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On generalized topological divisors of zero
by
W. ZELAZKO (Warszawa)

Abstract. The main result of this paper states that a real topological algebra with unit
element either possesses generalized topological divisors of zero or the group of its invertible
elements is isomorphic to one of the following (multiplicative) groups: R\{0}, C\{0}, 0o\f0}.

§ 1. Introduction. A ropological algebra is a (nonzero) topological linear
space together with an associative jointly continuous multiplication making
of it an algebra over complex or real scalars. Denote by ®(A4) a basis of
neighbourhoods of the origin in a topological algebra 4. The joint continuity
of the multiplication in A4 means that for each U in &(A) there is a
neighbourhood ¥ in &(A) such that

) : V2cuU.

A topological algebra is said to be a locally convex algebra if its
underlying topological linear space is a locally convex space. A By-algebra is
a completely metrizable locally convex algebra. A locally convex algebra A is
said to be locally multiplicatively convex (shortly m-convex) if its topology can
be given by means of a family (|x||) of submultiplicative seminorms, i.e.
seminorms satisfying

(2) leylle < fixl 11l

for all x and y in A and all indices «. It is clear that relations (2) imply the
joint continuity of the multiplication in 4. Similarly, a locally pseudoconvex
algebra is a topological algebra which is a locally pseudoconvex space. A
locally pseudoconvex space X is a topological linear space whose topology is
given by means of a family (||x|,) of pseudonorms satisfying

(i) lIxlls = 0, and if ||x||, = O for all indices  then x = 0,

(i) 11+ ylla < Nxlly + 1yl

(iii) || Ax/l, = |4)"||x]l,» where p, is fixed with O <p, <1,
for all x,y in X, all scalars 2 and all indices a.

A locally pseudoconvex algebra is said to be m-pseudoconvex if its

topology can be given by means of a family of pseudonorms satisfying (i)-{iii)
and (2). One can easily see that the completion of a locally pseudoconvex


GUEST


138 W. Zelazko

algebra is again such an algebra and the same holds true for m-pseudo-
convex algebras.

A pair S; and S, of nonvoid subsets of a topological algebra A4 is said
to be generalized topological divisors of zero if 0¢S; U S, but 0eS, S, . Here
S; 8, = {xy: xeS;, yeS,} and § denotes the closure of S in A. If one of the
sets S; consists of a single nonzero element x, this element is said to be a (left
or right) topological divisor of zero. In other words, a topological algebra A
has generalized topological divisors of zero if there is a neighbourhood
Ue®(4) and two nets (x;), (y;), iel, of elements of A such that x;¢ U and
yi¢U for all i in I, or for all sufficiently large i, and lim x; ; = 0. Similarly, a

I

nonzero element x in A is a left (right) topological divisor of zero if there is a

U in ¢(4) and a net (), iel, of elements of A4 such that z,¢U for all i in [

and limxz; = 0 (limz x = 0). It is clear that if a topological algebra A has
I

1

generalized topological divisors of zero, then these divisors can be chosen in
any dense subset of A. In particular, a topological algebra has generalized
topological divisors of zero if and only if its completion has such divisors.

Shilov’s generalization of the Gelfand—Mazur theorem states that a real
Banach algebra either possesses (two-sided) topological divisors of zero or is
isomorphic to one of the three finite-dimensional division algebras over the
reals: the field R of real numbers, the field C of complex numbers, the
division algebra Q of quaternions. A similar result fails for an arbitrary
topological algebra and so in ([5], Definition 8.8) the concept of generalized
topological divisors of zero was introduced in the hope that it would provide
a proper notion for generalization of the above-mentioned result of Shilov.
We shall need the following result which was proved in the same paper ([5],
Theorem 8.9).

1.1. THeoreM. Let A be a real topological algebra which is a division
algebra. Then either A possesses generalized topological divisors of zero or it is
isomorphic to one of the three finite-dimensional division algebras over
R: R, C, Q.

The above result also holds for a complex topological algebra A, except
that then the algebras R and Q are excluded.

