icm®

isometric. Hence, by Theorem 1, there exists a homeomorphism k of  $\Omega_1$  onto  $\Omega_2$ .

Next, for Borel sets  $B \subseteq \Omega_2$ , we define  $\lambda(B) = \mu_1 [k^{-1}(B)]$ . If then A is a Borel subset of  $\Omega_1$  we have  $\mu_1(A) = \lambda(k(A)) = \int_{k(A)} d\lambda$  so that the map

carries the dense subspace of simple functions in  $L^1(\Omega_1, \Sigma_1, \mu_1, E)$  isometrically onto the corresponding subspace of  $L^1(\Omega_2, \Sigma_2, \lambda, E)$  and can thus be extended to an isometry of  $L^1(\Omega_1, \Sigma_1, \mu_1, E)$  onto  $L^1(\Omega_2, \Sigma_2, \lambda, E)$ . Then multiplication by the scalar function  $d\lambda/d\mu_2$  carries this latter space isometrically onto  $L^1(\Omega_2, \Sigma_2, \mu_2, E)$ . Hence  $L^1(\mu_1, E) \cong L^1(\mu_2, E)$  and consequently  $L^{\infty}(\mu_1, E^*) \cong L^{\infty}(\mu_2, E^*)$ .

If we assume that  $L^1(\mu_1, E)$  and  $L^1(\mu_2, E)$  are nearly isometric, then their duals  $L^{\infty}(\mu_1, E^*)$  and  $L^{\infty}(\mu_2, E^*)$  are nearly isometric and the proof follows as above.

## References

- [1] S. Banach, Théorie des opérations linéaires, Monografie Matematyczne, Warsaw, 1932.
- [2] E. Behrends et al., *D-Structure in Real Banach Spaces*, Lecture Notes in Math. 613, Springer, Berlin-Heidelberg-New York 1977.
- [3] Y. Benyamini, Near isometries in the class of L<sup>1</sup>-preduals, Israel J. Math. 20 (1975), 275-281.
- [4] M. Cambern, Isomorphisms of spaces of norm-continuous functions, Pacific J. Math. 116 (1985), 243-254.
- [5] -, Near isometries of Bochner  $L^1$  and  $L^{\infty}$  spaces, ibid. 122 (1986), 1-10.
- [6] -, A Banach-Stone theorem for spaces of weak\* continuous functions, Proc. Royal Soc. Edinburgh Ser. A 101 (1985), 203-206.
- [7] M. Cambern and P. Greim, The bidual of C(X, E), Proc. Amer. Math. Soc. 85 (1982), 53-58.
- [8] -, -, The dual of a space of vector measures, Math. Z. 180 (1982), 373-378.
- [9] M. M. Day, Normed Linear Spaces, 3rd ed., Springer, Berlin-Heidelberg-New York 1973.
- [10] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R. I. 1977.
- [11] P. Greim, Banach spaces with the L<sup>1</sup>-Banach-Stone property, Trans. Amer. Math. Soc. 287 (1985), 819-828.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA Santa Barbara. California 93106. U.S.A.

Received September 27, 1985

(2096)

## On symmetric bases in nonseparable Banach spaces

by

## LECH DREWNOWSKI (Poznań)

Abstract. It is shown that if E and F are nonseparable Banach spaces with symmetric bases and each of these spaces is isomorphic to a subspace of the other space, then the bases are equivalent (and hence the two spaces are isomorphic). In particular, in a nonseparable Banach space with a symmetric basis, any two such bases are equivalent.

The purpose of this paper is to prove the following

THEOREM. Let E and F be nonseparable Banach spaces with symmetric bases  $(u_i)_{i\in I}$  and  $(v_j)_{j\in J}$ , respectively. If  $E \subset F$  and  $F \subset E$  (isomorphic embeddings), then E and F are isomorphic:  $E \approx F$ . In fact, in this case the bases  $(u_i)$  and  $(v_j)$  are equivalent, i.e., there exists an isomorphism T from E onto F such that  $T(\{u_i\colon i\in I\})=\{v_j\colon j\in J\}$ .

(Thus, for some bijection  $\tau: I \to J$ ,  $Tu_i = v_{\tau(i)}$  for all  $i \in I$ , and every such bijection determines the corresponding isomorphism.)

