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On the convergence of Laplace~Beltrami operators
associated to quasiregular mappings *
by
RICCARDO DE ARCANGELIS and PATRIZIA DONATO** (Naples)

Abstract. We prove that if (f}) is a sequence of K-quasiregular mappings converging to fin
I, whose jacobians satisfy a weak integrability condition, then the solutions of the Laplace-
Beltrami operators associated to each f,, which are degenerate elliptic, converge to the solution
of the Laplace-Beltrami operator associated to f; A class of weighted Sobolev spaces associated
to quasiconformal mappings is also studied.

§ 0. Introduction. Let R", n > 2, be the Euclidean space of n-tuples x
=(Xy, ..., X,) of real numbers and let Q, be an open set in R".

For every f =(f1,...,/™ in (HL"Qo))" we denote by [D,f(x)] the
matrix [Dy, f/(x)], i,j=1,..., n (here Dy, f7(x) = (8f/x)(x)) and set

n

J(x, f) = determinant of D, f(x), |D.(x,f) =( Y (Dy S (x))z)m-

ij=

In the following, when clear from the context, we will write D instead of
D, and }, instead of E:' -t

If fe(HEM(Q0)) with J(x,f) #0 ae. in €, it is possible to define a
“Laplace-Beltrami” operator
0.1) Aj‘ = '—ZDi (aij(x:f)Dj)

ij

whose coefficient matrix is symmetric in 2, and given by

02) Lai; (e, )] = J Cx, Y [Df (x)' - Df ()] 1.
If f & (Hi;"(Q0))" and K > 1 we say that f is K-quasiregular on £, (see for
a general exposition [BI]) if

(0.3) ID(x, )" < Kn"2J(x,f) ae. in .

* Work performed as part of a National Research Project supported by M.P.I. (40%,
1983).
** Authors are members of G.N.AF.A-C.NR.


GUEST


190 R. De Arcangelis and P. Donato

Observe that the inequality
(04) n"2 J(x, f) <

holds for every fe(Hu(R0))"

For every nonconstant K-quasiregular mapping f, J(x, f) is different
from zero ae. (see [BI], Th. 7.2) and the coefficients of the associated
Laplace-Beltrami operator 4, satisfy the inequality

(0.5) CEI J (e, )Pz < Zarj(x=f)zizj e (%, )P
ij

for ae. x in @, and for every zeR",

1D (x, )"

ae. in Qp

where cg = (K +./K2~—1)¥n=in

Let us consider a sequence of nonconstant K-quasxregular functions (fy)
converging in I}, (Q,) to a function f and bounded in (HLAQ.))". Observe
that under these assumptions f is still K-quasiregular by a result of
Reshetnyak ([R1], [R2]).

Assume that f is nonconstant. For Q € Q, set

Fy(u, Q) = {Ya;(x, ) DjuD;judx, Fu, Q)= j'ZaU(x,f)Di uDjudx.
2ij nij

In a paper of 1974 ([S2]) S. Spagnolo, assuming that for every compact
set S in Q,

0<ps' < [J(x, fi)dx < ps
S

J(x,fh)l—zl" S
proved that 4, converge to 4; in Q, in the sense that (see [S1], [DG S]) for
every Q € Q, and ge H™'(Q) the minimum points of F(u, Q)+ {g, u)> in
H§(Q) converge in I?(2) to the minimum point in the same space of F(u, £)
+4g, ud.

In dimension 2 the result of Spagnolo is exhaustive enough since the
Laplace-Beltrami operators are uniformly elliptic with ellipticity constants
independent of h.

In higher dimensions the Laplace—Beltrami operators degenerate in a
natural way (even satisfying J(x, f}) # 0 a.e. in Q). Spagnolo also suggested
in [S2] a deeper study of that case.