It was conjectured in ([5], Conjecture 8.10) that the above theorem is
true for an arbitrary topological algebra A. The conjecture was proved in [6]
for complex m-convex algebras and in [7] for real m-convex algebras.
However, this conjecture fails in general: in [1], a commutative complex
infinite-dimensional Bg-algebra without generalized topological divisors of
zero was constructed. Nevertheless, some weaker form of this conjecture can
be proved: a topological algebra with unit element.either has generalized
topological divisors of zero or its group of invertible elements is isomorphic
to C\{0} in the complex case and to one of the three groups R\{0}, C\{0},
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0\{0} in the real case. Thus the triviality of an algebra has to be replaced by
the triviality of the group of its invertible elements. Of course this is a
weaker result—the triviality of an algebra excludes the existence of
generalized topological divisors of zero while the triviality of the group of
invertible elements does not (cf. Example 2.5 below). The aim of this paper is
to prove this and related results. It extends the results obtained in [10],
where it was shown that if a complex locally convex algebra 4 with unit
element has no generalized topological divisors of zero then the only
invertible elements in A are the scalar multiples of the unit. Here we give a
positive answer to two problems posed in [10]: Problem 2, whether the same
result holds true for an arbitrary complex topological algebra, and Problem
1, whether the nonexistence of generalized topological divisors of zero- implies
in the real case the triviality of the group of invertible elements. As
corollaries we obtain new proofs of the main results of [6] and [7] in the
more general setting of an m-pseudoconvex algebra (Corollaries 2.8, 2.11,
2.13). For more information on the above the reader is referred to [1], [3],
[53-[10]. .

§ 2. The results. Let 4 be a topological algebra over the field of scalars
K (K =R or K =C) and suppose that A has unit element denoted by e.
Denote by G(A4) the multiplicative group of invertible elements in 4 and
define the spectrum of an element x in A by

¥ (x) = {leK: x—1le¢ G(A)};

if K =C we write o(x) instead of o€(x).
Note the following relations:

3) o (x+1e) =c*()+1 (= {u+i: ped*(®)})
for all x in A and all A in K, and
G c¥(x ) =[] (={A"" ded®(0)})

for all x in G(A).
The spectral radius gx(x) of an element x in 4 is defined by

&m—wMMXW(H (ex(x) = — o0 if 6¥(x) = @).

Call an element x in A a constant element if x = Ae, leK

For the sake of completeness we prove the following lemma (it follows
immediately from Proposition 9.5 in [8]).

2.1. LemMa. Let A be a complete topological algebra with unit element e
and suppose that A has no generalized topologtcal divisors of zero. Then for
each nonconstant element x in A its spectrum ¢¥(x) is an open subset of K.

Proof. We have to show that if for some nonconstant element X, 1{1 A
its spectrum is nonvoid and nonopen then A has generalized topological
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divisors of zero. So suppose that there is a scalar 1, in o® (xo) and a sequence
of scalars (4,) with A,¢0%(x), n=1, 2, ..., and with A, = lim 4,. Consider
the sequence y, = (xo—A,e)”'. First we show that this sequence cannot be
bounded. Otherwise for each U in ®(4) there is a positive &y such that
Ayye U for all n and all A with |4] < ey. This implies that the sequence (y,) is
a Cauchy sequence in A. In fact, let U be a given element in ®(A) and
choose a Vin &(A4) which together with U satisfies relation (1). We can find
an integer ky so that for m, n = ky, |4, — A% < &,. We have now for m, n
2 ky
In=Vm = (xo—'in e)—l _(xo*j-m e)hl

= (A'm _ﬂn)llz(xo"—’ln e)~ ! (’q'm_ln)llz (xO —'lm (3)” ! € Vi Ua

with an arbitrary choice of (A,—4,)'/%, and this means that (y,) is a Cauchy
sequence. Since A is complete there exists y = limy, in 4. We have

e =Yy (xo—4,€) = limy,lim(xo~1,€) = y(xo—Ao€)
and

e={(Xg—Age)y.

Thus y = (xo~A4g€)™ " and s0 Ay ¢ ¥ (x,). This is a contradiction proving that
the sequence (y,) is unbounded. But then there is a neighbourhood Uyin A
such that for each natural n there is a natural k, with n™* Vi Uo. Since the
element x, is nonconstant we have x,—Aye #0 and we can assume Xo
—4,e¢U, for large n, say n > ny. Put S, =S, = 4A\U,, so that 0¢S, US,.
On the other hand, we have n'ly,cnesl and (xo—4,e)eS, for k, > ny and

nle=p"! Yiy (X0~ A, €)€S, S,

Thus 0eS;S, and 4 has generalized topological divisors of zero. The
conclusion follows. .

