W: Q)
for any i and j. To see this assume without loss of generality that i = 1 and
let us show
(1.2) E(W; Q)< K EW;Q).
Set f = Xo;~ Yoy If xe@, an easy calculation shows that (H xf)(x) =

—2ifj=2and (H+f)(x) = —1if j 5 2. In any case |[Hxf] = 1 on @, from
which it follows that

(13)  EW; Q)<E(H+fI"W; Q) <EIH+fIP<KEI|fI"
<SKEW; Q)+KE(W;Q,).
Next, set [ = Xoj- Then H+ =1 on Q, and
E(W; Q) < E(Hxf1”; Q) < E[HxfI” <KE|fI” <KE(W; Q).

The last inequality and (1.3) prove (1.2). The other side of (1.1) is proved
similarly.

If we put f =W*y,, a=—1/(p—1), an easy calculation shows that
[Hx(Af[fg)t = 4 on Q; for some j # i. From this we have

EW; 0) < PH»(f/o)l > KI) < o EIiffgl?

from which it follows that
E(W; Q)[E(W™1*=210)1P < KE(W™1""1; Q).
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This inequality together with (1.1) gives
(1.4) E(WIQ)[E(W™ 1= D10 < KE(W™e=b|g)

from which the 4, condition follows and the theorem is proved for p > 1.
Next, suppose p = 1. We first show (a) = (c). Again, assume A is any
linear operator on V. W, < K W implies

(1.5) [E(Wyw)e-D|Z )]~ L.< K

and therefore if We A, {F}, WeA,{F) for any p > 1. Set |fl, = E(f||F.)
and observe that We 4, {.#) implies

(1.6) E(Ifllf,)<KE(?VVY-!fl -57,.)= KE(fI1#)

where the last inequality follows from the fact that if X is an integrable
random variable,

N w
an E(X|#,) =E(W

n

X 3/',,) a.e.

under both measures P and P. So from (1.6) we have |f* < K| S1** where

[fI** = sup E(| fH{#,). Applying Doob’s inequality with respect to P, we have

(18) PUf > 2} < S EIf)

Let 7 =inf {n: |f|, > A]. Then

(1.9) AP{fI* <A (A*f)* > A} =iPlr = o, (A*f)* > 1}
SAP{(Axf)F >4}

1t follows from Chebyshev's inequality that

(1.10) PP (A} > 2} <KE((A+NHP).

Since We 4, {#} the first part of the theorem can be applied and we find

(111 KE|AxNH* <|AI*KE(f1?).

Since |f|, < d|fl,-1 ae. by breaking our stopping time t according to its
values we also have |f|, <d|fl|,.-, ae. So,
(1.12) IAIPKE(S1) < KIAIZE(S12-1) < AK A2 E (- 1)
where the last inequality follows from the deﬁnitign of t. From (1.5),
Ifl, < K E(fl|#,) and applying £ to both sides gives E(|f},) < K E|f]. Thus
E(fl,-) <KE|f]. _

Putting this together with (1.10), (1.11), and (1.12) gives

AP (A« > 2 < K E|f].
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This inequality, (1.8), and (1.9) show

=

PlAsfy > 2} <5 EIf)
and (a) = (c).

The proof of the last implication follows the proof of Lemma 1 in
D. Burkbolder [2] very closely.

To complete the proof, it remains to show (e)=>(a), since (c)=(e)
trivially. This is done exactly as in the classical case (see [5]) and therefore
we shall be very briel. We have to show W* < K W, Let Q;, be any atom in

#, and Q the atom in #,_, such that Q =Q and Q,,..., Qi -y,

d
Qig+1>--» Qs are the atoms in &, such that Uoi=0. If
e

essinf {W(x): xeQ;,} = co, then we are done. If not, given ¢ '> 0 we can find
a subset Q<@ of positive measure such that W(%) <e+
essinf {W(x): xeQ;}, %e0. Put f =yxg. Then Hxf = IQ]/[Q,.OI on @,
where Q; is one of the brothers of 0, in #,. So,

E(W; Q)< K%T—'E(W; 0) < K|Q) [e+essinf {W (x): xeQi 1]
Let ¢~ 0 to get E(W|Q)) < Kessinf { W(x): xeQ;}; applying (1.1) gives the
result. This completes the proof of Theorem 1.

Remark. Suppose W = 1. A minor modification of the arguiment above
gives the weak type (1, 1) inequality P {(A4 =f)* > A} < (4d/2) A E|f| and if
we remove the maximal operator *, the 4 can be changed to a 2. (The
constant given by S. Janson [7] is 5d||4]|.) It is then natural to ask whether
these operators have a weak type (1, 1) inequality with constant independent
of d. We have not been able to answer this question.