In 1978 C. Sbordone ([Sb]) extended the result of Spagnolo allowing to
take such degeneracy into account in some cases. He proved that for every
Q €Q, the minimum points of F,(u, 2)+ (g, u)> in a suitable weighted
Sobolev space, with g in the dual of this space, converge in I!(Q) to the
minimum point of the functional F(u, Q)+ (g, #> under the assumption

0.7) J(x, fi)l 2" < Aw(x) heN,
with ||| < Q(RQ) for every Q €Q, and p> 2n~1.

for every b if n=2,
(0.6

0<ps! ps ae. in § for every h if n> 2,

0<wkx)<

+lw

ae. in 0,

LP(y LP(y

icm®

Convergence of Laplace-Beltrami operators 191

In this paper we prove, using techniques different from those of the
above authors, that (see Th. 3.4) the same result about the convergence of
minimum points still holds under the assumption (0.7) if simply w and w™?
are in I}, (Qo), f, and f being nonconstant by (0.7).

By strengthening the hypotheses on (f,) it is possible to get an
analogous result under weaker hypotheses on w. More precisely, recalling
that a K-quasiregular mapping f on €, is said to be K-quasiconformal on Q,
if it is a homeomorphism, it will be sufficient to assume (see Th. 3.5) that (f;)
is a sequence of K-quasiconformal mappings satisfying (0.7) with we I . (Qo)
and no assumption on w~*, (f;) converging to f in I}, (). Observe that
under these hypotheses it can be proved that f is K-quasiconformal (see
[Gel], [Cr]).

The above problem, with the hypothesis of K-quasiconformality of f;,
requires the study of a particular class of weighted Sobolev spaces; this study
will be done in Section 2. '

The techniques we use in this paper are techniques of I'-convergence (see
§ 1 for the definition) and the results described above will be deduced in
Section 3 from some theorems about the I'-convergence of the functionals
F,. We point out anyway that for K-quasiconformal mappings the result
could also be deduced more directly via the results of Section 2.

We refer to [BIK] and [IK] for stability problems for more general
differential equations associated to quasiregular mappings, but considered
from a different point of view.

We wish to thank Professor B. Bojarski for some interesting discussions
about quasiregular mappings theory.

§ 1. Preliminaries.

I. We recall the following result of Reshetnyak ([R1], [R2]).

ProrosirioNn 1.1. Given a function ¢eCQ(Q) consider the following
Sfunctionals on (H™(Q))":

@ f— iJ(x,f) P (x)dx, = (1D, NI |p(x)] dx)!".
2

Then o is weakly continuous and B is weakly lower semicontinuous and
uniformly convex.

We now recall some properties of quasiregular and quasiconformal
mappings.

Prorosirion 1.2. Let f be a nonconstant: K-quasiregular mapping on Q.
Then:

1) J(x,/)#0 ae in Q, (see [BI], Th. 7.2).

(2) f is differentiable a.e. in Qy and the chain rule holds, ie. for every
eC (f(Q0), pofe H&,J‘(Qo) and

n k
‘”‘"o”(wz 2 2(7)

o (see [BI], Th. 5.3 and Lemma 9.6).
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(3) f maps sets of measure zero into sets of measure zero (see [B1], Th.
8.1).

If further f is K-quasiconformal on Q, then:

(4) £~ is K" '-quasiconformal on f(Q;) (see [BI], Th. 9.1).

(5) s, N1 = [Dy(f (0. /Y] ae. in Q.

(6) For every ue L*(R") and Q € Q,
fu(f ) (x, fdx = { u(y)dy (see [BI], Th. 84).

[l

Q
We now state the following result on the -integrability for quasiregular
mappings (see [B], [BI], [Ge2], [G M]).
TueoreMm 1.3. Let f be K-quasiregular on Q,. Then there exists P
=p(n, K) > n depending only on n and K such that f is in (Hr(@0))"
Moreover, for every compact subset S of Q € Q, the estimate

¢(n, p, K) 7 n

holds with c(n, p, K) independent of f, S and Q.
Given a quasiregular mapping f denote by U, the algebraic complement
of ¢f*/0x; in the jacobian matrix D(x, f). Obviously we have

q‘s
Uy = ;au(&f)é;;-
Hence by Lemma 1.9 of [B I] we have (see also [Ci2])
(1.1) —ZDi(qj(x,f)Djf‘) =0 in Q.
i

Given a sequence (f,) of K-quasiconformal mappings on £,, bounded in
(Hi(Q0))" and converging to a function Sfin L}, (2,), from Theorem 1.3 and
the Sobolev embedding theorem it follows that the convergence holds
uniformly on compact subsets of Q. Then by a result of Gehring (see [Gel]
and {Cr]) the following property holds.

