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On subsequences of the Haar basis in H!(5) and isomorphism
between H'-spaces

by

PAUL F. X. MULLER (Linz)

Abstract. We classify and characterize the subspaces of H'(6) spanned by subsequences of -
the Haar basis. /, and (ZH,’,),' and H'(3) are the only isomorphic types which occur in this way.
We also give a necessary and sufficient condition on an increasing sequence of fields (#,) for
H'((#,) to be linearly isomorphic to H*(8), thus verifying a conjecture of B, Maurey.

Introduction. To the pair (n,i), neN, 0<i<2"—1, we associate the
dyadic interval () = (27", 27"(i +1)] and the Haar function h,, which is 1
on the left half of (2"'1‘, 27"(1+1)], —1 on the right half and zero elsewhere.

" The o-algebra generated by the sets {(277i,27"(i+1)]: 0<i< 21} is

denoted by &,. Dyadic intervals are nested in the sense that if I nJ % @
then either I <J or J = 1. ,
We will work in the following setting: Given f = Y a, hy in I} (0, 1], we
(ni)
write

S =(Tazhe)"* and Nl =[SU),

(nl)
H1(5) = {fELli ||f”51(5) <o}

H) denotes the subspace of H!(§) which is spanmed by
{hw: m<n,0<j<2"—1}, and

(X Ha) = {(fdnen: fucHy and Y [1£ill < 0}
Given feL'(0, 1] and a dyadic interval I we write f; = |I|™* {f and
' I

1/ lamore = sup {11! J' F=f?)'?: I a dyadic interval},

BMO@) = {feL!: [f =0 A[lflsmom <}

The connection between BMO (8) and H'(d) is given by the following .
formula: . :

1l = sup {|§ fol: llgllswo =1 A geL®}.


GUEST


74 P. F. X. Miller

We frequently use the fact that for f =) a, h, we can express the BMO-
norm of f by means of the coefficients. In fact,

I/ llowo =sup(2® Y 27"a2)'".

(ni) (mj) =(ni)

A subsequence of the Haar basis in H*(d) is given by a collection # of
dyadic intervals. Let X denote a subspace of H'(J) spanned by an arbitrary
subsequence of the Haar basis in H'(8). The fact that the Haar basis is
unconditional in H'(d) implies that X is complemented in H'. Theorem 1
says that the only spaces we can produce in this way are the obvious ones,
namely I', (3" H,),1, H(9). In each case a geometric characterization in terms
of # is given. To distinguish between the “small” spaces I, (Y. HI),, a
Carleson-measure-type condition is used.

In Section 2 we study general martingale H* (%)) spaces. Consider an
increasing sequence (%) of finite fields on a probability space (2, %, P) such
that # is the g-algebra generated by () () {4: Ae #,}. Given a P-intégrable

n

function f we set:

SO =(CESF)-EF1#,-))) 0,

n

1) =sup E(f|F)(1),
H' (7)) = {feLMQ, #, P IS(Nll,1 < o0},
BMO((#,) = {f e L'(2, #, P): sup||E((f~fo- )*| )L < o).

We use the following
- Tueorem (Davis).

1
21l S USUOM 0 s ellf|l

Jor some constant c.

Tueorem (Maurey). H' (57,)) is isomorphic to a complemented subspace
of H'(5).

It is important to realize that this theorem holds without any further
condition on ().

Confirming a conjecture of B. Maurey, a necessary and  sufficient
condition on the fields (#,) is given for H'((#,) to be isomorphic to H' (§).

The proofs of Theorems 1 and 2 below use Pelczyriski’s decomposition
principle. In part ¢ of Theorem 1 and in Seétion 2, Lyapunov’s Theorem ([8],
p. 159) on the range of a vector measure is repeatedly applied.

The works of Lindenstrauss-Pelezyfiski [7] and Enflo-Starbird [3]

icm

Subsequences of the Haar basis 75

explain the use of Lyapunov's Theorem to construct functions which share
the properties of Haar functions. .

