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isometric. Hence, by Theorem 1, there exists a homeomorphism k of Q, onto
Q,. ) '

: Next, for Borel sets B < Q;, we define A(B) = 4 [k 1(B)). If then Ais a

Borel subset of Q, we have yu(4) = A(k(4)) = k(_lf“ dA so that the map

)

j=1

carries the dense subspace of simple functions in L'(2,, Zy, u, E) isometri-

cally onto the corresponding subspace of L'(2,, Z,, 4, E) and can thus be

extended to an isometry of L'(Q, %y, iy, E) onto :L‘ (25, 24, 4, E). Thep

multiplication by the scalar function d4/dy, carries this latter space isometri-

cally onto L*(2,, £, ptz, E). Hence L' (uy, E) & L' (i, E) and consequently
Lw(pli E*) =L* (1“29 E*) i \

If we assume that L'(u,, E) and L'(u,, E) are nearly isometric, then

their duals L®(u,, E¥) and L*®(y,, E*) are nearly isometric and the proof

follows as above.

n
€Xa; ™ Z €; Xk(Aj)
J=1
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On symmetric bases in nonseparable Banach spaces

by

LECH DREWNOWSKI (Poznan)

Abstract. It is shown that if E and F are nonseparable Banach spaces with symmetric
bases and each of these spaces is isomorphic to a subspace of the other space, then the bases are
equivalent (and hence the two spaces are.isomorphic). In particular, in a nonseparable Banach
space with a symmetric basis, any two such bases are equivalent.

The purpose of this paper is to prove the following

TueorEMm. Let E and F be nonseparable Banach spaces with symmetric
bases (u,),., and (v))je. respectively. If Ec F and F < E (isomorphic embed-
dings), then E and F are isomorphic: E = F. In fact, in this case the bases (u;)
and (v)) are equivalent, i.e., there exists an isomorphism T from E onto F such
that T({u;: iel}) = {v;: jeJL

(Thus, for some bijection t: I —J, Ty = v for all iel, and every such
bijection determines the corresponding isomorphism.)

CoroLLARY. If a nonseparable Banach space E has a symmetric basis, then
any two symmetric bases of E are equivalent.

These results show that there is a sharp distinction between the nonse-
parable and separable Banach spaces with symmetric bases. Nothing of the
above type is valid in the separable case (see [1] and [2]) if we insist on
having conclusions that the bases are equivalent. Whether or not the
theorem is true in this case if the assertion were merely E ~ F, seems to be
unknown.

We start with some explanations and a general construction.

A family (x,),c, of elements in a Banach space X is called a symmerric
basis of X ([4]) if

(a) it is an unconditional basis of X ([3]), i.e., for every xe X there is a

unique family of scalars (z,),.4 such that x = ¥ t,x, (unconditional conver-
acAd
gence or summability), and

(b) whenever a series ) r,x, converges (unconditionally), then so does
aeAd
the series Y. f,4X,; for every bijection ¢: 4 — A.
acd
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In this definition, condition (b) may be replaced by cither of the
- following two:

(b") for every sequence (a,).in 4, (x, ) is @ symmetric basic sequence (in
the usual sense [1]);

(b”) for any two sequences (x,) and (x;) in 4, the basic sequences (x, )
and (x,;) are equivalent ([1]). _

Note. Here, and in what follows, when we speak of a sequence in an
index set, we always mean an infinite sequence with pairwise distinct terms.

For example, the family (e,),., of the unit vectors is a symmetric basis in
each of the familiar spaces ¢, (4) and [,(4), 1 < p < co, and—more generally
—in the Orlicz spaces l,,(A4) defined by an Orlicz function M satisfying the
4, condition at 0. Each of these spaces (with the indicated basis) is
determined by its separable model: ¢q, I, or Iy (with its natural unit vector
basis (e,)), respectively.

