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Spectral dilation of operator-valued measures
and its application to infinite-dimensional
harmonizable processes

by
A. MAKAGON (Wroctaw) and H. SALEHI (East_Lansing, Mich.)

Abstract. The paper deals with the study of spectral dilation of operator-valued measures
and its application to infinite-dimensional harmonizable processes. A necessary and sufficient
condition for an operator-valued measure to be dilatable is given. A counterexample is
constructed showing that in general an operator-valued measure need not admit a spectral
dilation. For some special cases of interest more verifiable sufficient conditions are given.
Applications to infinite-dimensional harmonizable processes are studied.

1. Introduction. To state the main objective of this paper let us briefly
review the problem that led us to the study of this subject. To start let H
and K be complex Hilbert spaces and let T be an additive function defined
on an algebra X of subsets of an arbitrary set Q with values in the space of
continuous linear operators from H to K. We will be concerned with the
problem of dilation of T in the form

(1.1 T(4)=SE(4)R, AdeZ,

where R and S are continuous linear operators from H to K and from K to
K respectively, K is a Hilbert space and E-is a spectral measure in K.
The classical Naimark theorem (see [8], [17] for general theory of
dilation of nonnegative operator-valued functions) states that for H = K and
T(4) 20, 4eX, T admits a dilation (1.1). On the other hand, Niemi [19]
proved that if H = C then each K = L(C, K)-valued measure has the form
(1.1). A vector-valued approach rather than a linear functional approach was
used in [16] to prove the same result for the case H = C. Later, Chatterji [3]
noted that the existence of a dilation (1.1) is an algebraic property and that
Niemi’s result remains true for any bounded additive vector-valued function.
In all these cases the notion of 2-majorizability plays an important role.
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In 1982, Rosenberg [26] stated the problem of existence of a dilation
(1.1) for an operator-valued measure. He introduced the notion of 2-majorant
of an operator-valued measure. Among his important results he showed that
a weakly countably additive operator-valued measure admits a dilation (1.1)
if and only if the measure has a 2-majorant. He also proved that if K or H is
finite-dimensional then each weakly countably additive operator-valued fun-
ction has the representation (1.1). Rosenberg asks the question whether the
dilation (1.1) is valid in general.

The main purpose of this paper is to study the question of dilation of
weakly countably additive operator-valued measure raised by Rosenberg
[26]. Our study includes two types of results: one pertains to the necessary
and sufficient conditions for the existence of a dilation. It also treats
situations where only sufficient conditions are given (see Sections 4 and 5).
The second deals with a negative result demonstrating that not all operator-
valued measures are dilatable (Section 3). In applying the dilation results to
harmonizable operator-valued processes we find that the standard notion of
harmonizability must be replaced by a strengthened version which leads to
fruitful results in the theory of harmonizable operator-valued processes (see
Section 6). .

Throughout the paper N, C and R will stand for positive integers,
complex numbers and real numbers, respectively. H, K, K will denote
complex Hilbert spaces with inner product (-,-). If X is a normed linear
space, then X* will denote its conjugate space and (x, x*% will stand for the
value of the functional x* e X* at the point xe X. Recall that the mapping
Hay—-y(:)=(:, yeH* is an antilinear isometry from H onto H*. By
L(X,Y) we will denote the set of all bounded linear operators between
normed linear spaces X and Y equipped with the operator norm. If X = ¥
then we will abbreviate L(X, X) by L(X). L* (H) will stand for the set of all
positive operators in H, i.e., the set of all Te L(H) such that (Tx, x) > 0 for
all xeH. The direct sum of H and K will be denoted by H®K, H? will
denote the direct sum of g copies of H, 1 < g < oo, 12 = €% Operators from
H? into K” will be identified with matrices with entries in L(H, K). In
particular, every operator

AeL(;, 1)
will be identified with its g xp complex matrix with respect to the standard
bases. Unless otherwise stated, X will be an algebra of subsets of an arbi@ry
set Q. Any additive function m from X into a normed space X will be
referred to as a finitely additive (fa) X-valued measure. If 3 is a g-algebra and
m is countably additive then m will be called a measure. An L(H, K)-valued
fa. measure T defined on-a o-algebra X is said to be weakly countably
additive (w.ca.) if (T(-)x, y) is a complex measure for all xeH and yeK. 1,
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will denote the indicator of a set 4. IT () will stand for the set of all finite >-
partitions of a set Q; the elements of I1(£2) will be denoted by . If 2 is'a o-
algebra and X is a Banach space then by B(X) we will denote the Banach
space of all bounded X-measurable functions on Q with values in X equipped
with the norm

lsup = sup{If (0)]: we®), feB(X).

2. Preliminaries. Let (X, | |) be a normed linear space and let m: X — X
be a fa. measure defined on X, an algebra of subsets of a set Q.

2.1. DerFiniTioN. The number |im||e[0, o] defined by the formula
limll =sup {|Y m(4)t,: t,eC, |t) <1, nell(Q)
den

is said to be the semivariation of m.

The space of all -X-valued fa. measures on (Q.X) with finite
semivariation will be denoted by .#(X). Clearly (.#(X),|l ||) is a normed
space (see [5], p. 53). In fact, if X is complete this becomes a Banach space.

Let S(X) denote the set of all X-simple X-valued functions of the form

f=3 1% where 4;eX, x;eX, j=1,..,n
=1

For every me J#(X*) and f = ¥ 1,,x;€S(X) define
j=1

n

J<sdmy = 3 <x;,
Q

j=1

22 m(d;)>

(cf. [5], Section 7). For every feS(X) let
(2.3) [l = sup {|[ <, dm)|: me .#(X*), |Im]| <1).

24, LEeMMA. Let X be a normed linear space. Then
(a) (S(X),] |x) is a normed space.
(b) The mapping
M(X¥)sm— [, dmye(S(X), | |, *
is®n antilinear isometry from (M(X*), || ||) onto (S(X), | |o)*.

Proof. (a) follows immediately from the definition of | |, and from the
fact that |f],, < co for all f&S§(X). Indeed, let f eS(X). Since [ (f, dm) does

not depend on a representation of f, one can assume that f =Y 1 4%
£ : &
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where 4; = [w: f(w) = x;} and x; # X; provided i #j, i,j=1,..., n. Then
15<t dm] =13, o map)
< % sl In(4)] < nlimlsup (/@) 0=}
=
for all me A (X*), s0 |fl, < ©
(b) First observe that iff=k2":1 L, Xty teC, xeX, and 4,,..., 4,62

are disjoint, then

|§ <y dmd| < x| f Z m(49 5| < |x||ml| sup {lul: 1 < k < n}

and so
(25 [fle S Ixlsupfltd: 1 <k <nl.

Let me #(X*), |m < 1. Then <f, m)> < [(f, dm), feS(X), is a con-
tinuous linear functional on (S(X),| |), and moreover
(2.6) [<fy md] = lImll|{ <f, dm/llml)) < [Imll|flor  fES(X).

Conversely, let v be a continuous linear functional on S(X) and deX be
fixed. Since by (2.5)

[<La%, V)l < Plsne 14Xl < PMlseelxl,  xeX,
there exists m(4)e X* such that
%, v) ={x, m(4)) for all xeX.

Clearly m(-) is a f.a. measure on X and moreover from (2.5) it follows that
lmm]] = sup’ {|<x m(A)td>| nell (@), td <1, |xI < 1}

= sup ]j(z 1y xtg dm)|: mell(Q), td < 1,|x <1}
den

< sup {|[ <, dm: |1 <
= |Vsxyr < 0.
Thus me A (X*), and by (2.6), |lmi| = |[v|spxy. w
27. Remark. It is easy to see that for every feS(X)
Wlswp & sup {|f (@)): we®)
=sup {|[{f, d6, x*)|: we®, |x¥ < 1}
<Ml

1} = sup {|<f, v: Iflw < 1}
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where 0,(4) =1 if e 4 and 0 otherwise. If X is a finite-dimensional space
then both norms are equivalent. In fact, if X = C? then

10 al < X110 &) &))< Uy 3 W

< |flowpp> provided [yl <1

Thus
flo < P1flsup-

The example below shows that if X is an infinite-dimensional space, then
these norms need not be equivalent.
2.8. ExampLE. Let X =1, @ =N, > =2" and let

=) luss, nreN,
kZ kkl/3

where {e.: k=1, 2,...} is the standard basis in I>. Let x denote the *-valued
measure on X with ||y]] =1 defined by the formula

where C=() k™*3)"Y2. The sequence {f,;: n=1,2,...} is a Cauchy
k=1

sequence in the sup-norm:

nt+j

Ifn-b-j_f;llnup -0

'k} klIS sup (n+ 1)1/3

as n— o0, but

il = (U ] = i}: £, (k)| =

uM:
e
!
8

In fact, the measure u defined above belongs to .#(/?) but it is not a

continuous functional on (S(?), | lyp), 0

(S(lz)’ I Isup)* = (B(lz)’ I Isup)* % ‘I{(lz) L]

Unless otherwise stated, S(X) is assumed to be equipped with the | |-
norm.