Throughout the paper we adopt the following convention: In a measure
space (2, 2, P), a system of sets (E,;), neN, 0 <i < 2"—1, is called a tree iff:

(1) There exists ¢ > 0 such that

—}_2"" S P(Ey)<c2™ for any neN and 0<i<g<2"—1.

(2) EynE; =@ for i) neN. .

(3) Evir, 20V Eni1,2i41 €E,, for neN and 0<ig2'—1.

c is called the tree constant of (E,).

Both Theorems 1 and 2 have their roots in the paper [4] of Gamlen and
Gaudet. They classified the subspaces of I?, p > 1, which are spanned by a
subsequence of the Haar basis. Hence the connection to Theorem 1 is
obvious. In [9], p. 112, Maurey writes: “Cette conjecture est en partie
inspirée par les résultats de Gamlen et Gaudet.”

In Theorem 2 we prove the conjecture mentioned above, and this
constitutes the second relation between [4] and our work here.

One more remark on the relation between [4] and this paper can be
found at the end of Section 2.
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under the supervision of P. Wojtaszezyk. I would like to thank him for the
mathematics he taught me and for his helpful advice.
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0. In several places of this paper we will be concerned with constructing
complemented subspaces of H 1((3’,,)) which are isomorphic to H*(é).

In order to avoid unnecessary repetitions we formulate a general
theorem which gives a criterion for a subspace of H*((#,)) to be isomorphic
to H!(8) and complemented there.

Theorem 0 is meant to be an auxiliary result.

Tueorem 0. Suppose  that  (B)%ni-0 are  functions in
H'((F )~ L2(F, P), orthogonal in L*(#, P) and such that the following
holds:

(1) There exist an increasing sequence k,e N and trees (A,), (By) in (82, P)
such that for given (ni) we have

(La) E(hy| %) =hy for | = koes

(1.b) E(Hni!tﬂ.j) =0 for i< kn'

(1.0) m,y < 1l < 2
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(2) Take i such that k, < Then the

following holds:

Ki<k,;. Let B be an atom in #,.

[1ml2()dP (@) < P(B)2°™*"  for m > n.
) .
Then span {h,: neN, i <2"~1} is a complemented subspace of H' (#.)
which is isomorphic to H*(5).

Proof. Fix a finite linear combination f=} a,,;k,;. We have first to
show that

1
@ CIE s s oy < I Wy < I g il

where C can be taken independent of (a,).
Define K; = {meN: k; < m <k;.,},jeN. Fix jeK,; then (by property
(Lay)

E(f'yj)(r) “‘E@aniﬁnll yj t)+ Z amjﬁmj(t

m<n
Hence we estimate i
Jsup|E(f|#)| < jsupsup]E(Za,,,E,,,lﬂ'j)[-i»j'sup[ b
JjeN neN jeK,, n

m<n
ogjgam—y

Gy Emjl

2n-1
<J sup 120 1] 124, @V AP )+ C [T g B 1.
2"y

J(Z ; nleAm)mdp(t)"'cllz“mjhmJHHl(a)

<C ”Z Oy hm}”nl(d) :

This proves the right-hand inequality in (). The proof of the reverse
inequality is easy and uses the fact that

”f“}ll((y")) [Sllpr(fI fk")l C ”Z Ay "‘“H‘(J)

The constant C appearing in (%) depends only on the tree constants of (4 (An)
and (B,).

Hence the closed linear hull of {r,,, neN,0<ig
isomorphic to H*(5) and the mapping

ir H' () - H' (#,)),

2'—1} in H'((#,) is

hnl - Fm

is an embedding. We must make sure that i(H'(8)) is complemented in
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H((#,). Define the projection

P: H'((#,)— H!