2. Nondegenerate transforms and A p-weights. Let (¢;;) be the d xd matrix
which represents the linear operator 4: V — V. We will say that A is i-
degenerate if a;; = —a,/(d~1) or d; = uf(d—1) for every j #i. If no such i
exists, we will say that A is nondegenerate. A collection of operators
{Aos .+, Ay} is degenerate if there exists an i such that A ; is i-degenerate for
every j=0,..., m If no such i exists {Aq,..., Ay} is nondegenerate.

THeoreEM™ 2. Ler  {dq, ..., A,} be nondegenerate and  suppose
ElA,+fP < KE|f)? for all r = 0, <oy mand for p>1. Then We A, {#F}. In
the other direction, there exist {A, ..., A,,} degenerate and W¢ A, {F) such
that E|A, »f1? < K E|f? for all .

Proof. The case d =4 already shows the general argument and
therefore we only do this case. We first recall a few facts. Set A, = {af).
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Let g be the conjugate exponent of p and denote by AT the transpose of
A,. We have
@1 El4+fP<SKE|fIP < E(A] «f|"W~1®~) K E(|f|4 W~ He-1),

This fact is an easy consequence of the fact that (L”(Wdx))* is isomorphic to
Li(W™ =1 gx) and we leave it to the interested reader.
Now let Q, be any atom in &, and Q,, Qs, and Q, the atoms in %,
4

such that () Q; = Q, Q the atom in &,_, containing Q,. For the rest Of‘the
paper o =‘_—1/(p—1). Our goal is to show
(%) E(WIQNE(W* Q)P <K

with K independent of Q, and n. If g is a positive function and f = X; - an
easy computation shows that A4, f = (4, * Xo) 90, On Q) j #1i, and

(22) Ay Yo, = au+(@ay + pas, +yais+0ah,)  on Q;

where &+f+y+0=1/4+1/4>+ ... +1/47. Note that the ‘term in
parenthesis in (2.2) does not change if we replace A, by AT. For convenience

m m
we denote it by #,. Also if Y |af—dl>e>0, then Y |af+nl+ Zula,fk
r=0 r=0 r= R
+n,] >¢ So one of these two sums must be greater than &/2. Hence, if
fAg, ..., A} is nondegenerate there exists ¢ > 0 depending only on Ehe
collection {A,, ..., 4,} such that given any i there exists a j # i for which

n
(2.3) oY e+l >e>0.
r=0

Also, Holder’s inequality gives
(24) < E(W|Q)(EW™He=D|Q)p~1

We are now ready to prove (x). ,

Put f = xg,. We have 4, %/ =aj;+n, on Q;. By our observgtlon above
there exists i # 2, which we may assume without loss of generality to be 1,
such that .

(25) Y. laha ) > e

r=0

for all 7.

So, there exists roe{0, 1, ..., m} such that

2.6) ef(m+1) < |as +1, ).
Setting f = yg, W*, we have
(27 ) e s ]
Hr %1 = [(Arg % 20y) " (Wihoyl Z g (W, =7 EW#1Qs) - on Oy
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Therefore
t4 a~
(m—i-—l) E(W[E(W*Q2)); Q1) S E(W| A, +f1") = E|4,, +fIF
SKE|fIP =KEW™; Q) = KE(W*; Q)
or
E(W; Q) [E(W*|Q2)]" < KE(W*; Q))
from which we get
(28 EWIQ)[EW*Q,)1 ™! < K.
Next we set f = yo, W. Then [A] » f| = |aj;+n,| Wy, on @), j # 2. So as
above, there exists an ip # 2 such that on Q;, we have

(29) S IAT fl =Y lali+n,l Wy, > eWy,.
r=0 r=0

Thus there exists ;e {0, 1, ..., m} such that

(2.10) Wy, <|AT xf]|

m+1 "o on Q-

From this we have

@11 E(Wg, W™ Q) K E(AL »f19W"; Qi) < KE(A] +f1tW?)
SKE(fIPW?) = KE(W*-W*; Q,),

where the second to the last inequality follows from (2.1). From (2.11) it
follows that

(212 E(WIQ)[E(W*|Q; )] ' < K.
Next we consider the different possibilities for iy.

Case 1: io = 1. If this happens, (2.12) together with (2.8) implies
(213 E(WIQi)E(W*Q)Y  E(WIQ)[E(W*|Q,)])" ' < K
which combined with (2.4) gives («). )

Case 2: ip = 3. This means [A], « f] =|a'1’3+17,3| > ¢f(m+1) on Q for
some rye{0,1, ..., m}. But if we set f = yp,, then |4, xf| =|aZi+n,,| on
Q,. Thus
(214 EW; Q) SKE[A, xfIPW; Q1< KE|A,  fI"

=KE|f)" =K E(W; Qy).