Now suppose that T is an L(H, K)-valued fa. measure deﬁned on X,
where H and K are Hilbert spaces and L(H, K) denotes the Banach space of
all bounded linear operators from H into K equipped with the usual
operator norm.
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29. LemMa. Let H and K be Hilbert spaces and let T be an L(H, K)-
valued f.a. measure defined on Z. Then

(a) ITI|.=sup {IT() xll: xeH, x| <1
=sup {ITC)*M: yeK, [y < 1]
<4sup|T(A): 4eZX)

where | T\, | T(-) x|l and || T(-)* y|| denote the semivariation.s of T and of the
K- and H-valued set functions T(-}x and T(-)*y, respectively.
(b) If moreover £ is a g-algebra and T is w.ca. then

sup {|T(4)]: 4eZX} < 0.
Proof. First we note that
(T =sup {|Y. T(Ad)t]: neld (@), |td <1, t,eC}
Aent

=sup {|Y (T(4)x, y)t,|: nel(®), |ty <1, 1% <1,
pal= 4

1M <1,t,eC, xeH, yeK)
= sup {sup {| %, (T(A)x, y)t |: nelI(@), ltd <1} IxI < L)l <1}

dem
=sup {[(TC)x, pf: I <L 1y <1}
Thus
ITH =sup {sup {(T()x, y)|: ¥ <1} |xI < 1}
=sup {|T(:)x: [x/ < 1}, and
71l = sup {sup {J|(x, TC*p)|: X < 1}: |yl <1}
=sup{IT(-}*yll: 1yl < 1}.
Moreover, by [6]. Il 1.4, Lemma 5,
T = sup {(TC)x, p)fl: ¢l < 1,00 < 1}
<4sup {(T(d)x, y): I <1,y <1, deX)
<4sup {|T(4): deX).

If Tis a wc.a. measure defined on a g-algebra X then
sup {[(T(d)x, y): 4eX}=C(x,y) <o

for all xe H and yeKX ([6], III 44). Applying the Banach-Steinhaus Theorem
([28]), Th. 2.5) to the family of linear functionals (T(4)x,) and then once
again using it to the family of bounded linear operators T(d), deZ, we
conclude that sup {|T(4): 4eZ) < 0. &
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2.10. DeFINITION. Let T be a fa. L(H, K)-valued measure defined on X.
For each feS(H), f= Y 14 ¥, we denote
k=1

JdTf = i T(dyy,  (cf. [5], Section 7).
k=1

The linear operator ®,: S(H)— K defined by the formula
@r () =[dTf, feS(H),

will be referred to as the operator associated with T.

2.11. Lemma. Let T be a fa. L(H, K)-valued measure on X. Then the
operator @y from (S(H), | [,.) into K is continuous if and only if |T|| < .
Moreover, |7 =||T||. In particular,

4TS <1f1ITN  for all feS(H).

.

Proof. Let f =3 1, x,eS(H). Then by Lemma 2.9
@7 () = IZ T(Ak)xh' =sup {KZ T(4y) x, )’)15 Iy <1}
=sup {|[(, dT*))]: |yl <1}
S fleosup {IT*()l: 1M < 1) =[£I

Thus |®4] < ||T].

Conversely, from Lemma 2.9 it follows that for every 6 >0 there exist
xeH, X<, t,..,t,eC [t<1, i=1,..., n, and disjoint sets
A4y,..., 4,€X such that

(T <|Y, T(4,)t;x]+3.
Jj=1
Let /= 3 1,%x. Then
j=1

o0 =] 3 ()1, > )~

and by (2.5), |fl,, < 1. Thus &7 > [|T}. w

2.12. Remark. The operator ¢, need not be continuous if S(H) is
equipped with the sup-norm. To see this consider the spectral measure T¢ X
= L(I?) defined on X =2V as follows:

T(4) = orthogonal projection onto EE le: ked)
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where {e,: k=1,2,...} is the standard orthonormal basis in 2. Let f,

n
= Y 14 e. Then |flu, =1 for all neN, but
k=1

&7 (f)l =|Y Tik}el =J/n—o asn—o.
k=1

The set .#(L(H, K)) of all L(H, K)-valued fa. set functions with finite
semivariation is a Banach space. Since L(H, K) is isometric to (H@K*)*
where H®K* denotes the tensor product of H and K* equipped with the
projective norm ([30], p. 190), Lemma 24 yields the following.

2.13. LemMA. Let H and K be Hilbert spaces and let HQK* denote the
tensor product of H and K* equipped with the projective norm | |,, ie.,

) _
I, = inf {3 bellyil: x = Y, x®y, x eH, yeK*}.
i=1 1

A function ¥ is a continuous linear functional on (S(H®K™), | |.,) if and only

if there exists an L(H, K)-valued f.a. measure Te #(L(H, K)) such that for
every peS(H®KY*)

{p, ¥> = [{p,dT).

Moreover, |y| =||T|.

2.14. Remark. The completion of H@®K* under the | |,-norm can be
identified with the space tr(K, H) of all trace class operators from K to H
equipped with the trace norm |A}, = trace(\/4* 4), Aetr(K, H) ([30], p. 63).
Thus Lemma 2.13 says that a linear functional Y on S{tr(K, H)) has the
form i :

(@, ¥ = [<p, dT) = jtrace(@dT), ' ¢eS(tr(H, K)),
for some L(H, K)-valued f.a. measure T iff y is continuous in the | |,-norm
on S(tr(K, H)).

2.15. DeriniTioN. (1) A fa. L(H)-valued measure E defined on an algebra

X is said to be a fa. spectral measure in H if
(i) For every deZ, E(4) is an orthogonal projection operator in H.

(i) E(4,)E(4,) =0 provided 4, nd,=Q, 4, 4,€X.

(i) E(Q) =1.

If additionally X is a o-algebra and E is wc.a. on T then E is called a
spectral measure in H. _

(2) We say that a fa. (w.c.a) measure T' X — L(H, K) defined on an
algebra (o-algebra) X has a f.a. spectral dilation (spectral dilation) if there exist
a Hilbert space K, a f.a. spectral measure (spectral measure) E in K and
bounded linear operators Re L(H, K) and SeL(K, K) such that for each
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Ael .
T(4) = SE(4)R.

A quadruple (S, K, E, R) satisfying the condition above is called a fa.
(w.c.a) dilation of T

) (3) A dilation (S, K, E, R) of T is called quasi-isometric if $* =J is an
isometry from K into K.

2.16. Remark. Since for any disjoint sets 4,,..., 4,&2, every collection
of complex numbers t,,...,t,eC, Jt| <1, i = 1,...,n and every xeK

| X By = L E@) < X IB(@) 5 <P,
= . = i=1

[E|| = sup {I[E (") x]|: |x] < 1}< 1. From E(Q) =1 we conclude that every
(fa.) spectra! measure has the semivariation ||E|| = 1. Thus if a f.a. measure T
has a fa. dilation (S, K, E, R) then [ITI| is necessarily finite; in fact

Tl < ISR

In .particular, every fa. L* (H)-valued measure F defined on an algebra ¥ has
finite semivariation. In fact, from

[F(QI <|IFl| =|[R*E(")R|| < |[R*||R] = |R* R| = |F (),
we have ||F|| = |F(Q).

2.17. DeriNiioN. We say that a fa. (w.c.a) measure T defined on an
alggbra (c-algebra) X with values in L(H, K) has a fa. (w.c.a.) 2-majorant F if
F is a fa. (wca) L* (H)-valued measure on X such that

(2.18)  For all x,,..., x,eH and disjoint sets 4y,...,4,€ZX
[Zl TA) x> < ¥ (F(4)x;, x;)  ([26], p. 138).
i= i=1

Let T be a fa. measure defined on X and let us define

(219)  Co(T)=inf{S||R]: (S, K, E, R) is a fa. dilation of T,
(2.19ii) C(T) =inf{|R|: (J*, K, E, R) is a fa. quasi-isometric

dilation of T},
(219i)  Cy(T) =inf {\/[F(Q): F is a fa. 2-majorant of T};

by definition we let any of these be oo if the collection over which the inf is
taken is empty.
If T is a w.c.a. measure on a g-algebra X then in the same manner we

_define Cg(7), C{(T) and C},(T) by replacing fa. by w.ca. in (2.19i), (2.19ii),

and (2.19iii) respectively.
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The next theorem that relates these constants follows easily from Th. 2.9
and Lemma A.3 in [26]. We sketch the proof here for completeness.

2.20. Tueorem (cf. [26], Th. 29 and Lemma A.3). (a) Let T be a fa.
measure defined on an algebra Z. Then

TN < Cs(T) = C(T) = Cy(T).

In particular, if T has a 2-majorant then T has a fua. spectral dilation.
(b) If T is a w.ca. measure defined on a c-algebra X, then

1Tl < Cs(T) = C(T) = Cy(T) = G5(T) = G(T) = Cyy(T).

Again, if T has a 2-majorant then T admits a spectral dilation,

Proof. (a) The inequality Cs(T) < C;(T) is obvious. We first prove that
Cw(T) < C(T). Suppose that Cg(T) < oo and let T(4) = SE(4)R, de X, be a
fa. dilation of T Then for all x,..., x,e H and disjoint 4,,..., 4,€X

3 Ty xf = 15(5 B Ref <SP T (R*E) Ry, )
j= = i=
Thus F(4)=|S?R*E(4)R is a fa. 2-majorant of T Since \ﬂf(ﬁi
=|S||R*R|"* = |S||Rl, Cy(T)< Cs(T). Thus it remains to prove that
C(T) € Cy(T). If Cy(T) = o0, then the inequality is obvious. Suppose that
Cy(T) < o0 and let F be a f.a. majorant of T. Then from [26], Th. 2.9(b), it
follows that T has a fa. quasi-isometric dilation (J*, K, E, R) such that F(4)
= R*E(4)R, 4&Z (note that the Equivalence Theorem ([26], p. 139) holds
true for fa. measures). Since |R]=|R*R|Y? = V/-FYK-E)T we  have
C(T) < Cu(T).
The inequality ||T]| < Cs(T) follows from Remark 2.16.
(b) The same arguments as used in (a) show that

Tl < G(T) = CI(T) = Cu(T).