Let A be a topological algebra with unit e and let x be an element of A.
Denote by A, the subalgebra of A generated by x, i.e. the closure in A of the

set of all elements of the form p= Y « x, o;eK, where x° = e.
i=0
2.2. Lemma. Let A be a complete topological algebra with unit e and
suppose that A has no generalized topological divisors of zero, Let x be a
nonconstant element of A. Then for each A in ¢®(x) there is a K-valued
continuous multiplicative linear functional f on A, with J(x) = A
Proof. Put y = x—1e and write any polynomial p in x in the form

n

© p=7Y ay,

i=0

;€ K. First we show that the coefficients o; are uniquely determined by the

icm

©

Generalized topological divisors of zero 141

element p of the form (5). In fact, if p has two different representations of the
k
form (5), then there are coefficients §; in K, Y |8, > 0, with q(y) = ), B/
i=0
=0, ie. y is an algebraic element in A. If K = C we can write

qy) =4e(y~2A1) ... 0—4) =0

and since 4 has no divisors of zero it follows that y=/Ae for some
i, 1 < i< k. This is impossible because x, and so y, is a nonconstant element
in A. If K = R we can. decompose

g(») =gy ... g (¥,

where ¢g; is a polynomial with real coefficients of degree at most two. As
before, g;(y) =0 for some i and if g; is of degree one we deal as before.
Otherwise y* = ay+fe for some real o and B. If B #0 we have y(f7'y
—pB 1ae) = e and so ye G(A). But formula (3) implies Oco®(y) and so y is a
noninvertible element in 4. Thus f =0 and y(y—oe) = 0, which implies that
y is a constant element. The contradiction proves the uniqueness of the
coefficients ‘in (5).

We put now f(p) = oo. This is a multiplicative linear functional on the
algebra of all polynomials of the form (5). We shall be done if we show that
it is a continuous functional, since then we extend it by continuity onto the
whole of A4, and the extension is again a continuous multiplicative linear
functional. Suppose then that f is discontinuous on the set of all elements of
the form (5) and try to get a contradiction. Thus for each U in #(A) we can
find an element py of the form (5) with pyeU and f(py) = 1. We can write

(6) py =e—(x—4A€)qy,
with a suitable gy of the form (5). Consider the net (qy), Ue®(A), where
& (A) is ordered by inclusion. It either converges or diverges in 4. If the net
(qy) converges in A4, say to an element z, then formula (6) implies e =;("‘
—2€)z = z(x—Ae) and so A¢o¥(x), which is a contradiction. Thus the net
(qy) diverges and since A is complete it is not a Cauchy net. This means that
there is a neighbourhood U, in @(A) such that for each U in ®(4) there is a
V(U)e®(A4) with V(U) = U and
M ry = Gy —qu g Uo-
By (6) we have

Pu—"pyan = (x—Ae)ry.
But pyeU and V(U) < U and this means that lim py = lim pyq, = 0, so that

(A)

L o4)
the above relation implies

®) lim (x—Ae)ry = 0.
o)
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Relations (7) and (8) mean that x— e is a topological divisor of zero in
A. The contradiction proves that the functional f is continuous on A4, and
the conclusion follows. :

2.3. LeMMmA. Let A be a complete topological algebra with unit element.
Suppose that A has no generalized topological divisors of zero. Then for each
nonconstant element x in A we have either ¢¥(x) =@ or o*(x) = K.