(#). 1~ Z( T |92>

By the orthogonality of i, it is evident that P is bounded iff
(i P)*: BMO(8) » BMO((#,), hyu— hy
is bounded.
To show that (i~! Py* is bounded, we take f = Za,,,j by Fix I'e #; and
J(oDe ;.. Take the largest m, such that Emu is F_ l-measurable and

find iy such that J < supph,,;, . Therefore j— 1eK,y, and je Ky U {kn,+1}.
Hence we estimate

E((f~f;-* %) =,3‘17‘}f( Y b= (Y i)y’

m>mq m>my

VA

¢ 2 72

mi ml+ Ui hmi
70,2, i {P P<J>m>zm1 |
2y

m>m1
(mi) =(myiy)

N

a2 2" T L2 |[Y gy h,,,jH.fMo(a,.

1. Subsequences of the Haar basis in H!(§).

TueoreM 1. Let & be an infinite collection of dyadic intervals. Let X be
the closed linear span of {h;: 1€ B} in H' and o = {t: tel for infinitely many
Ie®)}. Then:

(a) If || LY J|) <o then X is isomorphic to I*.

Jed
Je<r

0 and sup(lll"ll Y V)=
74

() If |o| > O then X is isomorphic to H'(5).
Proof of Theorem 1, part (a). Suppose

supllI YW=

JGW

=0 and sup (|l
1

(b) If |o| = oo then X is isomorphic to (Y. H),.

=M< 0.

Then
|2 ar byl = sup {Ea byl ”IZwbl Byllovo = 1}
le# (:}
=sup Y a; by [1): sgp(l][ Z bzlJl)”2 1}

Je!ﬂ
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- 12
> sup (Y a; by [1]: supsuplb,| (1171 T 1) = 1)
I Jer Jel
Jeh
=sup Y a; b )I): suplb MYV? =1}
I
=M Y a1l
Ie®
Thus {h|I|™!: 14} is equivalent to the unit vector basis in I'. m

The following lemmata and propositions are needed to prove part (b) of
the theorem.
DeriNniTiON 2. Let 4 be a collection of dyadic intervals. Let' I e #4. Put

={Je®k: J <1, Jmax},
Gu)=_ U " Gi{).
)

JeG g

We enumerate the intervals of G,(I) in such a way that
ol 2 |1, 2 (1) ...
Let k(e) be the smallest integer such that

k()

Z i 2 (1—4) Z il -

k=1
Then we set
Grnll) = {Ii: k< k(g)},

Gon(N=KeG,(l): 3JeCGiyy,,() AKDJ}, p<n.

Remark. We will use the fact that G5 (/) is a finite subset of G,(I)
such that

Z U>01=g Y |J.
gec T6Gyll)

Lemma 1 ([5], Ch. X1, Lemma 3.2). Let # be a collection of dyadic
intervals and Ked. If neN and y <1 are given, then

K5

.I<‘K

implies that there exists 1,3, Io < K, such that
1

o W =7.
Tol TeG o)
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Proof. (a) Suppose this is false. Then, for any Ie# with I c K

3

1
mJZ VI <.

&G pll)
But this implies

,,q 2 W=

J:h

K5 el

meN JeG,y,,, 1. (K)

r=1 meN

a contradiction.
Main LemMA 2. Let % be a collection of dyadic intervals. Suppose that
there exist Ine# and & > 0 such that
1
II()‘ JEG;:(I())

nn

IJ|>})m 1_4—n<y"<1‘

Then there exists a subspace ¥, which is contained in span {h;: I €G, . 0<phy,
d-complemented in H'(5), and 4~isomorphic to H}.

Proof.
Sl(’p l. Eoo = h’O'

Step 2. Eg = E(h = 1), Eg = E(h;, = —1),

Ew = hy,

.
TeG1,a0 Q) nEQ

Ell"‘ Z h.l~

JeG ,,(Io)nEo
We observe that
lsupphiol = (ra—Dllel  and  |supp iyl = (vu—H)Iol-
Sl@p 3. _]E QO, 1,, hlj = E(ﬁlj == 1), EI_J = E(EU == -—-1),

Ez.z;'ﬂ = )y hy,

By = Y : -
JeGyplg)nELj

TeGh ,,(ID)nF“
and we observe that
supp A,z 2 lsupp Byl =4 11ol = (rp~3— Lol
[supp 52.2”11 Z (3~ -l
At step m we are given by, 0<j<2"—1. We put