Since trivially Cy(T) < Cy(T), it suffices to prove that Ciy(T) < Cy(T).
Suppose that F is a fa. measure with values in L* (H) such that

|jz1 T(4) x|’ < Zl (F(4)x;, x)
= s

for all disjoint 4,,..., 4,eX and x,,..., x,e H. From [26], Lemma A.3, it
follows that there exists a w.c.a. measure M on X such that for all xe H and
AdeX

(M(4)x, x) =inf{} (F(d)x, x); {4 j=1,2,..)
i=1 :

are countable partitions of 4].
Let Al,...,.A,,eZ' be any fixed disjoint elements of X, x,,..., x,eH, § >0
and let {4{:j=1,2,...} be a countable partition of 4;, i =1,..., n, such
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that

o

Y (F(d)x, x) < (M(4) x;, xi)+§'

j=1 .
Since Tis w.ca., T(-)x is countably additive ([16], 1V.10.1), and hence

IS T()xf* = lim |3 T(0) 4)xf < im 3 (F(U 4)x, x)
i=1 k=00 j=1 j=1 . k—oi=1 j=1

n k n
=Y lm Y (F(A{)x‘,.x,)sigl(M(A,)xl, X)+38.

f=1 ko0 juy
Thus M is a w.c.a. 2-majorant of T. Since (M(Q)x, x) < (F(2)x, x) for all
xeH, Cy(T) < Cy(T). u
2.21. Remark. Note that in fact we have proved a little stronger result.
Namely, we have proved that if F is a f.a. 2-majorant of a w.c.a. measure T.
2 — L(H, K) then there exists a w.c.a, quasi-isometric dilation (J*, K, E, R)

of T such that |R| < \/|F(Q).

If £ is a o-algebra and { is a K-valued measure on X (i.., { is countably
additive) then the integral {f d{ is well defined for all bounded X-measurable
complex-valued functions f ([6], IV.10). Thus, if Tis a w.c.a. measure on X
then by [6], 1V.10.2, T(-)x is a K-valued measure for every er and one
can define

(JfdT)x = [fd(Tx),
xeH, feB(C). The following ‘two properties are immediate: ‘
(222)  For every fe B(C), [f dTis a bounded linear operator from S(H) into
K and :
| 4T] < IT S loup- |
(223)  For any bounded linear operalors UeL(K, X) and Ve L(s#, H)
U([fdT)V = ffd(UTV) ‘
where UTV is an L(#, X)-valied w.c.a. measure defined by the formula
(UTV)(4) = UT(4) V. In particular,
([fdTx, y) = [fd(Tx, y)

Jor all xeH and yeK.

If &=[p;] is a pxg-matrix-valued function with bounded ZX-
measurable entries ¢, 1 <i<p, 1<j<g and if T is a wea. L(H, K)-
valued measure defined on a c-algebra X then we write

[®dT =[[pydT] (cf. [25].

5 - Studin Mathematica 85.3
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The integral {@dT is a bounded linear operator from HY into K”. The
following lemma follows immediately from ([25], Th. 4.10). It will be used in
the next section in constructing the counterexample,

2.24. LeMMA. Let T be a w.c.a. L(H, K)-valued measure defined on a -
algebra XZ. If T has a spectral dilation then

(2.25)  There exists a constant C such that for every 1 < p, ¢ < oo and every
bounded p x q-matrix-valued Z-measurable function ®

[ ®dT| < C (8l

where |®|,,,,, denotes the'éup—n‘orm of ® regarded as an L(i}, 1%)-valued function.

Proofl, Let (S, K, E, R) be a spectral dilation of T Then from (2.23) it
follows that

. S0 R 0
;MT;[ :,[j(pudE][ ] BeB(L(E2, 1)).
0 S 0 R .

Thus from [25], Th. 4.10, we conclude that

el

for all 1<p, g <oo and PeB(L(, 1?). w

226. Remark. The condition (2.25) is also sufficient for T to have
spectral dilation. In fact, from a deep result by Wittstock (see [9] or [22]) it
follows that if T' X — L(H) satisfies (2.25) then the mapping

B(O2¢ - [¢dTeL(H)

|f®dT| < || ®@dE]

< IS|IR] |5

is a linear combination of positive bounded mappings. Thus T is a linear
combination of fa. L*(H)-valued measures. Since each fa. L* (H)-valued
measure admits a f.a, spectral dilation, using the method of the proof of Cor.
2.10 in [26] it is easy to show that T has a f.a. spectral dilation and so, by
Th. 2.20(b), T has a spectral dilation.

We are grateful to Professor S. Kwapieri for pointing out to us the
papers of Haagerup [9] and Loebl [13] from which we learned about the
Wittstock Theorem and the example which we discuss in the next section.

3. Counterexample. In this section we state an example of a w.ca.
L(H, K)-valued measure which does not admit a spectral dilation. The
example is a slight modification of the one given by Loebl ([13], Th. 2.2) and

is based on the following lemma proved in [13] (see Lemma 2.1 and the

proof of Th. 2.2 in [13]).
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3.1. LeMMA. For every n>1 there exist Hermitian 2" x2"-matrices
Ay,..., A, having the following properties:

WY wAl <2 [T ll? for all ay,..., a,eC.
i=1 i

=1
(2) There exists a unit vector xel2, @12, such that
(4®A4)x =x
for all i=1,...,n, where 12,®I2, denotes the Hilbertian tensor product and
A;®A,; is the tensor product of A, with itself ([30], p. 183).

3.2. Remark. To translate condition (2) in Lemma 3.1, which uses the
notion of Hilbertian tensors, to the language of operators on direct sum we
proceed as follows:

First note that the mapping

m

Z x®eL ()L, xel,

i=1
is an isometry between IZ®I2 and (I2)" ([30], p. 183), where {¢;: i =1,..., m}
is the standard basis in 2. If 4 is an m xm-matrix, then A®A, defined by

n

A®A)(T x®y) = 3. Ax@Ay,

i=1 i=1
is a linear operator acting on [2®I2 and the corresponding operator
I(A®A)I™! in (I3 is given by the formula

m

HAQA I (x)r, =1(A®A) (}j,_:1 x;®e))

m m

=I(} Ax,®(k§1 age))=1(Y (i Aay; x;)®e)

i=1 k=1 j=1

m Xy
= (jZ Aayx ey = [Aakj][ I
=1

Xm
Thus condition (2) in Lemma 3.1 can be written in the form
zll
(3:3)  There exist xy,..., x,,€l2, such that Y, |xJ?> =1 and such that for
k=1
all k=1,..,2"and i=1,...,n

an
Z Ay 4y (1) x5 = x,,
J=1

where ay,(i) denotes the (k, j)th entry of A;.
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34, CounterexampLe. Let @ =N, £=2%, H,=P, neN. Let H
= é H, and let for every n=1, 2,...,
n=1
AP, AD,...,

be the seducnce of 2" x 2"-matrices satisfying (1) and (2) of Lemma 3.1. We
regard A{™s as elements of L(H,). Define

T{1}=PrAPP,
T(2} = 2% Py AP P,,

..................................

T{f(lziﬂﬂ}.:n-a/*}’:/tg"’m, i=1,..

where P, denotes the orthogonal projection from H onto H,.

A

o0
First we prove that for each xeH the series ) T{k}x converges
k=1
unconditionally.

Let o,eC, || <1, k=1,2,...

n,=max {n: 14+(n—)nf2<r},
and let

,r,seN, r<s,

n, =min {n: n(n+1y2 > s},

k(k—1 k—
1u={ (2 o1, k(2,1)+2,“”’££’£2'.*.}_)}, k=1,2,...

Since T{j} HLT{i}H provided i€l,, jel;,, k #1, using property (1) in
Lemma 3.1 and putting o) = a; if r <j<s and 0 otherwise we have

] (ng+ 1)ng/2 ng
ETHaxf=] T T@as= 35 Tha
i=r i=(n,~1)n/2+ k=n, iely

n,

. 2 Ptk 3’4(2 AR - 1)/:“: ) Pox|?

< Z k= 3”2Zladzlhxl’

k=n,

}j k~3/22k |P, x|

k=n,
<2 Z |Pyx[*>—0
k= n,
For every 4eZX let us define
T(d)x=Y Tik}x
ked

From the above considerations and the Banach-Steinhaus Theorem it

as r— o,

follows that T(4)e L(H) for every 4eZ and that T is an L(H)-valued wca.

icm
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measure on X. We will prove that T does not satisfy the conclusion of
Lemma 2.24 and so T cannot have a spectral dilation.

Let ‘P (U) Z 11”(,, 1’/2+‘| w)A;) n’=1, 2,..., (OEQ=N, and let
for each n

xP X, x(z",fel;" =H,cH

be the sequence satisfying (3.3). Then, by (1) in Lemma 3.1
[Py = sSUp {JAM): i =1,..., n} < /2.
But from (3.3) in Remark 3.2

l[Z

[ @,dT)* = [T &) () T {n(n—1y2+i}]?

x(n)
[Z af) () P* AP P, n—BIAJ[ ]
x

= ;f ISE ==iaﬁ,';)(i)Agn)x..)I:zn_g,z
§ li‘, Z off) () AP x§P|2 =2

i=1j

- Z Ii xmlzn—s/z
k=1 i=1
2n

— pli2 2 X2 = nY? oob
k=1

as n—+o. w

3.5. Remark. Observe that in view of Th. 2.20(b) the set function T
constructed in 3.4 does not admit a fa. spectral dilation either.

4. Spectral dilation. Since not every w.c.a. L(H, K)-valued measure has
a spectral dilation it is of interest to characterize those measures that admit
spectral dilations. For the case H = C, where L(C, K) can be identified with
K itself, the following characterization plays a central role.