COROLLARY. If a nonseparable Banach space E has a symmetric basis, then any two symmetric bases of E are equivalent.

These results show that there is a sharp distinction between the nonseparable and separable Banach spaces with symmetric bases. Nothing of the above type is valid in the separable case (see [1] and [2]) if we insist on having conclusions that the bases are equivalent. Whether or not the theorem is true in this case if the assertion were merely  $E \approx F$ , seems to be unknown.

We start with some explanations and a general construction.

A family  $(x_{\alpha})_{\alpha \in A}$  of elements in a Banach space X is called a *symmetric basis* of X ([4]) if

- (a) it is an unconditional basis of X ([3]), i.e., for every  $x \in X$  there is a unique family of scalars  $(t_{\alpha})_{\alpha \in A}$  such that  $x = \sum_{\alpha \in A} t_{\alpha} x_{\alpha}$  (unconditional convergence or summability), and
- (b) whenever a series  $\sum_{\alpha \in A} t_{\alpha} x_{\alpha}$  converges (unconditionally), then so does the series  $\sum_{\alpha \in A} t_{\varphi(\alpha)} x_{\alpha}$ ; for every bijection  $\varphi \colon A \to A$ .

In this definition, condition (b) may be replaced by either of the following two:

(b') for every sequence  $(\alpha_n)$  in A,  $(x_{\alpha_n})$  is a symmetric basic sequence (in the usual sense [1]);

(b'') for any two sequences  $(\alpha_n)$  and  $(\alpha'_n)$  in A, the basic sequences  $(x_{\alpha_n})$  and  $(x_{\alpha'_n})$  are equivalent ([1]).

Note. Here, and in what follows, when we speak of a sequence in an index set, we always mean an infinite sequence with pairwise distinct terms.

For example, the family  $(e_x)_{x\in A}$  of the unit vectors is a symmetric basis in each of the familiar spaces  $c_0(A)$  and  $l_p(A)$ ,  $1 \le p < \infty$ , and—more generally—in the Orlicz spaces  $l_M(A)$  defined by an Orlicz function M satisfying the  $\Delta_2$  condition at 0. Each of these spaces (with the indicated basis) is determined by its separable model:  $c_0$ ,  $l_p$  or  $l_M$  (with its natural unit vector basis  $(e_n)$ ), respectively.

We make this last statement precise by giving a sketch of a general construction:

Let W be a separable Banach space with a symmetric basis  $(w_n)$  and a symmetric norm, i.e., for every permutation  $\pi$  of N,

$$\left\|\sum_{n=1}^{\infty} t_{\pi(n)} w_n\right\| = \left\|\sum_{n=1}^{\infty} t_n w_n\right\|, \quad \forall x = \sum_{n=1}^{\infty} t_n w_n \in W.$$

Consider the corresponding sequence space W(N) consisting of all scalar sequences  $(t_n)$  for which the series  $\sum t_n w_n$  converges, equipped with the norm  $\|(t_n)\| = \|\sum t_n w_n\|$ . Then, if A is an arbitrary infinite set (possibly uncountable), denote by W(A) the set of all scalar functions x on A such that  $|\sup x| \leq \aleph_0$  and whenever  $(\alpha_n)$  is a sequence in A with  $\sup x \subset \{\alpha_n \colon n \in N\}$ , then  $(x(\alpha_n)) \in W(N)$ . Then W(A) is a Banach space under the norm defined by  $\|x\| = \|(x(\alpha_n))\|$ , where  $\sup x \subset \{\alpha_n \colon n \in N\}$ , and  $(e_\alpha)_{\alpha \in A}$  is a symmetric basis of this space. Clearly, for every sequence  $(\alpha_n)$  in A, the basic sequence  $(e_{\alpha_n})$  is isometrically equivalent to the basis  $(w_n)$  of the original space W.

Conversely, let X be a Banach space with an (infinite) symmetric basis  $(x_{\alpha})_{\alpha \in A}$ . Fix any sequence  $(\alpha_n)$  in A and denote  $w_n = x_{\alpha_n}$   $(n \in N)$ . Finally, equip the subspace  $W = \overline{\lim} \{w_n : n \in N\}$  with an equivalent symmetric norm. Then  $X \approx W(A)$ ; in fact, the basis  $(x_{\alpha})$  of X is equivalent to the basis  $(e_{\alpha})$  of W(A).