Ely=Ehy=1, E;=El,=-1),
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i = h
h = by Fmrrager =, 2 R
m L TG+ 1%:(10),-\5,:} ’ JeGrnt Lol Q) “Emj
and we get, for ke {2j, 2j+1},

~ - 1
(SUPP Fipnt. 14| = [SUPP Fm, — T Ll

11 1 VI
>(V,.~E*Z~-'-“W Hol,

As the space Y, we will take

span {f,: 0<m<n 0j<2"=1},

We must show that
(a) Y, is isomorphic to H} with constant 4.
(b) Y, is complemented in H*(8) and the norm of the projection is less

than 4.

Ad (a).

( ]2'"1
m]m 0,j=0

Observe that supp iy y,2; U SUPP Ay, 2541 < supph,, ;, take
and estimate:

|13 G Bl 1 = (2 amy S (R
2n-1

> Y l( Z “'%lj)anupnFm
=0 " (mp)>ni)

M-y

=Y (Y @) o142
i=0 (mj)'_"(nl)

On the other hand,

Hence

Y
”Z amjrlmf“m < 'Zo (2 “rznj)l/2 27"I).

i= {mj}y>(ni)

~ 1
in: H: - Ym hmj - hmjm

is an isomorphism with

Ad (b).

projection:

-

2
il i 'l < TS <4

Y, is complemented in H'(§) by means of the following

R0 =3 (470
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By orthogonality we see that P, is bounded iff
(in—l Pn’*: BMOn - BMO» hm‘ - E

is bounded. "
Take any dyadic interval K < [0, 1].

Case 1: Iy = K. Then

.l_' i~ 1 pyk - * -1 2
TAE LA A AN IK]U(/ Pf]
Ml 2 ol
" Kl f!fl <K

Case 2: IonK =0 or K = KneG,,H(IO). Then

|1<| (@ P /= P f))* =0

Case 3. 3my 3K,€G, ,(I) with K, oK A VK661, IT0),
K, K # @ =>K, = K. By the construction of (h mj) we get the following:

(1) hmjlk = const for my = m—1.
@ [RE;<IKI2™™ for m=m
k

3) [hwy=0 for m=my+1.
k

Now we estimate as in Section O.

ProrosiTioN 3. Let 4 be a collection of dyadic intervals so that

) lo| =0.
@ supl]”t ¥ U=
led

Jeh

81

Then for any ¢, >0 and 9, < 1, # can be decomposed into #* and #* so that

Jor jell,2) we have

(1) #= U o,

(2) o/ are ﬁmre and pairwise disjoint.
and

“““““ M 2w (1=g).

4) For any o and any Ie./{ we have
U uJ=ne2.

12h+1 Je. x/

6 - Studin Mathematicn LXXXV

(3) Any /] contains a dyadic interval 1 such thar G*,(I) < ] for p < k
V) D
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Proof. Define o,=1{: [I|=2""1Te#}), d,=Ul:Tea,}, 1,

&,,. We will repeatedly use the following two observations:

I
§C8

n

(1) o= a G &, which implies (by the hypothesis on o) that | U 0
n=1 m=n m=n

tends to zero when n goes to infinity.

k
(@ If supll|™* ¥ |J|= oo then for 4, =%\ ) o, we also have

Te® Jednl m=0

1
sup— ». M=o,
Tady lII Sy nl
We start the iteration with
Step 0. Set mg = 0, 0o = [0, 1], then find m; e N such that [ty | < § and
MI

set B, =%\ U o,
m=0

Step 1. Find Ie 4, such that

1 1

= | Z—
Illls.a%nl | 1=y

Then apply Lemma 1 and the Remark after Definition 2. We get I e 4,

such that )
X
JeGy 4 Uy)

Then choose m, € N so large that J € Gy (I;) implie:2lJ| > 2 "2 and such that
my

12y (l—ey).