4.1, TueoreM (see [20], Th. 2 and 10). A fa. K-valued measure T with

lIT)) < oo defined on an algebra X has a fa. spectral dilation if and only if
(4.2)  There exists a constant C such that for any collection of scalar simple

,JeS(0)

" "
.,Z [§4dT|? < C|k>:‘ Lol -
=1 =
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Grothendieck’s inequality guarantees that (4.2) is always satisfied with
the constant C = 4n||T|| in the real case and C = (4/m)||T|| in the complex
case (see [21], Lemma 1). Hence with H = C, each fa. or c.a. K-valued
measure with finite semivariation admits a f.a. spectral dilation (or a spectral
dilation).

In view of Remark 4.5, the theorem below is a generalization of
Theorem 4.1 to the case of an arbitrary fa. (w.c.a) L(H, K)-valued measure
T, where H and K are any Hilbert spaces.

4.3, THEOREM. (3) Let T be a f.a. L(H, K)-valued measure defined on an
algebra Z. The function T has a f.a. spectral dilation if and only if

(44)  There exists a constant C such that for every collection of vectors x}, k
=1,..,n j=1,...,N, and any disjoint sets 4;eZ, j=1,..., N,
n N

n N
X |IZ T(4,)%|* < Csup {lkZUZl (F(4) ), xj): Fe #(LED), IFll <1},
Ck=1j=1 =1j=

- (b) If Z is a o-algebra and T is a w.c.a. measure on L then (44) is a
necessary and sufficient condition for T to have a spectral dilation.

The proof is given after the following remark.

45. Remark. One can reformulate condition (4.4) by considering the
space of simple functions with values in the tensor product of H with itself
endowed with the | |,-norm. This reformulation is used in the proofs of Th.
4.3 and 54. It also demonstrates that in the infinite-dimensional case for a
fruitful theory one must replace condition (4.2) involving the | |,,,-norm with
the similar one using the | | -norm.

For any two simple functions f, ge S(H),

N N
f= Z 1ijj: g= Z ldjyjs
J=1 Jj=1

where 4y,..., dy are disjoint sets in X (it is obvious that any two functions
from S(H) can be written in that form) let us denote by foj the element of
S(H®H*) defined by the formula

N
(fog) () = f () ®F () = ,Z 1 (@)x®), we®,
=1

wher? 7 is defined through y(h) = (h, y), h, yeH. Note that from the
definition of the | |,-norm (2.3) and the fact that (H@H*)* = L(H) it
follows that

N
1fog1, = sup {Ij;l (F()x;, y)): Fe #(LE), |FIl < 1},

icm
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N N -
=X Iij,, g= >y ldjy,. Thus (4.4) can be written in the form
j=1 J=1

(4.6) There exists a
fis . "f;veS(H®H*)

constant C such

that for any collection

2, [14ThP < €| E fuofo-
If H = C then foF =fg, f, geS(C), and
| ) Silw =] » VAL .
k=1 k=1

(see Remark 2.7). Thus in this case (4.6) (and (4.4)) reduces to (4.2). If H is
infinite-dimensional then in view of Remark 2.12 the existence of a constant

n n
C in Th. 4.3 may fail if we replace |} fidhlw bY | X fiRlsup-
k=1 k=1

Proof of Theorem 4.3. (a) If T has a fa. dilation then from Th.
2.20(a) it follows that T has a fa. 2-majorant F. Thus (4.4) holds with the

constant .

4.7) C=||F||=|F(Q)] <o (see Remark 2.16).

Now, suppose that (4.4) holds. We shall prove that T has a fa. 2-
majorant F which in view of Th. 2.20(a) will complete the proof. The proof
goes along the same lines as the proof of Pietsch’s factorization theorem
([12], Prop. 3.1).

Consider the set W consisting of

{iﬁoﬁ:ﬁeS(H), k=1,...,n, kzl |{dTh|* =1, neN}.
k=1 -

From (4.6) it follows that

lpl 2 1/C

for every geW. Since W is a convex set in S(H®H*), from the Hahn—
Banach Theorem ([28], Th. 3.4) and Lemma 2.13 it follows that there exist
ye(=c0, +00) and a fa. set function Ge .4 (L(H)) = (S(HQH*)* with ||G||
=1 such that for all ¢, yeS(H®H*) with pe W and ||, < 1/C we have

Re (¢, G) =y = Re (Y, G,

where {p, G)> = [<p, dG) (see (2.2)) and Re z denotes the real part of a
complex number z. Since for a = {f, GY/|<Y, G, |, GM) =Relay, G)
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and ||, = Ju)|, we have
7 = sup {Re (¢, G): W, < 1/C}
=sup{| ¥, GYI: Wl < 1/C} =(1/O)|IG]| = 1/C.
Thus we conclude that
Re {p, G) > 1/C
Put M(4) = [G(4)+G(4)*)/2, deZX, and let f,,..

i [fdTf|> > 0. Then Me .#(L(H)), M| <1 and
k=1

for all peW.
J,€S(H) be such that

FAE IG4TP) 3 i, ant> = Re J(3 4TAPI 3 ok, 46> > 1/C.
Thus
") . zl [T < C | <§lﬂoﬁ, aM

whenever fy,...,f,eS(H) and Y |[dT}[*> > 0.
k=1

n
To eliminate the assumption Y. |[dTf|* > 0 it suffices to prove that
k=1

M(4) >0 for all 4¢X. Suppose that (M (4,)x, x)= —a <0 and that there
exist 4,eX and y = H such that |T(d,)y| = 1 (otherwise T(4) =0 for all
4eX and of course T has a spectral dilation). Let f, = Ly xt, fo=14y. 1f

|fdTf,| =1T(4,) x> >0, then from (x) it follows that
0 < [[dTH? < C [ <fidfh, dM) = C(M(4y)xt, xt) = —Calr|* <O,
Thus |{dTf;| =0. Using (*) once. again we .get
1=|feThAP+|[dTH* < C [ fiofi +12dfa, dM
=C(M(A1 xt, xt)+C(M(4,)y, y)
= ~Calt2+C(M(4y)y, y) <0

for sufficiently large t, teR.
Hence M is a positive fa. measure with values in L(H) and () holds
truen for any sequence fi,...,f,eS(H). In particular, if n=1 and f,

= Y, 1,,x; then we get
Jj=1
IZ Tpx* =|{dTh[ < C [<fhofy, dM) = € z (M

Aj) X} x,).

icm
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Therefore
(48) T has a fa. majorant F = CM with
IF(Q)|=CIM Q) <C|M|| =

(b) If T is a w.c.a. measure defined on a o-algebra X satisfying (4.4) then
from (a) it follows that T has a fa. majorant F and so by Th. 220(b), T has
a w.ca. quasi-isometric dilation (J, K, E, R) with |R| < \,/E (see Remark
2.21). =

4.9, DerinimioN. For a given f.a. measure T we let

C(T) = inf{\/C: C satisfies (4.4)}

(by definition inf of an empty set is equal to 4 co0).

The following result which generalizes Th. 4.7 from [26] to the infinite-
dimensional case is an easy consequence of Th. 4.3.

4.10. CoroLLARY. Let T be a fa. (w.ca) L(H, K)-valued measure defined
on an algebra (c-algebra) Z. Then:

(@) 1T < C5(T) = C(T) = Cy(T) = C(T) (= C5(T) = C|(T) = C},(T)).

(b) If C(T) < oo, then there exists a fa. (w.c.a) 2-majorant F of T such
that \/I—FT(Q)l C(T). As a consequence, there exists a fa. (w.c.a) quasi-
isometric dilation (J*, K, E, R) of T such that |R| = C(T).

Proof. (a) follows immediately from the proof of Th. 4.3 (see (4.7) and
(4.8)) and from Th. 2.20.

{b) If C(T) < oo then (4.4) holds with C = C(T)?. Thus from the proof of
Th. 4.3 (see (4.8)) it follows that there exists a f.a. 2-majorant F-of T such
that |[F(Q)| = C(T)%. Hence in view of Remark 2.21 there exists a fa. quasi-
isometric dilation (J*, K, E, R) of T such that |R| = /|F(Q)| = C(T).

If T is additionally w.ca., then from Remark 2.21 it follows that there
exist a w.c.a. majorant F' of T and a wc.a. quasi-isometric dilation

R’) of T such that
IRl = JIF@) < JIF@I =
As C(T) = C{(T) €|R'| < C(T), we must have
IR| = /IF@)] =C(T). =

5, Some special cases. Let (22, X) be a fixed measurable space in the sense
that X is an algebra (or a o-algebra) of subsets of 2 and let T be an arbitrary
fa. (w.ca.) L(H, K)-valued measure on 2. We will say that T is dilatable if
either

(a) T has a fa. spectral dilation provided T is fa., or

(b) T has a spectral dilation provided T is w.c.a.

c(m).
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Let us recall that from Th. 2.20(b) it follows that if a w.c.a. measure T z
— L(H, K) has a f.a. spectral dilation then it also has a spectral dilation, so
we will drop the words f.a. or w.c.a. preceding the word “dilatable”. Let [
denote the operator associated with the measure T given by the formula

.1) ®r(f) = [dTf, feS(H) (sec Def. 2.10).

As we have seen in Lemma 2.11 the operator ®y from (S(H), | lw) into K is
continuous if ||T|| < co.