We make this last statement precise by giving a sketch of a general
construction: |

Let W be a separable Banach space with a symmetric basis (w,) and a
symmetric norm, ie., for every permutation n of N,

@ © o
13 ol =[S b = 3 tawaeW.
n=1 n=1 n=1

Consider the corresponding sequence space W(N) consisting of all scalar
sequences (7,) for which the series Y 1, w, converges, equipped with the norm
Izl = |3 2, w,||- Then, if 4 is an arbitrary infinite set (possibly uncount-
able), denote by W(A) the set of all scalar functions x on A such that
|suppx| < N, and whenever (x,) is a sequence in-4 with suppx < {a,: neN},
then (x(«,))e W(N). Then W(4) is a Banach space under the norm defined
by ilx|| =|f(x(a,,))”, where suppx < {a,: neN}, and (e),e4 iS a symmetric
basis of this space. Clearly, for every sequence («,) in 4, the basic sequence
(es,) is isometrically equivalent to the basis (w,) of the original space W.

Conversely, let X be a Banach space with an (infinite) symmetric basis
(Xa)sea- Fix any sequence (a,) in 4 and denote w, = X,, (n€N). Finally, equip
the subspace W = lin {w,: ne N} with an equivalent symmetric norm. Then
X ~ W(A); in fact, the basis (x,) of X is equivalent to the basis (¢,) of W(A).

Remark. We may say that the Banach space W (4) or, more precisely,
the pair (W(A), (e 4) (or any of its “isomorphs”) constructed above, is of
symmetric type (W, (w,)). It should be strongly emphasized that W(A)
depends not only on the space W but also on the particular choice of a
symmetric basis of W: From the theorem it follows that nonequivalent
symmetric bases in W (with W suitably renormed) yield nonisomorphic
spaces W(A) if A is uncountable.
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We shall say that a symmetric basis (x,),., of a Banach space X is an
Ii-basis, or that it is of I -type, if the basis (x,),., is equivalent to the unit
vector basis (e),es Of I, (4). This happens precisely when for some (every)
sequence (x,) in 4, the basic sequence (x,,) i equivalent to the unit vector
basis (e,) of ;.

We now start collecting ingredients needed in the proof of the theorem.
The first of ‘these is a result due to Troyanski [4].

LEMma 1. Ler X be a (nonseparable) Banach space with a symmetric basis
(Xadeea- If X conrains an isomorphic copy of 1,(4) for some uncountable set 4,
then (x,) is an I;-basis.

In particular, symmetric bases of 1,(A) are unique up ro equivalence.

The next result (which is surely well known) is a simple combinatorial
fact.

LemMa 2. Let (S,),.4 be an uncountable family of (ar most) countable
subsers of a set S such that

lixed: seS,)| <Ny, Vses.
Then there exists a subset B of A with |B| = |A| such that

(%) Sg Sy =0Q <for all distinct B, BeB.

Proof. Let B be a maximal subset of 4 satisfying (+) (of course, the
Kuratowski-Zorn Lemma is used here), and suppose that |[B| < |4|. Then for
§ = J S, we have |S'| <|B|'N, <|4|. Hence, if

BeB

B ={xedA: §nS,#0) =) (xed: ses,},
se§’
then |B'| < |8'|* N, < [4]. In particular, A\B’ # O, and if we take any xc A\B/,
then B is properly contained in Bu 1%}, and the latter set satisfies (x),
contradicting the maximality of B. m

We shall say that a family (=3)yer in a Banach space Z is rorally non-l, if
for every sequence (y,) in I there exists a scalar sequence (r,) such that the
series Zr,,:.l," converges unconditionally while ) |r,] = %. Of course, for a
family that is a symmetric basis, “to be totally non-/;” means the same as
“not to be an /,-basis”.

Let E and F be Banach spaces with symmetric bases, as in the theorem.
Also, let (v});c, = F* be the dual family, biorthogonal to (t))jes- For yeF, the
support of y is defined as s(y) = {jeJ: v¥(y) # 0); clearly, [s(y) < No.

LemMa 3. Let (Vahea be.an uncountable torally non-l, family in F. Then
there exists a B < A with |B| = |A| such that

s Osy) =0 for all distiner B, B'eB.