for Ie | o, we get |t,,| <[Il/2. Set #, =4\ U 0, Now we continue
m=0 m=mq i
and arrive at

Step n. First find Ie4, such that
n

1 ]
Y Wiz

m Jedy,nl Yn '

Again apply Lemma 1 and the Remark after Definition 2 to get I, .4, such

that .
T x

¢
JeG," Ty

IJ] = yn(l "'l;n)'

Then choose m,.,e N such that

(D IeGn () = |1 =27"""
"l"

2 Ie Y o=t < )/2.
m=1

M 1
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Summing up, we have:
mp=-1
D= U 05 (e is a partition of #;
JEmp—g
Ay = ol

and .%1 =1 U&{)},
k

AR =lyyy and  HB2= U2
k

So by construction, (1)~(3) are satisfied and we only have to check (4).
Set j=1. Fix keN, and choose I¢ .o},

o0
IN U U= =g = I11/2.
I=k+1 Jaof]

For j =2 we get the same estimate.

Prool of Theorem 1, part (b). The proof is divided into two steps:

(1) By using mainly property (4) of Proposition 3, we show that X is
isomorphic to a complemented subspace of (3 Hu)y. o

(2) By using properties (4) and (3) of Proposition 3 and the Main
Lemma 2 we show that X contains a complemented subspace isomorphic to
X Ha)s

Then, using the fact that ()" H}),; is isomorphic to its I! sum, we apply
Pelczyniski’s decomposition method, and are done.

Choose ¢, >0 and y, <1 such that

1—47% <y (1—g).

Take the partition of # as obtained before. Put X, = span {k;: Ie /,} and
X =span {h;: Ie#} and let P_; be the natural projection from H! onto

span{h;: e} Take feX. We first show that
i

() S g > D IP Fllys + 1Pz F e
3 [3
To do so we first observe that

21N g1 2 1P g1 Sl g1 +11P 2 Sl -

Take gespan (b Te#'). Define G.= U

J.
.Iewflj(
[S@ = [(Z( T, a?ht)"
K Tedi
2 172
= ;(’5’% 4 Xx\j;}‘)ﬂc;j)
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>4Y (%, atx)"*  (by (4) of Prop. 3)
k

Tes)

=330 Sl

For gespan {h;: Ie #*! the same estimate holds. Thus we have verified (x).
To factor the identity on X over (3, H,); we first find a sequence n,
such that

X, cH,

and define
it X = Hi)y o [ =Py Mo
P (CHN =X, ()= Py fi

By the calculation above, we get Pri =idy and ||i]|‘||P|| < C. On the other
hand we factor the identity on (3, H}), over X. Using property (3) of .o/, we
see, by the Main Lemma 2, that there exist

in: H"; e X/n Pn: X~ lll(Hlll)
such that iy * P, i, =idy1 and |ji,J|-|liy* P,J| < 4. Then define:

Ji (Z HI})[I - X, (f;v)nsN - Zin.ﬁn
(ZHllv)ll’ f"’(":rlpnf,naN'

Proof of Theorem 1, part (c). Define Coo = {le.4: I maximal!. By
a standard approximation argument we assume that Cyo is finite. For g

= Y h, we obtain
1eCpo

P: X —

Yo < B0l < Yp0.17-
We set 5(0) = inf{|l]: I€Cyo}. 4o denotes a covering of [0, 1] by intervals
of length §(0). Consider the vector measure

[0, 11— R B (End, [Enenll; [e Ay).

As an application of Lyapunov's theorem we get for &, > 0 a natural number
ky and disjoint sets E,q, E;, in &y, such that
EuVE, =[O0, 1],

(1 —e)lo] S [Ey | S $(1+2y)|ol,

(=e)llnol <Eynl) < M1+e) N,

jell, 2},
Jjeil, 2}, le A,.
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At stage n we are given E,; in &~ Define C,
={les I <E, 1 maximal}, We assume C,; to be finite. For By = Sk
IeCy;

we obtain
Xanl:',,,- ’s Ihni' s- XEru"

We set (n) =inf {|I]: IeC,;). A, denotes a covering of E,; by intervals of
length &(n). Consider the vector measure
W By =R E(Endl, [Encnll; Ied,).