Proof. Let x be a nonconstant element in A. Suppose that
@ # o*(x) # K and try to get a contradiction. By Lemma 2.1 the set ¢®(x) is
a nonvoid open subset of K and its boundary 8% (x) is nonvoid. Choose any
A in 80%(x); we have 1¢c®(x). Put y = (x—2e)”!. By (3) and (4) we have
¢x(y) = oo and the spectrum ¢*(3) is nonvoid and different from K. Again
there is a 4, in &® () so that A, ¢o* (v). We put z = y— 4, e. By (3) we have
0k (2) = oo while by (4), gx(z™") = 20. Thus there are scalars a and f with
aeo®(z™Y), Bed®(z), such that |« =1, |f = 2. By Lemma 2.2 there are
continuous multiplicative linear functionals f; on A, with f; (z7Y =« and
Jf> on A4, with f,(z) = . Thus

©® 1E™) =" 2 1,
(10) : LE2) =18/21"> 1

for all natural n. Since the functionals f, and f, are continuous, there is a
neighbourhood U in & (A) such that

(1) UmA:—lc{XEA,—li il <1},
(12) UnA,ci{xed,: |fi(x) <1}

Weput S, ={z™" neN}, S, = {(z/2)": neN}.By (11) and (12) we have
$;nU=0@ and S, "U = @ so that 0¢85, US,. On the other hand we have

27" =2z7"(z/2)"eS; S,

and so 0eS;S,. Thus 4 has generalized topological divisors of zero. The
contradiction proves the lemma.

The following result gives a positive answer to Problem 2 of [101,
mentioned in the introduction.

24. TueoreM. Let A be a complex topological algebra with unit element
fmd suppose that A has no generalized topological divisors of zero. Then every
invertible element in A is a scalar multiple of the unit element.

‘We do not give here a proof of this theorem since it follows immediately
from a more general result given in Theorem 2.9 below.

The converse of the above result does not hold true. We give an
example of a commutative complex B,-algebra with unit element whose only

invertible elements are scalar multiples of the unit and which has divisors of
zero.
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2.5. ExampLE. Let A, be the algebra of all entire functions x such that

Ix, = sup|x(2) exp(—|4/"*/n)| < o0
ieC

Under the above seminorms and pointwise algebra
operations it is a commutative complex By-algebra whose only invertible
elements are the nonzero constant functions (cf. [4], § 3)(}). Define

A= {(xn xy)edo xAg: x((0) = x, (0)}<

One can easily see that under the coordinatewise operations and the
seminorms ||x;, X,)|l, = max(|x,|,, [x,],) it is a commutative Bj-algebra with
unit element whose only invertible elements are the nonzero constant
elements. For z(1) = 1 we have ze 4, and so the elements (z, 0) and (0, z) are
in A. Since (z, 0)(0, z) = (0, 0), the zero element of A4, the algebra A4 has
divisors of zero. ‘

Theorem 2.4 immediately implies the following

2.6. COROLLARY. Let A be as in Theorem 24. Then for each nonconstant
element x in A we have

g(x)=C,

in particular -the spectrum of an element of a complex topological algebra

without generalized topological divisors of zero is never void.
o

We say that an entire function ¢(1) = Z o, A" operates on an element x
n=0

of a topological algebra A if the series ), a,x" converges in A. This also
n=0

makes sense for a real algebra if the function ¢ has real Taylor coefficients.

In the following result we limit ourselves to pseudoconvex algebras and we

do not know whether it can be extended to arbitrary topological algebras.

2.7. ProposiTION. Let A be a complex pseudoconvex algebra with unit
el
element. If the exponential function expl= Y A"n! operates on some

n=0 .
nonconstant element x in A, then A has generalized topological divisors of zero.

Proof. Suppose that 4 has no generalized topological divisors of zero
and try to get a contradiction. Without loss of generality we can assume that
A is a complete algebra. Let (|x||,) be a family of pseudonorms defining the

o0

topology of A. Since the series Y. x"/n! converges in A, we have lim||x"/n!||,
n=0
=0 for all indices a. This implies ||x"/n!||, < M, for some constant M, and

(1) As A, we can also take the algebra constructed in [1]; it consists of entire functions,
contains all polynomials, and by Theorem 24 its only invertible elements are nonzero scalar
multiples of the unit element. .
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all n, and so
27" il < M2

for n=1,2,... Since 1<2%<2, we see that Y27 x"/nlll, < oo for all
indices a, which means that the series exp(x/2) and exp(~x/2) are absolutely
convergent in A. A routine calculation shows that the sum of one series is
the inverse of the other. Since x is a nonconstant element, Corollary 2.6
implies that o (x) = C. By Lemma 2.2 we can see that the set exp C = C\[0}
is the spectrum of exp(x/2) in 4,. Thus exp(x/2) is-a nonconstant invertible
element in A, and so in A. Together with Theorem 2.4 this gives the desired
contradiction. The conclusion follows.