Remark. We may say that the Banach space W(A) or, more precisely, the pair  $(W(A), (e_a)_{a \in A})$  (or any of its "isomorphs") constructed above, is of symmetric type  $(W, (w_n))$ . It should be strongly emphasized that W(A) depends not only on the space W but also on the particular choice of a symmetric basis of W: From the theorem it follows that nonequivalent symmetric bases in W (with W suitably renormed) yield nonisomorphic spaces W(A) if A is uncountable.

We shall say that a symmetric basis  $(x_{\alpha})_{\alpha\in A}$  of a Banach space X is an  $l_1$ -basis, or that it is of  $l_1$ -type, if the basis  $(x_{\alpha})_{\alpha\in A}$  is equivalent to the unit vector basis  $(e_{\alpha})_{\alpha\in A}$  of  $l_1(A)$ . This happens precisely when for some (every) sequence  $(x_n)$  in A, the basic sequence  $(x_{\alpha_n})$  is equivalent to the unit vector basis  $(e_n)$  of  $l_1$ .

We now start collecting ingredients needed in the proof of the theorem. The first of these is a result due to Troyanski [4].

LEMMA 1. Let X be a (nonseparable) Banach space with a symmetric basis  $(x_{\alpha})_{\alpha \in A}$ . If X contains an isomorphic copy of  $l_1(\Delta)$  for some uncountable set  $\Delta$ , then  $(x_{\alpha})$  is an  $l_1$ -basis.

In particular, symmetric bases of  $l_1(A)$  are unique up to equivalence.

The next result (which is surely well known) is a simple combinatorial fact.

LEMMA 2. Let  $(S_a)_{a \in A}$  be an uncountable family of (at most) countable subsets of a set S such that

$$|\{x \in A: s \in S_x\}| \leqslant \aleph_0, \quad \forall s \in S.$$

Then there exists a subset B of A with |B| = |A| such that

(\*) 
$$S_{\beta} \cap S_{\beta'} = \emptyset$$
 for all distinct  $\beta, \beta' \in B$ .

Proof. Let B be a maximal subset of A satisfying (\*) (of course, the Kuratowski–Zorn Lemma is used here), and suppose that |B| < |A|. Then for  $S' = \bigcup_{\beta \in B} S_{\beta}$  we have  $|S'| \le |B| \cdot \aleph_0 < |A|$ . Hence, if

$$B' = \{ \alpha \in A \colon S' \cap S_{\alpha} \neq \mathbf{O} \} = \bigcup_{s \in S'} \{ \alpha \in A \colon s \in S_{\alpha} \},$$

then  $|B'| \le |S'| \cdot \aleph_0 < |A|$ . In particular,  $A \setminus B' \ne O$ , and if we take any  $\alpha \in A \setminus B'$ , then B is properly contained in  $B \cup \{\alpha\}$ , and the latter set satisfies (\*), contradicting the maximality of B.

We shall say that a family  $(z_{\gamma})_{\gamma\in I}$  in a Banach space Z is totally non- $l_1$  if for every sequence  $(\gamma_n)$  in  $\Gamma$  there exists a scalar sequence  $(t_n)$  such that the series  $\sum t_n z_{\gamma_n}$  converges unconditionally while  $\sum |t_n| = \infty$ . Of course, for a family that is a symmetric basis, "to be totally non- $l_1$ " means the same as "not to be an  $l_1$ -basis".

Let E and F be Banach spaces with symmetric bases, as in the theorem. Also, let  $(v_j^*)_{j \in J} \subset F^*$  be the dual family, biorthogonal to  $(v_j)_{j \in J}$ . For  $y \in F$ , the support of y is defined as  $s(y) = \{j \in J: v_j^*(y) \neq 0\}$ ; clearly,  $|s(y)| \leq \aleph_0$ .