Proof. This will follow from Lemma 2 if we check that the (at most)
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countable sets S, = s(y,) = J = § satisfy the condition: [{ae 4: jes(y)} < N,
for each jeJ. (Note that jes(y,) iff v*(y,) # 0) Suppose this is not so for
some j, ie., v¥(y,) # 0 for uncountably many acA. Then we can find an
r>0 and a sequence (x,) in 4 such that [v}(y, )| > r for all ne N. Now, as
(v.) is totally non-l;, there is a scalar sequence (t,) for which > itsl = 0o and
Y tuYs, converges unconditionally. But then also the series Sttt ()
converges unconditionally so that Y |t,| [} ()l < co. However, [t,]|v¥ (ya"'jj
=rit) and Y |t,| = o0; a contradiction. w

Proof of the Theorem. Since E < F, the density characters of these
spaces satisfy |I| =densE < densF = |J|. Similarly, F < E implies |J| <|1|.
Thus 1] = |J] and so it remains to show that the bases (1) and (v) are of the
same type. That is, we have to find sequences (i,) < I and (j,) = J such that
the basic sequences () and (v;) are equivalent. Actually, in view of the
symmetry of the assumptions (and the bases), it will suffice to show that
(w,) dominates (v;), i.e, whenever Y ¢, u;, converges, then so does ) f, U,

Case 1. If (u;) is an l;-basis, then from Lemma 1 we conclude that also
(v) is an I,-basis, and we are done.

Case 2. Assume (u;) is not an /- basis; in other words, (u;) is totally non-
l;. Let R: E~F be an isomorphic embedding, and consider the family
0 # y; = R(u;), iel, of elements of F. Trivially, (y,),, is totally non-I, and by
Lemma 3 there is a K < I with |K| = |I| such that

sGINse) =@  for all distinct k, kK'e K.

For each keK choose a j(k)es(y,). Since vfy,(y)#0 for all keK and.

|K] > X0, we find an r > 0 and a sequence (i,) < K such that for j, = j(i,) we
have [v} ()| = r for all neN.

Now assume that we have an (unconditionally) convergent series S tau
then also : !

o o0
(+) X t.Rw)= 7Y t, ¥;, converges unconditionally to some yeF.
n=1 n=1

Now y =3 v}(y)-v, and from (+) we have v} () =0 for j#¢Us(y,) and
F(y) =t, ;;‘J(y,") for jes(y:,), neN. Since the family '

(ta v} (i) v): jes(y,), neN)
is summable (to y), so is its subfamily (r, v} (i) v;,: neN). But [of, )
2r >0 for every n, so the series ) t, v;, converges (unconditionally). w

If neither (1) nor (v)) is an I,-basis, we can slightly improve our theorem.

Lemma 4. If the basis (),e; of E is not of 1,-type and ifR: E~Fisa
continuous linear operator with dim R(E) = o, then

dens R(E) = |Iol, where Iy= {iel: R(u) +# 0}.
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In particular, if R is injective, then
dens R(E) = |I| = dens E.

Proof. Denote m =densR(E) and mg, = |I,|. Since R(E)CE{Ru,:
iely}, we clearly have N, < m < my. Suppose m < my; then by Lemma 3
there exists a K < I, with |K| = m, such that

s(Ru) ns(Ru) =@  for all distinct k, k'eK.
Hence if S = | s(Ry,), then m, <|S] < my* Ny = mg so that [S| = m,.
keK

On the other hand, since m = dens R(E), there is a subset J' of J of
cardinality < m' ¥, =m which contains s(Rx) for all xeE. In particular,
S < J' and hence my =|S| < m; a contradiction. Thus m=m,. =

CoroLLARY. If E and F are nonseparable Banach spaces with symmetric
non- l,-bases (;);c; and (v;);.s, respectively, and if there exist continuous linear
injections E — F and F — E, then the bases (u;) and (v)) are equivalent.

Proof. Use Lemma 4 to see that |I] = |J|, then proceed exactly as in the
proof of the theorem. m

Remark. An inspection of the argument used in the proof of the
theorem shows that if E and F are as in the above corollary, and if there
exist continuous linear operators E — F and F — E with nonseparable ranges,
then the bases (4) and (v;) are of the same type, ie., for any sequences (i,) < I
and (j,) = J, the basic sequences (»;,) and (v;) are equivalent.

Finally, we would like to inform the reader that it is possible to extend
Troyanski’s /;-result (Lemma 1) to Banach spaces X with an unconditional
basis (x,)..4. In this case the assertion is that the basis (x,) has large I,-
subbases. (A cop-version of this is also true, and extends the symmetric co-
result of Troyanski [4].) Details will appear elsewhere.
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