In this section we state a series of sufficient conditions for a (f.a.) w.c.a.
L(H, K)-valued measure T to have a (f.a.) spectral dilation. The first two sets
of conditions deal with the properties of the operator @, We will prove that
if @7 is 2-absolutely summing from (S(H), | |,) into K, then T is dilatable,
We will also prove that the continuity of @, with respect to the | Jsup-OTM

.ensures the existence of a spectral dilation of T. Lastly, we look upon T as a
mapping from X into the Banach algebra L(H). We point out that the factor
that binds all these results is the main Th. 4.3,

5.2. DerINITION. A linear operator & from a normed linear space X into
a Hilbert space H is said to be 2-absolutely summing if there exists a constant
C such that for all x,,..., x,e X

Y 18x|2 < Csup {Y |06, x* M2 x* < 1, x*e X+
i=1 i=1
(cf. [12], Def. 3.2).
5.3. Remark. Note that condition (4.2) in Th. 4.1 is equivalent to the 2-

absolute summability of the operator ®,: S(C) - K. To see this it suffices to
prove that for all f;,..., f,eS(C)

|2, 1l = sup él, | duf*: ne (O, Il < 1}

becz_xuse S(O* = .#(C) (Lemma 24 and Remark 2.7). The inequality “<” is
obvious by considering measures concentrated on singletons. Conversely, let
lul < 1 and let

N
.ﬂ=zldak9 k=1:-":n7
J=1 /

be any collection of Z-simple complex functions, where 4,,.,., 4y are
disjoint. Then

n N —_— N
X lidu? = ”21 r(4)u(d) @, a) = ',Z 4y a?
k= b= =]

icm
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where a;=(a}, a,...,a)el?, j=1,..., N, and from the triangle inequality
we get
B N

n N .
Y 1hd? < (X Iaflu(4)l)? < (suplaj - ¥ Iu(4))?
k=1 Jj=1 JsN Jj=1

" n
<suplaf?-|lu* < sup ¥ 1af1* =| 3 1ilfuups
JSEN JSNg=1 k=1

which completes the proof. Thus Th. 4.1 says that a K = L(C, K)-valued fa.
measure T is dilatable iff & is 2-absolutely summing.

In view of this remark it is of interest to find out the connection
between the existence of a (f.a) spectral dilation of T and the 2-absolute
summability of @, in the general case.

5A. TueoreM. (a) Let T be a fa. (w.c.a) L(H, K)-valued measure defined.
on an algebra (c-algebra) Z. If &7 from (S(H), | |,) into K is 2-absolutely
summing, then T is dilatable. .

(b) There exist a measurable space (R, Z), a Hilbert space H- and an
L(H)-valued dilatable w.c.a. measure T defined on X such that ®p from
(S(H), | |) into H is not 2-absolutely summing.

Proof. (a) Suppose that &, is 2-absolutely summing, i.e., there exists a
constant C such that for all f;,..., f,eS(H)

(55 3 |[aThP < Csup{ ¥ | Cho dmd]: me A(H), m] < 1}.
k=1 ey .

We shall prove that

sup { 3 1 o dmyPs me D, I < 1} < | 5 Ao
k=1 . =1
=sup {| }j [ fidh» dMD*: Me 4 (L(H)), IM] < 1},
k=1 _

which in view of Th. 4.3 (see also (4.6)) will complete the proof.

Let me #(H), ||m|| < 1. From 4.10(b) and the paragraph following Th.
4.1 it follows that there exist a Hilbert space K, an isometry Je L(H, K), a
fa. spectral measure E in K and yoe K with | yo| < n/2 such that

m(4) =J*E(4)y,, deX.

N ' .
Let f= Y 1,%,€S(H), where 4,,..., 4y are disjoint, 4;e2, x;eH, j
=1
=1,.,N, and let M(4)=J*E(4)J, deX. Then Me .#(L(H))
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Ml < [J*¥})J| = 1 (see Remark 2.16) and

N N
§<5, dm)f* =] & (s m)) =[(X E(4) x5, yo?

N N
< l.\’olzlz1 E()Jx|* =yl Z} (M(4)x;, x;)
=

=
<A [of, dM.
Thus for any f;,..., [,eS(H) and me./(H), ||m|| < 1,

15 dmdp <4r <. fioh, M) < 4] 3 ok

since ||M|| < L.

(b) Let =N, Z=2" H=1* and let for every dcZ, T(4) be the
orthogonal projection in I onto sp {e: ked}, where (e k=1,2,...})
denotes the standard orthonormal basis in /% Then T is a spectral measure
itself so it is dilatable. But the operator &, associated with T is not 2-

absolutely summing, To see this consider the sequence of functions f;
=lneeS(H), k=1,2,... We have

n n n
T1or(P =X |fdTh? = ¥ lefP =n— oo
k=1 k=1 k=1
whereas for every me .4 (H) with ||m]| <1
L1 v dmdf = 3 Koo mikDP < B I k)2 < limif? < 1,
= =1 k=1

where in the middle inequality we make use of the fact that if m is an
H-valued fa. measure defined on an algebra X with [jm|| < co then for all
disjoint 4,,..., 4y in X

N
(5.6 kZ Im (4% < |jmi>.
=1

Indeed, let {r,():j=1,2,...} be the Rademacher system in
Pz([O, 1], dt) where dt is the Lebesgue measure (ie, r; is a sequence of
independent random variables on [0, 1] taking values + 1 with probability 4)
and let 4,,..., 4y be a collection of disjoint elements of . Then

N 1 N 1
L Im@F = {| T m(@pryof de < [lm?de = m)*. »

j=1 0
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5.7. THeoRreM. Let T be a fa. (w.c.a) L(H, K)-valued measure defined on
an algebra (a-algebra) X. If for every orthonormal basis e = {e,: k =1, 2,...}
in H o

Z":IIT(')@:JI2 < o,

then T is dilatable.

Proof. Consider the measure T(-)*: X~ L(K, H) and let &;. denote
the operator associated with T* by formula (5.1). Then using the notation
from [29], p. 384, we deduce that for every orthonormal basis e = {e,: k
=1,2,...) in H .

02 (®r) £ ;SUP {(@r+f, e*: feS(K), flo <1}

]

2sup {|([dT*S, e): feS(K), Ifle <1}
Ysup {|{, dTe ) feS(K), Ifl, <1}

k
k
k

< Zsup{fISIT(C) el feS(K), Iflo < 1},

2IT()ell® < oo.

k

Thus from [29], Prop. 1, it follows that there exist a Hilbert space J#, a
Hilbert-Schmidt operator R from # to H and a bounded linear operator
Ve L(S(K), #) with |V} =1 such that

¢T" = RV
Since every Hilbert-Schmidt operator is 2-absolutely summing ([12], Th. 6.3),
&y« is 2-absolutely summing. Thus, by Th. 54, T(-)* is dilatable and so is
Tm

5.8. THeoreM. If a f.a. (w.ca) L(H, K)-valued measure T defined on an
algebra (o-algebra) X has the form

T(4)= RS(4), AeZ,

where R is a Hilbert-Schmidt operator from X to K, & is a Hilbert space and
S is a f.a. L(H, #)-valued measure on Z, with ||S|| < co, then T is dilatable.

Proof. Note that @, has the factorization
&, =Rdg

where ®ge L(S(H), ) (Lemma 2.11). Thus & is. 2-absolutely summing and
by Th. 54, T is dilatable. w
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5.9. Remark. Since T(-) is dilatable if and only if T(:)* is dilatable, it
follows immediately from Theorem 5.7 that if H or K is finite-dimensional
then every L(H, K)-valued fa. measure with finite semivariation is dilatable.
In particular, if H or K is finite-dimensional then every L(H, K)-valued
w.ca. measure T has a spectral dilation (see Lemma 2.9(b)).

Having proved Th. 54, 5.7 and 5.8 using the | |-norm we now proceed
to endow S(H) with the | |,,,-norm and to investigate its implications.

5:10. Derinimion (cf. [31], (15)). For any fa. L(H, K)-valued measure'
defined on an algebra X let us denote by ||| T||| the number in [0, co] defined
by the formula

1T = sup {]AZ T(d)x,: el (), x,eH, |x, < 1}.

‘Note that
Tl = sup {|@r (f)l: £ €S H), |flap < 1.
Thus
(511)  iTll < oo if and only if the operator & associated with T by

Jormula (5.1) is a bounded operator from (S(H), | lsup) into K.

- From [31] one can deduce that any Hilbert-Schmidt-operator-valued
measure T satisfying [[|T]|| < co admits a spectral dilation. Th. 5.18 below
extends this to the L(H, K)-valued case.

This shows that if ®; is continuous from (S(H), | |sp) into K then T
admits a spectral dilation. The connection between the continuity of the
operator @5 with respect to the | |,,,-norm and the 2-absolute summability
of & with respect to the | |,-norm is not quite clear to us. It needs further
investigation.

In the proof of the next theorem we will use the following slight
generalization of [24], Lemma 5, dealing with the case H = R (see also [31]
for general H).

5.12. LemMA. Let H be a Hilbert space. There exists a constant C such
that for all n, meN, t,,..., tuel?, x,,..., Xuc H

m

m

p 1(t,, t)(x;, x) € Csj ljzl sgn (s, £) |t x)? . (ds),
where S, is the unit sphere in 12, y, is the normalized rotationally invariant
measure on S, and sgnz =z/|z| if z+#0 and O otherwise, zeC. Moreover,
C < in (more precisely: C = 4/n if H and 12 are complex spaces and C = in if
H is a real Hilbert space and 1> = R" with Euclidean norm).