LEMMA 3. Let  $(y_{\alpha})_{\alpha \in A}$  be an uncountable totally non- $l_1$  family in F. Then there exists a  $B \subset A$  with |B| = |A| such that

$$s(y_{\beta}) \cap s(y_{\beta'}) = \emptyset$$
 for all distinct  $\beta, \beta' \in B$ .

Proof. This will follow from Lemma 2 if we check that the (at most)

countable sets  $S_{\alpha} = s(y_{\alpha}) \subset J = S$  satisfy the condition:  $|\{\alpha \in A: j \in s(y_{\alpha})\}| \leq \aleph_0$  for each  $j \in J$ . (Note that  $j \in s(y_{\alpha})$  iff  $v_j^*(y_{\alpha}) \neq 0$ .) Suppose this is not so for some j, i.e.,  $v_j^*(y_{\alpha}) \neq 0$  for uncountably many  $\alpha \in A$ . Then we can find an r > 0 and a sequence  $(\alpha_n)$  in A such that  $|v_j^*(y_{\alpha_n})| \geq r$  for all  $n \in N$ . Now, as  $(y_{\alpha})$  is totally non- $l_1$ , there is a scalar sequence  $(t_n)$  for which  $\sum |t_n| = \infty$  and  $\sum t_n y_{\alpha_n}$  converges unconditionally. But then also the series  $\sum t_n v_j^*(y_{\alpha_n}) < \infty$ . However,  $|t_n| |v_j^*(y_{\alpha_n})| < \infty$ . However,  $|t_n| |v_j^*(y_{\alpha_n})| \geq r |t_n|$  and  $\sum |t_n| = \infty$ ; a contradiction.

Proof of the Theorem. Since  $E \subseteq F$ , the density characters of these spaces satisfy  $|I| = \operatorname{dens} E \leq \operatorname{dens} F = |J|$ . Similarly,  $F \subseteq E$  implies  $|J| \leq |I|$ . Thus |I| = |J| and so it remains to show that the bases  $(u_i)$  and  $(v_j)$  are of the same type. That is, we have to find sequences  $(i_n) \subseteq I$  and  $(j_n) \subseteq J$  such that the basic sequences  $(u_{i_n})$  and  $(v_{j_n})$  are equivalent. Actually, in view of the symmetry of the assumptions (and the bases), it will suffice to show that  $(u_{i_n})$  dominates  $(v_{j_n})$ , i.e., whenever  $\sum t_n u_{i_n}$  converges, then so does  $\sum t_n v_{j_n}$ .

Case 1. If  $(u_i)$  is an  $l_1$ -basis, then from Lemma 1 we conclude that also  $(v_j)$  is an  $l_1$ -basis, and we are done.

Case 2. Assume  $(u_i)$  is not an  $l_1$ - basis; in other words,  $(u_i)$  is totally non- $l_1$ . Let  $R: E \to F$  be an isomorphic embedding, and consider the family  $0 \neq y_i = R(u_i)$ ,  $i \in I$ , of elements of F. Trivially,  $(y_i)_{i \in I}$  is totally non- $l_1$  and by Lemma 3 there is a  $K \subset I$  with |K| = |I| such that

$$s(y_k) \cap s(y_{k'}) = \emptyset$$
 for all distinct  $k, k' \in K$ .

For each  $k \in K$  choose a  $j(k) \in s(y_k)$ . Since  $v_{j(k)}^*(y_k) \neq 0$  for all  $k \in K$  and  $|K| > \aleph_0$ , we find an r > 0 and a sequence  $(i_n) \subset K$  such that for  $j_n = j(i_n)$  we have  $|v_{j_n}^*(y_{i_n})| \geq r$  for all  $n \in N$ .

Now assume that we have an (unconditionally) convergent series  $\sum t_n u_{i_n}$ ; then also

(+) 
$$\sum_{n=1}^{\infty} t_n R(u_{i_n}) \equiv \sum_{n=1}^{\infty} t_n y_{i_n}$$
 converges unconditionally to some  $y \in F$ .