Relations (2) show that if 4 is a complete m-pseudoconvex algebra then
all entire functions operate on all elements of A. Together with the fact that
a topological algebra has generalized topological divisors of zero if and only
if its completion has such' divisors, this gives the following corollary to
Proposition 2.7:

2.8. CoroLLarY. If A is a complex m-pseudoconvex algebra with unit
element and A # C, then A has generalized topological divisors of zero.

The following result gives a positive answer to Problem 1 in [10; it is
the main result of this paper.

29. TueoreM. Let A be a real topological algebra with unit element e.
Suppose that A has no generalized topological divisors of zero. Then the group
G (A) of all invertible elements in A is isomorphic either to R\{0} or to C\{0} or
to Q\{0}.

Proof. Without loss of generality we can assume A to be complete.
First we show that 4, = G(4) L {0} is a subalgebra of A. Since the product
of two elements in 4, is again in 4, and all constant elements are in A, it is
sufficient to show that x, ye A, implies x+yeA,. This is clearly true if
either x or y is zero. If x #0+#y then x+y=x(e+x"'y) and if x~'y
1s nonconstant Lemma 2.3 implies o®(x™!y) = @ since it is an invertible
element. This implies e+x"'yeG(4) and so x+y = x(e+x"1y)eG(4)
c Ay If x™'y = Ae, then x+y = (1+ )x and also belongs to 4,. But now
Theorem 1.1 implies that A4, is isomorphic to either R, C, or Q. The
conclusion follows.

As is shown in Example 2.5 the triviality of G(4) does not imply the
nonexistence of generalized topological divisors of zero.

2.10. Prorosition. Let A be a real pseudoconvex algebra with unit
element and suppose that the exponential Junction exp A operates on some

nonconstant element x with a nonvoid spectrum o®(x). Then A has generalized -

topological divisors of zero.

Proof Suppose that 4 has no generalized topological divisors of zero.
By Lemma 2.3 we have 6®(x) = R and then we proceed in exactly the same
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way as in the proof of Proposition 2.7 obtaining a contradiction which
proves our conclusion.

Since all entire functions with real Taylor coefficients operate on real
complete m-pseudoconvex algebras, and since such an algebra either is a
division algebra or has a nonconstant element with a nonvoid spectrum,
using Theorem 1.1, just as in Corollary 2.8 we obtain the following.

2.11. CororLarY. Let A be a real m-pseudoconvex algebra with unit
element. Then either A has generalized topological divisors of zero or it is
isomorphic to one of the three finite-dimensional division algebras: R, C, Q.

We shall now consider algebras without unit elements.

Let 4 be a topological algebra over K (K = C or K = R) without unit
element. The unitization Ay of A is the direct sum 4; = A@Ke, where Ke is
the one-dimensional linear space over K spanned by a vector e. A; becomes
an algebra over K with unit element e if we define there the multiplication
by setting

(x+e) (y+ pe) = xy+Ay-+ ux+ Ape,

where x, yed, , peK. It is a topological algebra containing topologically 4
if we define there a basis of neighbourhoods of the origin setting

(13) U=N(U,e¢={x+lecd;: xeU,|) <s},

where Ue ®(A4) and 0 <e <1. In fact, for a neighbourhood N (U, ¢) of the
form (13) we can find V and V; in &(A4) so that Vi+Vi+V, < U, VcV,
and V2 < V;. Without loss of generality we can also assume AV < V for all 1
in K with |4 < 1. Now for x+Je, y+ueeN(V, &) we have x, ye ¥V and so
xy, px, Ay are in V;, hence xy+ux+iyeU, while |y <e®<e Thus
N(V,e)> = N(U,&) and relations (1) are satisfied if we set &(4,)
={N({U,e): Ued(4),0<e<1]. i

The following proposition extends Lemma 3.6 of [10] to the more
general setting of an arbitrary topological algebra.

2.12. ProposiTION. Let A be a topological algebra without unit. If A has
no generalized topological divisors of zero, then its unitization A, also has no
such divisors.