Proof. The proof proceeds along the same lines as in [24]. For the
benefit of the readers we state the main steps of the proof, We will consider
only the complex case.
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Step 1. Integration in polar coordinates yields (see [21], p. 183)

— 1
I(u9 t)(w1 t) #n(dt) = ;(u1 W),
(5.13) Sn N
—— n I'(n)
) L )t n =sru »
I G 58 6o, ) ) = S0 s w)
where u, wel? and I is the gamma function,

Step 2. Consider the two operators P, and Q, acting in the space of all

complex-valued p,-square-integrable functions L*(S,, ty; C) defined by the
formulas

(5.14) (Paf)() =n sjf(t)mun(dt), feL*(S,, u; ),
(5.15) ©@uf) = [ S Osgnls, D (@), SEL? (S i O.

Following the prooi' of Lemma 4 in [24] and using relations (5.13) one can
show that for every feL?*(S,, u,; C)

Q)= CL(PS, ])

where C, = M
2rin+4 )

Step 3. Let H be a separable Hilbert space, let L? (S, ta; H) denote the
Hilbert space of all strongly measurable -Bochner square-integrable
functions on S, with values in H (see [10], 3.5 and 3.8) and let P, and Q, be
the operators acting in L?(S,, p,; H) defined by the formulas (5.14) and (5.15)
with f € L*(S,, uy; C) replaced by fe L2(S,, u,; H). Then using the fact that

@«
SO =3 (f®, e)e, feL*(S,, p; H), where {a: k=1,2..} is an
k=1
orthonormal basis in H and the series converges uy,-ae. and in L2(S,, p,; H)
one can easily verify that

(5-16) @f:) = CH(PuS, ) for every feL*(S,, u; H).

Step 4. Let n, meN, y;ell, |t =1, x;eH, j=1,..., m, be fixed (one can
assume that H is separable, in fact for fixed m one can consider H! = sp {x;0
1 < j < m) so one can assume that H is even finite-dimensional). Consider a

- sequence of functions f,e L?(S,, u,; H) defined by the formula

Jp(® =121 S x;,  p=1,2,...,

1
where 1, () = =t ®,j=1,...,m, and
jﬂ'l() ”"(K"(’j)) Kpltp J

K,(u) = {seS,: Is—ul <1/p}, peN.
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Applying (5.16) to the function f, we obtain

] JET)f,.f(t)i,T,(s‘) () 1 (d5) - (55 %)

$,j=1 Sy S,

o Z {xi, )" j [ [ sgn(s, wsgn(s, 0fp (005, 1)
" Bj=1 Sy Sn Sn
() i (d8) g (dts).

Since for every bounded measurable complex function g on S, and every j
=1,...,m

git) = jg(t)fu (Hdt

prowded g is continuous at t;, and since g,(*) = sgn(s,’) is continuous at t;,
j=1,...,m for p,almost each seS,, using the Bounded Convergence
Theorem we obtain

(5~17) Z (th tj)(xh xj) < z I SSn(S, tj) sgn(s, tl) (X(, xj) [l,,(dS)

hj=1 =18,

= — conls 1) x|?
B ncz ) 'E, sgn(s, £) X[ o ds)-

If t;s do not satisfy the condition || = 1, then one can consider ¢} = t,/lt,l
and x; = |t,| X;, j=1,..., m (we ignore those t;'s which are zero). Thus since
1/(nCH — 4/ ([21], p 106) consideration of (5.17) completes the proof. m

5.18. TueOREM. Let T be a f.a. (w.c.a) L(H, K)-valued measure defined on
an algebra (o-algebra) Z. If ||| T||| < oo, ‘then T is dilatable.

Proof. We shall show that T satisfies (4.4) Let 4;, j=1,..., N, be
disjoint nonmempty subsets in X, xfeH, k=1,...,n j=1,. N and let
e,,..., e, be an orthonormal basis in sp {x}: j = 1 N k=1,...,n. Then

" N : n N r

TIX TE)XP =T | X Td) T & eef

k=1 j=1 k=1 j=1 =1
N " [
>y ¥ l(T(AI,) e T(A,)e,,)"z1 ok, e )k, e
N "r
)ID)
=1pyg

1(T(Ai) ep: T(AJ) eq)(tl,p’ tJ,q)lE )
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where 1, =((xt, e),..., (xI, e))el2, i=1,..,N, p=1,....r. Applying
Lemma 5.12 we obtain )

n N
(5.19) kgl ‘,; T)*<C ” Z }j sgn (s, £,0) 1t;,q T(4) e,|* y (ds)

=1q_—=

=C IZ T(4) (Z sen(s, ;) 1t e a(ds).

s"
Let y;(s 2 [t sgn(s, t; ) e,, i=1,..., N. Then

1yi@)* < ; lt,pl* = Z Z Ik, e)* = Z I

p=1lk=1
and

N "
|Z T OF <ITIPsup {3 (4 j=1,..., N).

Thus from (5.19) we obtain

n

Z IZ T(A) ¥ < ClITlIsup (¥ <% j=1,..., N}

k=1

N
=CITll ¥ Z (185, (4;) x5, x5)

j=1k=1

N n
SClTlsup{| Y, ¥ (F(d)xh, xf): Fe #(LH), |IFIl <1}
j=lk=1
where IeL(H) is the identity, joeN is such that
3k =sup {3 bt = 1,00 N,
= k=1

and 9, is a positive measure on X such that §;,(4;)) =1 and §,,(Q\4;))
== 0. From Th. 43 it follows that T is dilatable. a

The example given in Remark 2.12 shows that [||T]|| <o is not
necessary for T to have a spectral dilation.

The inspiration for the following theorem comes partially from [13], Th.
4.4, and partially from the fact that any selfadjoint T is dilatable if and only
if T bas a Jordan decomposition, which is a fact already observed by
Rosenberg [26], Cor. 2.10.

6 ~ Studin Mathematica 853
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5.20. TueoreM. Let T be a fa. (w.c.a) L(H, K)-valued measure defined on
an algebra (o-algebra) Z. If T(4) = T(4)* for all AcX and

T) = sup {|AZ T@)]: nell (@)} < oo,

then T is dilatable.

Proof. We shall prove that T satisfies (44). Let 4,,..., dyeZ be
disjoint nonempty subsets of 2. For each k=1,..., N let us define

Ud) = /T4 = deEk(}v) and

M(4) =U4)—T(4) = [(Al—2) dE,(4)
R
where E, (%) is the spectral decomposition of T(4,), k=1,.,., N ([28],
p. 309). Then U(4y) 3 0,
0<M(4) <2U(4)
and T(4,) = U(4)—M(4,) for each k =1,..., N. Let
N
QN= UAI:’ 2N={UAJ:IC{1’IAA’N}}A
k=1 el
For any 4 =jUAJc-23N, I<{1,..., N}, we define
el
Ud) =Y U4y, =) M(4)
Jel Jjel

Si;nce U and M are L* (H)-valued measures defined on (Qy, Z), there exist
Hilbert spaces K, and K,, spectral measures E; in K, and E, in K, and
bounded linear operators Re L(H, K,) and SeL(H, K,) such that for every
deX N

U(d) =R*E,(4)R, M(d)=S*E,(4)S.
Note that
IR = R* Rl = U @) = | Z \/""ﬂ V(T) and
IS? = |S* S| = |M (@w)| < 2|U (@) < 2V(T).
Let wyedy, k=1,..., N, and let for each deZX,
Ei(4) 0

F(4) = 3V(T) Z [R¥, S*][ 0

R
E2 (Ak)] I:S:l ' 60)]: (A)
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where 6,,(4) = 1 if we 4 and 0 otherwise, [IS{J denotes the bounded operator

from H into K;@®K, defined by the formula
R v (Rx
S|7 T \sx

[R*, %] (x‘) = R*x, +5%x,, (xl)eKi@Kz.
Xa Xq

and

Then F is an L* (H)-valued w.c.a. measure on (£, %),

v eI, O 7[R
[R5 ][ol IJ[SJ'

1 ’R 2
~3V(T)[J 3V(T)
x’,‘VEH k=1,...,n

. El(Aj) 0 R 2
Z (R", =S 3[ Ez(AJ)}[SJx;
<IR* -1 3 ¥

Ei(4) 0 :I[R]x,fz
K=1j= 1[ 0 Ey(dpiLS]t™

<MD 3 Z (F(4) %, x5,

Fll = |F ()| =

T (RIP+181%) <

and for arbitrary x’{,

S 1% T -

I3

E (")
0  E()
=9V (T)% u

6. Application to harmonizable processes. In this section R is the real line
and & is the o-algebra of Borel subsets of R. Let # x & = {4 xA’ < RxR:
4, 4'eB}.

6.1, Derinimion. v(, ) wxﬂ—rC is said to be a bimeasure if it is
separately countably additive in each variable, i.e. for all 4, 4'e®, v(:, 4"
and v(4,) are complex measures.

For a discussion of bimeasures and related material see Niemi [18a] and
Rao [23] and references therein.

6.2. LEMMA. Suppose that there exist a Hilbert space K and K-valued
measures {, n defined on B such that v(4, &) = (n(4), {(4)) for all 4, A'e B.
Then for any two bounded B-measurable scalar-valued functions f, g on R the

since is a spectral measure on Zy. Thus (4.4) holds with C


GUEST


286 A, Makagon and H. Salehi

iterated integrals
§f () fg (@) v(dt, ds)
exist and are equal,
Proof. Note that by [6], IV 10.8(D,
fg@v(de,y=([g@n@), (), [FEV(, ds)=(n(-), [F(5){(ds)
are complex measures. Thus both iterated integrals exist and
I£ ) fg @) v(dt, ds) = (Jg @) n(dr), [T ()¢ (ds)
= (90 [f () v(d, ds). =

6.3. DerinmrioN. If the conclusion of Lemma 6.2 is satisfied then by

I§7 (5)g () v (dt, ds)
we will denote either one of the iterated integrals [f(s)[g(t)v(dt, ds),
[g @) [f(s)v(dt, ds).