Now  $y = \sum_{j \in J} v_j^*(y) \cdot v_j$ , and from (+) we have  $v_j^*(y) = 0$  for  $j \notin \bigcup_n s(y_{i_n})$  and  $v_j^*(y) = t_n v_j^*(y_{i_n})$  for  $j \in s(y_{i_n})$ ,  $n \in N$ . Since the family

$$(t_n v_j^*(y_{i_n}) \cdot v_j : j \in s(y_{i_n}), n \in \mathbb{N})$$

is summable (to y), so is its subfamily  $(t_n v_{j_n}^*(y_{i_n}) \cdot v_{j_n} : n \in N)$ . But  $|v_{j_n}^*(y_{i_n})| \ge r > 0$  for every n, so the series  $\sum t_n v_{j_n}$  converges (unconditionally).

>0 for every  $n_i$ , so the series  $\sum t_n v_{j_n}$  converges (unconditionally).  $\blacksquare$  If neither  $(u_i)$  nor  $(v_i)$  is an  $l_1$ -basis, we can slightly improve our theorem.

LEMMA 4. If the basis  $(u_i)_{i\in I}$  of E is not of  $l_1$ -type and if  $R\colon E\to F$  is a continuous linear operator with dim  $R(E)=\infty$ , then

dens 
$$R(E) = |I_0|$$
, where  $I_0 = \{i \in I: R(u_i) \neq 0\}$ .



In particular, if R is injective, then

$$\operatorname{dens} R(E) = |I| = \operatorname{dens} E$$
.

Proof. Denote  $m = \operatorname{dens} R(E)$  and  $m_0 = |I_0|$ . Since  $R(E) \subset \overline{\lim} \{Ru_i: i \in I_0\}$ , we clearly have  $\aleph_0 \le m \le m_0$ . Suppose  $m < m_0$ ; then by Lemma 3 there exists a  $K \subset I_0$  with  $|K| = m_0$  such that

$$s(Ru_k) \cap s(Ru_{k'}) = \emptyset$$
 for all distinct  $k, k' \in K$ .

Hence if  $S = \bigcup_{k} s(Ru_k)$ , then  $m_0 \le |S| \le m_0 \cdot \aleph_0 = m_0$  so that  $|S| = m_0$ .

On the other hand, since m = dens R(E), there is a subset J' of J of cardinality  $\leq m \cdot \aleph_0 = m$  which contains s(Rx) for all  $x \in E$ . In particular,  $S \subset J'$  and hence  $m_0 = |S| \leq m$ ; a contradiction. Thus  $m = m_0$ .

COROLLARY. If E and F are nonseparable Banach spaces with symmetric non- $l_1$ -bases  $(u_i)_{i\in I}$  and  $(v_j)_{j\in J}$ , respectively, and if there exist continuous linear injections  $E\to F$  and  $F\to E$ , then the bases  $(u_i)$  and  $(v_j)$  are equivalent.

Proof. Use Lemma 4 to see that |I| = |J|, then proceed exactly as in the proof of the theorem.

Remark. An inspection of the argument used in the proof of the theorem shows that if E and F are as in the above corollary, and if there exist continuous linear operators  $E \to F$  and  $F \to E$  with nonseparable ranges, then the bases  $(u_i)$  and  $(v_j)$  are of the same type, i.e., for any sequences  $(i_n) \subset I$  and  $(j_n) \subset J$ , the basic sequences  $(u_i)$  and  $(v_i)$  are equivalent.

Finally, we would like to inform the reader that it is possible to extend Troyanski's  $l_1$ -result (Lemma 1) to Banach spaces X with an unconditional basis  $(x_\alpha)_{\alpha\in A}$ . In this case the assertion is that the basis  $(x_\alpha)$  has large  $l_1$ -subbases. (A  $c_0$ -version of this is also true, and extends the symmetric  $c_0$ -result of Troyanski [4].) Details will appear elsewhere.

## References

- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin-Heidelberg-New York 1977.
- [2] C. J. Read, A Banach space with, up to equivalence, precisely two symmetric bases, Israel J. Math. 40 (1981), 33-53.
- [3] I. Singer, Bases in Banach Spaces II, Springer, Berlin-Heidelberg-New York 1981.
- [4] S. L. Troyanski, On non-separable Banach spaces with a symmetric basis, Studia Math. 53 (1975), 253-263.

INSTYTUT MATEMATYKI UNIWERSYTETU ADAMA MICKIEWICZA INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY Matejki 48/49, 60-769 Poznań, Poland