Proof. Without loss of generality we can assume that 4, and so A, is a
complete algebra. Suppose that the algebra 4; has generalized topological
divisors of zero S, and S,. By the assumption there is a neighbourhood U,
= N (U, &) with §; " Uy =0 and S, U, =@ such that for each U in
®(A,) there are elements xg—AgeeS,; and yg— ugeeS, with

(149 (xg—Age)(yg—ppe)el.

Without loss of generality we can assume |4p| < 1 and |up| < 1, for whenever
|Agl > 1 we can replace xg—Age by |lg|™* (xpg—Age). The new element lies
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outside U, and relation (14) is again satisfied since we can assume AU < (7
for |4 < 1. Thus the nets (ip), (4g), Ue®(4,), are bounded, and passing if
necessary to finer nets x;,—A;e and y,— e, iel, we can assume that the
limits 1 = lim4; and u =lim g, exist. Relations (14) imply now

1 1

(15) lim (x; — A €) (y;— iy €) = 0,
I

so that also lim 4 4 = 0, which, in turn, implies either A =0 or u =0. By
symmetry we can assume A = 0.

We shall now show that for each u in A4, us0, there is a
neighbourhood U(u) in #(A4) and an index i(u) in I with

(16) u(x;—Ae)¢ U(w.

for all i > i(u). To prove this suppose that (16) fails to be true. Thus there is

a nonzero element u, in A such that for each U in &(4) and each index i in

I there is an index j; in I, j, > i, with g (x;,~ A;,€)e U. This implies limu, (x;,
1

—4;,¢)=0. But lim, =0 and so im4; uy = 0 which implies
I I

(17) limug x;; = limug (x;, — 4, €)+lim4;,u, = 0.
I

On the other hand, xji—/ljiecéﬁo = N(Uy, &) and since for large i we
have |4;] <&, it follows that x;,¢ Uy for, say, i > iy. This together with (17)
implies that u, is a left~topological divisor of zero in A. The contradiction
proves formula (16).

We shall now show that there are an element v, in 4 and a neighbour-
hood Vin &(4) such that for each i in I there is a j; in I with ji =1 and

(18) (YJ,-_/"jI o ¢V

for all i in 1. If =0 we proceed as in the proof of (16). Consider then the
case u# 0 and suppose that relation (18) fails to be true. This means that

lim (y;~p; e}v =0
1

for -all v in A4, which, in turn, implies

(19) limp~typo=0
1

for all v. Suppose first that the net (u™'y,), icl, converges in A to some
element u. Relation (19) implies uv = v for all » in A, in particular u* = u and
" u#0. We cannot have vu = v for all v in A, because then u would be a unit
in 4 and there is none. Thus wu % w for some w in 4 and setting x = wu—w
we have a nonzero element with xu = w(u?—u) = 0. Thus A has divisors of
zero which is nonsense. This proves that the net (u~'y,) diverges in A, and
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since A is complete it is not a Cauchy net. Thus there exists a neighbour-
hood V; in &(4) such that for each i in I there.is a k;el, k; > i, with

(20) re=pTt =y ¢V
Relation (19) implies now

limrip=0
I

for all v in A, which together with (20) shows that each nonzero element in A
is a right topological divisor of zero. The contradiction proves formula (18).
We put p; = (v, — ij,€) v, Where (j;) and v, satisfy (18). We have p;¢ V
for all i. Choose any nonzero clement u in A and put g =ulx;—4;)e.
Relations (16) show that g;¢ U (u) for i > i(u). Relation (15) implies now

li;nqi pi = limu(x; ~4; &)y~ elvo =0
I

and so A has generalized topological divisors of zero. The contradiction
proves the proposition.

The above proposition together with Corollaries 2.8 and 2.11 immedia-
tely implies the following corollary which generalizes the main results in [6]
and [7]. : :

2.13. CoroLLARY. Let A be an m-pseudoconvex algebra without general-
ized topological divisors of zero. If A is a complex algebra then A is isomorphic
to C, if it is a real algebra then it is isomorphic to one of the algebras R, C, Q.

Let A be an algebra over R or C and suppose that 4 has no unit
element. An element x in A is said to be a quasi-inverse of an element y in A
if e+x is the inverse of e+y in the unitization 4, of A. This implies in
particular that x and y commute.