64. Remark. One can extend the function v(:, ) to the algebra
of (B x %) generated by the rectangles # x 4. Denote the extension by 7. ¥ is
a f.a, measure on o/ (# x %). If ¥ is bounded on o/ (# x B) then it is easy to
show that for any two Z-measurable scalar functions f and g, f(s)g () is
integrable with respect to ¥ in the sense of [6], IIL.2, and the Dunford-
Schwartz integral

and  [g(8) [f (s)v(dt, ds)

[ f(©)g(®)7(de xds)
R2

and the integral {[f(s)g(z)v(dt, ds) introduced in (6.3) coincide.

6.5. DeFINITION. A function «( , ): #x# —~ C is said to be positive-
definite (abbreviated as pd.) if

n
Z at‘oij(A;, AJ) > 0
iLj=1

for all ay,..., a,eC, neN.

By the Aronszajn Theorem (see e.g. [14]) a function v: # x & — C is pd.
and additive if and only if there exist a Hilbert space K and a K-valued fa.
measure { on # such that
(6.6) v(d, 4) = ({(4), {(4)
for all 4, 4'e 4.

6.7. LEMMA. Suppose that v is a p.d. function which is separately additive.
Then the following are equivalent:

(i) There exists a K-valued measure { such that (6.6) holds.
(iiy v is a bimeasure and sup{v(4, 4): de#} = C < w0,
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(ili) v is a bimeasure and

m
sup { 3 oy &v(d, 4): 0,&C, || <1, and 4s are disjoint} = C' < co.
Lj=1
(iv) v is a bimeasure and
m
sup {I Z mlﬂjv(Ala A})I' '“l' < 19 ‘ﬁjl < la oy BJECs
1Li=1
4;'s are disjoint and so are Ajs} = C" < 0.

Proof. (ii)=>(i). Using Aronszajn’s Theorem mentioned just before
Lemma 6.7, there exist a Hilbert space K and a K-valued function { such
that v(d4, 4) = ({(4), {(4)) for all 4, A'€B. One can assume that K
=sp {{(d): 4e%)}. Since v is a bimeasure, the function

€ ¥ 4l(4) = % (., 4)

is countably additive for all ay,..., a,eC, 4y,..., 4,€X. Let K, =sp{{(4):
~ ded), xeK, §>0 and 4,eZ, 4, Q. Let x,eK, be such that [x—x,|
<6/./C. Then
1€ (40, )| <), xa)|+](E(4n)s x—x5)]
S, x| +1E (40N 1x =,

<[, ) +/SupTC A2 %
<[, xa)|+\/5'% <%

for sufficiently large n, because ({(-), x;} is countably additive. Thus {() is
weakly c.a, so, by [6], IV.10.1, it is a measure.

(i) = (iv). For any fixed 4, 4'c # the set functions v(-, 4') = ({(*), £(4))
and v(4,) = ({(4), {(+)) are countably additive, so v is a bimeasure. If
Eyyerey “nFC Iali < la ﬁl’--': ﬂnEC’ |ﬂl| <, Al"": A,,eﬁd, Al nAJ = (z)
provided i #7j and 4;,..., dye B, 4ind)=Q provided i # j, then

I 2": a;ﬂ,v(zli, A})l = I(Z atC(Ai)s i ng(A;))I
hi=1 i=1 =1

< [T l(4)|-[L B )] < K> - oo,

by Lemma 29 (see also [6], 1V.104).. The implications (iv)
(iii) = (ii) are obvious. Note that C< C'=C"= (|’ S4C. w

=>(ii]) and
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6.8. Remark. From Lemmas 6.7 and 6.2 it follows that if v is a pd.
bimeasure then for all bounded scalar %-measurable functions the integral

[{f(s)g(t)v(dt, ds)

is well defined.

6.9. DerinmmioN. Let K be a Hilbert space. By a K-valued stochastic
process we will mean any function (x,).x from R into K.

A K-valued stochastic process (x).g is said to be:

(a) harmonizable ([27]) if its correlation function y(t, §) = (x;, x,), t, s&R,
admits the representation

y(t, 8) = [fe™ """y (d, du)

n
where v is a p.d. bimeasure such that sup{ Y «,&v(4;, 4)): ¢,eC, |of <1,
: hy=1
4;'s are disjoint in %} < co; I

(b) V-bounded ([17]) if it is continuous and there exists a constant C
such that for every peL'(R, C)

[[x @) dt| < C|@lpps

where the integral on the left-hand side is in the sense of Bochner ([10], 3.7),
L'(R, C) is the space of Lebesgue integrable functions, and for every
9eL!(R, C), ¢(1) = [e""p(s)ds is the Fourier transform of ¢;

(c) stationary if its correlation function satisfies y(z, 5) = (x,, Xy) =
y(t—s,0), t, seR, and it is continuous.

The following result is well known. Because of its importance and
because of its repeated use in this section we state it here as a theorem.

6.10. Teeorem ([18], [16]). For any K-valued stochastic process (X)er the
Sollowing are equivalent:

(i) (Xher is harmonizable.
(i) (X)ex is V-bounded.
(iii) There exists a K-valued measure { on # such that Jor every teR

X = fe" " (ds).

(iv) There exist a Hilbert space K, an isometry J from K into K and a K-
valued stationary process (). such that for every teR

X = J*y,.
(See [1] & [2] for a stronger version of harmonizability and its connection
with Th. 6.10.)

Thg purpose of this section is to establish the relations between
harmomzab111ty, V-boundedness and stationary dilations for operator-valued
processes using the results of earlier sections.
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The definition of L(H, K)-valued stationary processes (see for instance
[71, [4], [15]) suggests the following definition.

6.11. DerFiniTION. Let H and K be Hilbert spaces. By an L{H, K)-valued
stochastic process we will mean a function (X,),.x from R into L(H, K). An
L(H, K)-valued stochastic process (X,),.x is said to be:

(a) weakly harmonizable if for each xe H the K-valued process (X, X),.p is
harmonizable (in the sense of 6.9(a));

(b) stationary if for each xeH the K-valued process (X,x)p is
stationary. ’

As it turns out, see theorem below, this definition of harmonizability,
although natural, is too weak to ensure the existence of a'stationary dilation.
However, as Th. 6.17 and 6.20 suggest, an additional condition may be
imposed to guarantee the existence of stationary dilations of weakly
harmonizable processes. ;

6.12. THEOREM. (A) Let (X,),.x be an L(H, K)-valued stochastic process
and let I'(t,s)= X*X, be its correlation function. The following are
equivalent:

(i) (X,)ier is weakly harmonizable.

(i) For every xeH the K-valued stochastic process (X, Xyep is V-bounded
(in the sense of Def. 6.9(b)).

(iii) There exists a function F: # x % — L(H) such that

(@) For all fixed A, A'c®, F(-, 4") and F(4,") are L(H)-valued
w.c.4. measures.

b Y wagF(d, 4)=0 for all ay,...,x,eC dand disjoint sets
iLj=1
Ajl,..., A, eB.

(c) sup{JF(4, A)|: 4e B} < .

(d) For all xeH and t,seR

(I't, $)x, x) = [[e” "~ (F (dv, du) x, x)

(see Remark 6.8).
(iv) There exists a w.c.a. L(H, K)-valued measure Z such that for every
teR ,
X, = fe " Z(ds)
(for the definition of this integral see the paragraph following Remark 2.21).
(B) There exist infinite-dimensional Hilbert spaces H, K and a weakly
harmonizable L(H, K)-valued process (X,)er Such that (X,)cp does not admit
the factorization
X, =RY, teR,
Sor any Hilbert space K, Re L(K, K) and a stationary L(H, K)-valued process
(Yl)tel'
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Proof. (A). (i) and (ii) are equivalent by Th. 6.10.

(ii) = (iv). Suppose that for every xe H, X, x, teR, is V-bounded. Then
from Th. 6.10 it follows that there exists a K-valued measure {, such that
X x=[e™{(ds), teR. By [11], Lemma 2 and Th. 2,

Cdl = sup {|fo(s) X, xds|: 9L (R, C), |@lw, < 1] S C; < 0.
Consider the family of continuous linear operators from H into K defined by
the formula

T,x = [@(s) X, xds,
R

peL! (R, C), [@ly, <1

(note that from the definition of V-boundedness it follows that X, x is
bounded for each xe H so, by the Banach-Steinhaus Theorem, [28], Th. 2.5,
sup {|X,|: te R} < co). Since for every xeH the orbit

{T,x: peL'(R, C), |Ply, < 1)
is bounded, again by the Banach-Steinhaus Theorem it follows that
sup {IL,l: xeH, [l < 1} <sup{|T,|: 9L (R, C), |lyy, <1} = C < 0.
Thus |IL,ll < Clx| for all xeH. For each 4e# we define Z(4)x = {,(d),

xeH. Sincg {, is uniquely determined and since for all de# and xeH,

|Z (d)x| =10 () < ||t < Clx|, Z(4) is a w.ca. measure on & and

X,x=(e"™Z(ds)x, teR, xeH.
(iv) = (iii). Let F(d4,4)=Z(4)*Z(4), 4, d'c®B. Then
=|Z(4)* < |IZ]* < . Obviously F satisfies (a), (b) and (d):
(iii) = (). Trivial by Lemma 6.7.
(B). Let H and the w.ca. L(H)-valued measure T be as in (3.4). We

consider T' as a w.c.a. measure defined on 9% and concentrated on the set of
positive integers. Let

IF(4, 4)|

X, =[e"™T(ds), teR.