Setting [ = yo,, we get A, » f = af, +#, on Q,. If we repeat the argument
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above, we ﬁpd an i; #1 and an r, €{0,1,..., m} such that la:illl+11,1| >
¢/m+1). If i; =2, we get as above

(2.15) E(W; Q)< KE(W,;Q,)

and (2.15) together with (2.8) implies (»). va ip =3, we get

(2.16) E(W; Q) < KE(W; Qy).

From (2.16) and (2.14) we have

2.17) E(W:.Q,) < KE(W; Q,)

and again () follows, Thus we may assume i, = 4. That is, g% +7, > ef(m
+1) for some r,e0, 1, ..., m}. Arguing as above we find that

(2.18) E(W; 0, < KE(W; Q).
Set f = xo, W. Then
P &
(219 S| =145 * st Wy > g Wa,  om Qs

The same argument as in (2.11) shows that (2,19) implies
(220) E(WIQ)E(W*Q))P ™' < K.
Putting (2.8), (2.12), and (2.20) together we get (recall we are in case iy = 3)
(2.21) A (W) A, (W) E(W|Q)[E(W*|Q3)1 ' < K* =K
where we have used the notation
A;(W)=EW|Q)[EW* Q)1 .

Set f =g, Then AT x f = a3;+1, on Q;. As above, we find that there

exists an i, # 3 such that ]a;i,32+n,3| > ¢g/(m+1) for some r,,€{0, 1, ..., m}. If

i, = 1, we find that E(W; Q;) < K E(W; Q,) which is just (2.16) and therefore
we get (x). If i; =4, a similar computation leads to

(222) E(W*0Q,) < K E(W*|Q5)

and so (2.21) implies that A; (W) 4,(W) A,(W) < K and (#) follows from
(24). Finally, suppose i; = 2. This leads to

(2.23) E(W*[Q,) < KE(W*|Q3)

which together with (2.12) (we are in case iy = 3) gives (¥). The case i, =4

follows similarly and (x) is proved and we have half of the theorem.
Next let us fix no > 1. Let Q be the leftmost atom in &, . In other

words, Q = A(1, ny). Let A, =(af) be linear operators on V such that for
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every r, dj; =0 for allj =1, ..., d. It is easy to see that 4, % f = A, *(fxp) on
Q for every felL”(dx), p >1 Settmg W =y, we have

E|4, +f1? = E(4,%fP; Q) = E(A,*(f19)l"; Q)
<E|4,*(f10l” < K, E|fxol" = K, E|fI?

where the last inequality is due to the usual boundedness of martingale
transforms. If we let K be the largest K, we have E |4, » f|” < K E|f]? for all
r. Clearly W¢ A, {#} for any p. This completes the proof of the theorem.
We note that the example given above does not quite show that
nondegeneracy is a necessary condition for the boundedness of martingale
transforms to characterize A,. To do this we need to show that for any
collection of degenerate operators we can find a W¢A,{#} with the
martingale transforms bounded on LP(Wdx). The example, however, comes
very close to doing this. For suppose we have one operator 4 which is
degenerate. Then we can write 4 = Al +D where A is a real number, I is the
matrix representing the identity and D is a matrix with a zero row or a zero
column. From (2.1) we may assume that D has a zero row. A minor
modification of the above example (depending on which row of D is zero)
gives a W¢A, {#} for which ElD*f|”<KE|f] Since Ax*f = A(f-Ef)
+D +f. we see that if Ef = 0 we have E|4 « f|? < K E|f|? or, if we apply this
to f—Ef, we get E|Axf|? < K.E|f-Ef|?. It is clear, though, that to have
E|f—Ef|? <K E|f|?, W cannot vanish on a set of posmve measure and our
example above does. So we cannot conclude that E|A % f|P < K E|fn.
Martingale transforms in this setting were introduced by S. Janson [7]
who showed that the Fefferman-Stein decomposition of BMO functions in
terms of Riesz transforms has an analogue for the d-adic BMO in terms of
these operators. Furthermore, Janson gave a simple necessary and sufficient
condition for this decomposition to hold: the matrices should have no
common real eigenvector. An important observation we wish to make is that
our nondegeneracy condition is weaker than the Janson condition for the
characterization of BMO. For example, it is easy to write down a symmetric
matrix which is nondegenerate. The fact that the condition for the
characterization - of A,-weights should be weaker than that for the
characterization of BMO, should not be surprising. It is easy to show that in
R* the boundedness of any Riesz transform on L?(Widx) implies that W is an
Ap-function. On the other hand, it is shown in [7] that to characterize BMO
we must have all the Riesz transforms.
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