As an application of Lyapunov’s theorem we get for ¢,4; > 0 a natural
number ky.y, disjoint sets E,.; 3, Eysyq 4, in 84,41 such that

Eni12iUE, s 3141 < By,

l—g . 1+e

o 2“-1 lEnll S"brﬂ-l.zwj‘ <— 2"+1 lEnil, js {l, 2}7
1~"{:n - 1+8n .
w”ij"—l'”ma.l<IE11+1,21+101]< 2+1umalv _]E{],z}, IGA,,.

This finishes the induction and we see that Y= hy: neN,0<i< 2"~ 1} is
a subspace of X which (by Theorem 0) is isomorphic to H'(d) and °
complemented in H!(d).

Remark. Due to the fact that the orthogonal projections we use are
bounded in I?, we obtain by interpolation between H!(3) and I? (cf. [2]) the
result of [4] for p < 2. Our projections can be dualized and this proves the
result of [4] for x >p > 2.

2. General martingale H'. In this section we will give a necessary and
sufficient condition on (.#,) such that H'((#,) is isomorphic to H*(5). We
thus prove a conjecture of B. Maurey.

DeFINITION. 4] = {J {B: B is an atom in #; A P(B) <¢},

A% = N | 4.
e>0kaN

Tueorem 2. H'((%,)) is linearly isomorphic to H'(8) if and only if
P(A%) > 0,

Proof. We first show that P(A®) > 0 is a sufficient condition. By the
theorem of Maurey it is enough to find a complemented subspace in
H'((#,)) which is isomorphic to H* (J).

Step 1. Observe that (@ " A%, &, P) is a nonatomic measure space.
Fix a sequence (s) such that [](1+s) <15. For ¢ >0 find ke N and
Agoe Fy, Such that Agy > A® and P(dgg'A™) < &,. Set Coo = {B: B atom
in # and B < Ago).
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Step 2. Apply Lyapunov’s theorem to the measure
u (4%, #)~ R, E—(P(E), P(BNE); BeCoo)

and obtain, for ¢, > 0, disjoint sets A,,, A;; and a natural number k; > kg
such that

(1) Ay, Ay1€F,, and AjpU Ay < Ago.

() P(4;;nB)R P(A® B)2, jel0, 1}, BeCyy.

(3) P(Ay) R P(A™)/2, jel0, 1}.
We define the “Haar function™:

(P(BmA‘”

haoo= X 2P(BA,

BeCoo

P(B NA ‘”)
xAlonB ZP(BGA )XAHAB
We continue and arrive at
Srep n. We are given A, in #, and C, = !B: B< A, A B atom in
. Define a vector measure

g (A% Ay, F)— R E S (P(E), P(BAE); BeC,).

As an application of Lyapunov's theorem we get, for a given &, ,, disjoint
sets A,+1,2i» Ans1,2041 and a natural number k,., such that

(D) Apse,20 Aner,ir1 €Fp, . A0d Ayyy 00U Apsyzieg < Ay

(D P(Ays1,204) 3P (AN A), jel0, 1},

3 P(An+1,2i+jnB)B”+21P(B NA%®), BeCy, jei0, 1}.
We use these sets to define

oy ( _PBoAnH
" Begy NP (Ayyy,z N B) A 120
P(BnA®)
_2P(An+l.2i+1 nB) XA"H’ZHlmB).

The subspace Y= span tha,: neN,0<i<2"~1} is isomorphic to H'(9)
and complemented in H* ({: %.)) Indeed a glance at the construction shows
that the (h,,) satisfy the conditions in Theorem 0.

To show that P(4%) >0 is a necessary condition, we prove simply that
P(4%) =0 implies that * does not embed in H'((.%,)).

Let ¢; be equivalent to the unit vector basis of 12 in H! (). ¢ tends to

zero in the o (H', BMO) topology. By taking a subsequence if necessary, we
may suppose that for any sequence (A,)

IZ 4 el s, = 31 A2 lel2 ()" apo).