By part (A), X, is a weakly harmonizable L(H)-valued process. Suppose that
X = R}_i, te R, where Re L(K, H), Y, is a stationary L(H, K)-valued process
and K is a Hilbert space. From [4], [15], it follows that

Y, =[e™E(ds) Y, teR,
where E is a spectral measure in M(Y) =§E {Y,x: teR, xeH} < K. Hence

X, =‘|.8_“s T(dS) = j‘ewilsRE(ds) Yo, teR.
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Since all measures on # are regular and the Fourier transform uniquely
determines a measure,
T() =RPyor) E(A) Yo,  de 4,
so T has a spectral dilation, which is in contradiction with 3.4. w
6.13. Remark. Note that condition (iiic) in Th. 6.12(A) may be
replaced by

©) sup '{|uz.la‘(i,F(A,, 4)): < 1, 47 are disjoint, 4,¢ B) < .

In fact from the proof of (iv)=(ii) in Th. 6.12(A) it follows that:
n ' .
() sup{| Y. & F(4;, 4)|: o)) < 1, 4s are disjoint in B} < ||Z)|* < 0.
ij=1

(d)) For all x, ye H the integral
f[e= =W (F (dv, du) x, )

is well defined (see Lemma 6.2 and Def. 6.3) and is equal to
(re, s)=, y). ,

The notion of a V-bounded L(H, K)-valued stochastic process can be
defined pointwise in the same way as a weakly harmonizable L(H, K)-valued
process. But the following definition seems to be more natural, .

6.14. DeriniTION. An L(H, K)-valued stochastic process (X)),cg is said to
be V-bounded if for every xeH the function Rat— X, xeK is continuous
and there exists a constant C < oo such that for every ¢eL!(R, H)

[ X, 0@ dt] < Cl@lups

where L'(R, H) is the space of all H-valued Bochner integrable functions
wrt. the Lebesgue measure, @(s) = [e"""o()d;, peL'(R, H), and the
integrals are in the sense of Bochner.

6.15. Remark. We first note that X, ¢(t) is separably valued and
weakly measurable for each peL! (R, H). So X, ¢(t) is strongly measurable.
Additionally, by the assumption in Def. 6.14, X, ¢(t) is Bochner integrable,
ie. JIX,p@)|dt <oo for all peL'(R, H) ([10], 3.74). Setting @ (5) =1(0)x,
xeH, fel!(R, C), we obtain

JIX x| 1) dt <oo- for all feL!(R, C).

Thus sup{/X,x: teR} <o and by the Banach-Steinhaus Theorem
sup {|X,|: te R} < 0.

6.16. Remark. Since the functions ()= Y fildx, xeH,

k=1
HeL (R, C), form a dense subset of L' (R, H), and the Fourier transforms of
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L(R, C)-functions are dense in Co(R, C), and since for every @ eL' (R, H)
|¢Isup < I(pILh

it follows that the set {¢: peL'(R, H)} is dense in Co(R, H).

6.17. TaEoREM. Let (X,),.x be an L(H, K)-valued stochastic process and
let I'(t,s)=X*X, be its correlation function. Then the following are
equivalent:

(i) (X her is V-bounded (in the sense of 6.14).

(ii) There exists an L(H, K)-valued measure Z with || Z||| < oo (see Def.

5.10) such that for every teR

X, = [e"" Z(ds).
(ili) There exists a function F: % x B — L(H) such that

(a) For all fixed A, A'c®, F(-,4) and F(4,*) are w.ca. L(H)-

ualued measures.
(b) }ja,a, (4, 4) >0 for all o] <

IJ~

j=1,...m neN.
(© sup{ Z (Fidi, 4)x;, x): x;eH, |x| <

Li=1

in ) <
(d) For all xeH and t,seR
re, 9x, x) =
(cf. Th. 6.12(A) and Remark 6.13).
Proof. (i) = (ii). Suppose that (X,),.x is V-bounded. Then setting ¢ (1)
=f(t)x, feL*(R, C), xeH, we obtain
If X, xf @) dt] < ClxI[ flgup

thus (X,x),.x is 2 K-valued V-bounded stochastic process for every xe H.
From Th. 6.12(A) it follows that X, = (e""Z(ds), teR, for some w.ca.
L(H, K)-valued measure Z on %. We shall prove that |||Z||| < oo, Let

1, ;e C, and disjoint A;e 3,

1, 4)'s are disjoint sets

”e—ﬂw—m (F (dv, du) x, y)

A= {peCy(R, H): o(t) = Z 9 %, g€ Co (R, C), x, e H}, and

B= {‘PECO R, H): o(t Z f;‘ (&) %, foe L'(R, 0, kaH}

Define. the operator B, from B into K by the formula

(}:f;(r )x,) = ): {70 Z ().
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Since for every yeK

(Bz(Zﬁmxk )= gma

(d0) x., ¥)

1
uM= nM= ’urMa

[fe™ " (s)ds{Z (dr) x, y)

-

V(9 [ (2 (d)) %, y)ds
If ©)(Je™ Z (dt) x,, y)ds
=, (Ef"(s) %), y)ds
= (12 A6%)45.)
(we have repeatedly used (2.23) and [10], Th. 3.7.12),
Bz (é‘lﬁ‘(') x) = [ X. (21 FAGEALES c|’§l FAGEA .

Thus B, is well defined with |B;| < C. B, can be extended to a bounded
linear operator from Cq(R, H) = B into K. We will denote the extension by
the same letter B,. Let

=Y gixeA
k=1
and let
Iﬁc('")_—gklsup -0 as m-—» oo
for each k=1,..., n. Then from [6], IV.10.8 (or 2.22),

Bl(f(m)xk) = jf("') Z (ds) >y 5 [gk(s)Z(ds)x,,, k=1,..n

Thus

Bz(é:lgk X) = ; faw( S)Z(ds)xk;

for every ¢ = 3 gyXx€A.
k=1

K, be disjoint compact

Let Xxy,..., Xx,eH, |x|<1, and let K,,...,
1,...,n such

subsets of R. There exist sequences {gi™}%=; = Co(R, C), k =


GUEST


294 A. Makagon and H. Salehi
that
(@) g™ () — 1x," for every i=1,..., n.

(®) 1g{™lyyp S 1 for every i =1,...,n and meN.
(© g{,..., g have disjoint supports for every meN

(eg. g™ (t) = max ( 1 ~%1—dist (¢, Ky, O) where

36 < min {dist(K;, K)): i %, i,/ =1,..., n)).

From the Dominated Convergence Theorem ([6], 1V.10.10) we obtain
n n n
|Z 2(K)x| = lim |l>:1 [9" () Z(dt) x| = lim [Bz (Y g™ (1) x,)
= oo = m=+on ICHY
< IBZI sup ”Z gi’") xllnup: mEN}‘ < C.
i=1

anpg each measure Z(-)x;, i =1,..., n, is regular, we conclude that for all
disjoint 4,,..., 4,6 % and xy;..., x,eH with |x| <1, i=1,..., n,

|"i‘ Z(4)x) <C.

Thus [|1Z]ll < C < o0,
N (11)=>(iii). Let F(4, 4) = Z(4'* Z(4). Then for all x,,..., x,eH and
disjoint sets 4,,..., 4,6 #

2 (Fldi, 4)x, ) =L Z () x* < (12 < <o,

i j=1
provided |x| < 1. Statements (a), (b) and (d) are obvious.

(ii) = (ii). By Th. 6.12(A), X, = fe""*Z(ds) for some wc.a. L(H,K)
valued measure Z. The same argument as in (ii) => (iti) shows that |||Z]|*
=SUI?{Z(F(A;, 4) %, x)): x| < 1, 4)'s are disjoint on %) < co.

) (ii) = (i). From the paragraph following Def. 5.10 it follows that for every
simple H-valued function ¢

(6.18) 1§4Z o] < INZI1) 1@l

so the integral {dZ¢ can be extended to any separable-valued #-measurable

bounded function taking values in H. Let u i
. $
ocL(R, H) verify that for every

(6.19) [Z@ds)([(t) e~ dt) = (X o) dr.

icm
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Since |X,| =|fe™Z(ds)| <||Z]l, both sides of (6.19) are linecar and

- continuous operators on L' (R, H) so it suffices to prove that (6.19) holds for

functions of the form ¢(t) = f{)x, where. xeH, feL'(R, C), which
obviously follows as was indicated in the proof of the implication (i) = (ii).
From (6.18) and (6.19) it follows that for every e L'(R, H)

[§ X, 0 dt| = |[dZ @l < 12N | Ploups

hence (X)) is V-bounded. m
In view of 6.17 we introduce the following definition,

6.20. DeriNimioN. Let (X,).q be a weakly harmonizable L(H, K)-valued
process, ie, X, =fe""Z(ds), teR If ||Z|]| < o0, then (X)p is called
harmonizable,

We note that (X,),.g is harmonizable if and only if it is V-bounded.

The main theorem of this section is an immediate consequence of Th.
5.18.

6.21. THEOREM: Let (X,).x be a harmonizable L(H, K)-valued stochastic
process. Then there exist a Hilbert space K, a stationary L(H, K)-valued
process (Y,),.r and an isometry Je L(K, K) such that for every teR

X, =J*Y,

Proof. By definition, X, =je*"’Z(ds), where Z is a w.ca. L(H, K)-
valued measure with ||| Z||| < cc. Thus from Th. 5.18 it follows that there exist
a Hilbert space K, Re L(H, K), a spectral measure E in K and an isometry
JeL(K, K) such that Z(4) = J*E(A)R, deB. Let Y, = [e"™E(ds)R, teR.
Then (Y)ex is stationary ([4], [15]) anc! by (2.23), X, =J*Y, for all teR. =
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