2.14. ProposITION. Let A be a real or complex topological algebra without
unit element and suppose that A has no generalized topological divisors of zero.
Then the only quasi-invertible element in A is the zero element.

Proof. If A is a complex algebra the conclusion follows immediately
from Theorem 2.4 and Proposition 2.12. If 4 is a real algebra and x is a
quasi-invertible clement in A, then, by Theorem 2.9, the element x lies in a
subalgebra of the unitization A, of A isomorphic to a subalgebra of Q and
s0 x is an algebraic element over R of order at most two. If x? = ax -+ fe,
a, BeR, and B 0, then the unit e of A, is in 4, which is impossible. Thus
X(x—ne) =0 and since x s e we have x = 0. The conclusion follows.

§ 3. Final remarks and open problems. We do not know any example of a
noncommutative complex topological algebra without generalized topologi-
cal divisors of zero and we conjecture that the answer to the following
problem is positive:
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ProsLeM 1. Let 4 be a complex noncommutative topological algebra.
Does it follow that A has generalized topological divisors of zero?

This problem can be answered in the negative in the case of a real
algebra. The counterexample is the Banach algebra Q. A positive answer to
the following problem would imply a positive solution of Problem 1.

ProBLEM 2. Suppose that 4 is a complex topological algebra with the
property that for arbitrary nets (x;), (v;), i€l, of elements of A the condition
limx; y; = 0 implies limy; x; = 0. Does it follow that 4 is a commutative

1 1 )

algebra?

The positive answer to Problem 2 would give a generalization of the
following result due to Le Page [2]: If A is a complex Banach algebra and
there is a positive constant k such that [|xy|| < k||yx|| for all x and y in 4
then the algebra 4 is commutative. Using a technique similar to that of [2]
one can obtain a positive solution to Problem 2 in the case when 4 is an m-
pseudoconvex algebra.

ProsLEM 3. Suppose that a topological algebra A has generalized
topological divisors of zero. Does there exist a commutative subalgebra of A
also possessing generalized topological divisors of zero?
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Near isometries of spaces of weak * continuous functions,
with an application to Bochner spaces

by

MICHAEL CAMBERN (Santa Barbara, Cal)

Abstract. For a Banach dual E and a compact Hausdorff space X we denote by
C(X, E,») the Banach space of continuous functions F from X to E when the latter space is
provided with its weak * topology, normed by ||F||, = sup||F (x)|. Here we show that if X and

Y are extremally disconnected compact Hausdorff spacgzxand E is a uniformly convex Banach
space with C(X, E,+) and C(Y, E,«) nearly isometric, then X and Y are homeomorphic. The
result has the following immediate consequence for Bochner spaces. If (@, Z;, ) are o-finite
measure spaces, i =1, 2, and E a uniformly smooth Banach space such that L'(u,, E) and
L!(p,, E) are nearly isometric or that L®(u,, E*) and L*(u,,E*) are nearly isometric, then
L'(u,, E) is isometric to L!(u,, E) and L*(u,, E*) is isometric to L= (u,, E*).

0. Introduction. Throughout this paper the letter E stands for a Banach
space, while X and Y denote compact Hausdorff spaces. U denotes the
closed unit ball in E and S the surface of U. Interaction between elements of
a Banach space and those of its dual will be denoted by -, -3. We will write
E, = E; to indicate that the Banach spaces E, and E, are isometric.

Given X, assume that E is a Banach dual. Then C(X, E,s) stands
for the Banach space of continuous functions F on X to E when the latter
space is provided with its weak* topology, normed by ||Fll,, = sup||F -

If (2, X, u) is a positive measure space and E is any Banach space then,
for 1<p< x, the Bochner spaces L*(Q, X, u, E) will be denoted by
L?(u, E) when there is no danger of confusing the underlying measure spaces
involved. For the definitions and properties of these spaces we refer to [10].

Following Banach [1, p. 242] we will call the Banach spaces E, and E,
nearly isometric if 1 = inf {IIT!IHT )1}, where T runs through all isomorph-
isms of E, onto E,. It is of course equivalent to suppose that 1 = inf {||T](},
where ||T~!| =1 and hence T is a norm-increasing isomorphism of E, onto
E,. For if T is any continuous isomorphism of one Banach space onto
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