We claim that for some & > 0 the numbers P(E(e; > 8)), P(E(¢; < —9)) tend
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to zero as i tends to infinity. Indeed, choose #el)#, such that
A, BeH, A% B=>ANB=@, and cyeR, Be,, such that

Z C XB-

By the hypothesis on e, sup P(B) tends to zero as i tends to infinity.
Be 3,

& AEe;>8 =

‘Therefore by the hypothesis on A® which says that the union of small
atoms is small, the claim is verified. So we can suppose (by taking a
subscquence) that
P(E(le)? >5)\l U 1E(|€a|2 > 8)) >$P(E(lef* > 8)).
=
We put everything together and estimate as in the proof of Theorem 1, part
(b):

"=,

Cy J(F A led?)
C, f(z AP lel? XE(e| >5))1l2 —C, (Z '1;'2)1/2
Cy Y|l =Cy 0 (T 22)%;

>
=
=

a contradiction.

3. Examples of badly complemented H: spaces in H*(5). In this section
we construct isometric copies of H! in H!. We isolate properties of
embeddings i,: H} — H' which cause the norm of projections onto i,(H}) to
be large (cf. Theorem 3, part (a)).

These properties are in extreme contrast to those which cause a copy of
H} o be "nicely” complemented (cf. Theorem 3, part (b)). Hence Theorem 3
sheds some light on the ideas behind the proofs in the previous sections.

Construction. Fix nyeN. E,; denotes a tree in [0, 1] such that |E]
=2"" C, denotes a collection of dyadic intervals such that

(a) I, JeCy, 1+ J implies I nJ = Q.

(b) U I:Enl'
TaC'y
Define
Hm' == Z hla
TaCyy
Y,, =span fy: n <ng, 0<j <2~ 1],

It is casily seen that Hy, — H*, hy— hy, is an isometry onto Y,,.
Turorim 3. Fix nyeN.
(a) If Jor anv (m, j), (n, 1),
from H'(38) onto Y,

1€Cyy, JeCy, I =J implies m <n, then, for

any projection we have ”Pno” Tz\/ﬁg

no
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(b) If
Eprr.u=E(Q Il =1) and

[

Enr 2041 =E(CZ b= "1)

then there exists a projection P, from H(8) onto Y., such that ||P,| <4.

Remark. We prove Theorem 3, part (a), without using Bourgain’s result
on projections onto the image of order-inverting embeddings in H'. The
concrete (and specialized) situation above allows a different (and simple)
proof which “lives” entirely in BMO.

Condition (b) connects the tree E,; strongly with C, and is, in fact, the
exact opposite of property (a).

Proof. Let P, be a projection from Hjo onto Y,,. Arguing as in [1],

p. 49, there exists a linear map ¢,,: BMO,, - BMO such that

ho
CHE Inoll g o mmongy IF < /211 Pagfl,
(%) &g M €spAN hy: IeCyl,
Let Q,; denote {IeCy: |€, k| >3). For

Z % by

1eCy;

n<ng.

‘fno by =

we get, by the special form of C,,
Qm‘ = ”EC";: Izl! > b}'

Now define:
no 2n- -1
B = U U Qm‘a hn= Z hnl:
n=0 (=0 i=0
2n,1 . .
‘ Rn = U U Ia Sn = [Os IJ\RM M= “gn_olll:,, (BMO,, )”
(=0 IeQy 0 0
and for & take 1/(2M).
Cramm 1.

1
sups= > |J| = (1/M —8)*n,.
Iawm.lsmnl

Proof of Clajm 1. Take any a,eR. Then

1 "0
7 a2 < ”,.‘S‘o oy Eng |
no no

SIE, s ] S s

n=0
"o

< sup|a,|-sup (—1— > IJI)WM(Z “5)1/2'

III Je#nI n=Q

icm
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Thus we obtain

(5 )

) 1 12
/M =6)"= < sup (— J) ~
1/ sup [, igg(illasz;nzl |

This last estimate proves Claim 1.
Cram 2. There exists a sequence j(n), 0 < J(n) < 2"—1, n < ny, such that

Ei 2.0 Epjn>...D E"o-i("ol

and such that for

1o
of = {) On.jm
n=1

we have

1
sup— 3 |J] = (1/M—8)2n,.
'

lﬁ"‘/II, Jeo/m

Proof of Claim 2. By the hypothesis on (C,) we may assume that
there exist j(ng) and Ig€Chg jingy SUCh that ’

Y W= 4/M—8)2n,.

Lol Jednlg

(nos j(no)) defines uniquely a sequence of nested dyadic intervals (E,jom) Which

contain  E,  ju)- Again, by the hypothesis on Cy»

Loy =Ly v
Tl e, =10

g nml.leIonQ,,,j(,,)

and this proves Claim 2.

Now we come back to the proof of Theorem 3(a). Take Io < By jng
and (n, j(n), n < n,, as obtained in Claim 2. We will now estimate
> Ehnjonllamos ¢ = &ngs from below. .

1 2
HZ ‘Ehn,j(u)“l%MO Z o J‘ (Z fhn.j(nl —(Z fhn,j(n))lo)
’IO| Ip n n
1 2 1 . 2
= f (Z 5hn.i(m) = T I Z(Chn.j(n))
A Tol 75
1 38
ey ! Z Z h,zo([z

|10| Tgm=11<Cy ym
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] fo?

SN

|IO| n 1€Q, i

Ielg
> T >R UM=0Pn.

Tl e

1<l

On the other hand we get:
o
” Zl hn.j(n)”BMO $ 4
Hence
Hzéh"vf "’H 5 ]‘\)2,_”
IZ hn J(n)” §4 0

is an isometry and () we obtain the estimate & 24

[1Pyoll = HEINNE =

Using the fact that i,
and consequently ||P,|l > fzng'*.

Part (b) is a special case of Theorem 0. The estimate [P, | <4 follows
from the calculations in this special case.
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Continuous factorizations of covariance
operators and Gaussian processes

by
G, LITTLE (Manchester) and E. DETTWEILER (Ttibingen)

Abstract. A bounded linear operator Q e L(E', E), defined on the dual E’ of a Banach space
E with values in E, is called a covariance operator if Q is positive, symmetric and compact. If E
is separable, such an operator Q is always of the form Q = To T* where T is a bounded linear
operator from the Hilbert space 1? into E. The following theorem is proved. Let P_(E) denote
the set of all covariance operators. Then there is a universal map T from P,(E) into L(I%, E)
such that Q = T'(Q)o T(Q)* for all Qe P (E) and such that T is continuous, if P,(Ej and
L(I%, E) are equipped e.g, with the norm topology, Roughly speaking, it is always possible to
make a continuous choice of “square roots” for a given continuous family of covariance
operators. This pure functional analytic thcorem has the following application to probability
theory. If (g,),s is & continuously indexed family of Gaussian measures on a separable Banach
space E (continuous relative to the topology of weak convergence of probability measures), then
there is always a Gaussian process (X,),.s associated with the family (g,),.s Which is e.g. mean
square continuous.

1. Introduction. A (centered) Gaussian measure ¢ on a real separable
Banach space E is usually defined as a probability measure on E such that
all one-dimensional projections of ¢ are normal distributions with mean zero.
It follows that the Fourier transform §: E'— C, defined on the dual E' of E,
is given by

o(f)= GXP(—%IQ $x, [ 0(dx)

for all feE'. Hence ¢ is uniquely determined by the bilinear form
[x®xg(dx) on E x k', defined by

(fx®@xaWx)(f, g) = [ oS> <x, gdeldx)

r E

for all f, gk’ Since for a Gaussian measure we always have []|x|* ¢ (dx)
< w0, it follows that the bilinear form [x ® x¢(dx) is given by a continuous
linear operator Q: E'— E, where

@fig>= [, f>¢x gdedn)  (f geE).
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