ProposITION 14, Let (f,) be a sequence of K-quasiconformal mappings on
Qo, bounded in (Hy(Qo))" and converging to a function fin B (Q). Thenfis
either a constant or a K-quasiconformal mapping.

Remark 1.5 Under the assumptions of Proposition 1.4 if we assume
that (0.7) holds then by Proposition 1.1 the limit function f cannot be a
constant.

II. We now pass to the definition of I'-convergence; we refer to [DG F]
and [DG] for complete references.

Let (U, 1) be a topological space satisfying the first countability axiom
and let F,, F (heN) be extended-valued functionals on U.
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DeriniTION 1.6. We say that
F(w) =TI (¢) lim F,(v) for every ueU

h=o
v=u

if and only if
(i) for every ue U and for every v, ~u

F(u) < liminf F, (vy),
h-ro0

(i) for every ue U there exists a sequence (up), up~ru, such that

F(u) = lim Fy(u,).
h— o

The following theorem holds (see [DG F7).
Treorem L.7. Let (F,) be a sequence of equicoercive functionals defined on
U, ie. for every real number ¢ there exists a compact K, in U such that
{ueU: Fy(w) <c} =K, for every heN. Assume further that
Fu=TI"(t)lim F,(v), wueU.
h— o

Then F has a minimum in U and

Min F (v) = lim Inf F,(v).

vel h— 0 vel
Further, if () is a sequence such that u, —u and
lim (F, (uy) —Inf F;,(v)) = 0
h—w vell

then
F(u) = Min F (v).

vel

In the following we will be concerned with functionals of the type
{ DZU a;j(x, f)D;uD;udx where u is a locally Lipschitz function (ueLip), f
Is a K-quasiregular mapping on Q, and Q € Q.

Let (f) be a sequence of K-quasiregular functions on Q. If Q€
define

~h . aij(x:fh) if XEQI,

12 () = {5”. if xeR"—Q,.
Then from (0.5) it follows that

(13) e (T 2y () 2 g, (0) 121 < 2807z

< e (06 /) " xq, (x)+)(R,,_n1 (x))|z1*> for ae. x in R" zeR".
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The following result is a particular case of a theorem due to L. Carbone
and C. Sbordone ([CSb]).

THEOREM 1.8. Given a sequence of nonconstant K-quasiregular mappings
(f) on Qq, set d; as in (1.2). Then if

J, W< ay(x)  ae. in Q,

with
lim fa,(x)dx = ja (x)dx

h=oo Q

Jor every Q € Qy,

there exists a subsequence (h)1co and a symmetric matrix [a;] satisfying

(14) 0<Y a;(x)zz; <a(x)|z2l®> x-ae in R, for every ze R",
7
such that
[T () DyuDjudx = I~ (Mo(®) lim |3 s (x) D vD; vdx
0ij rew 0 ij

I~ (C3(Q)) lim jZa 7(x) D;vD;vdx

reo Qij
v

Jor every bounded open set Q in R", uelLip,,.

Here we have denoted by M (€) the topology of convergence in measure
and by C$(Q) the one induced by the extended-valued metric

d(u, v) = {‘T;UHCO@ vea,

In particular, from Theorem 1.8 it follows that

(1.5) (Y a;(x)D;uD;udx =T~ (M, Q)) 11rn jZa (%, £3,) Dy vD;vdx

Qij

if supp(u—
otherwise,

U-‘u

=TI (C(Q) lim |3 ay(x, fy) D; vD;vdx
r—o 0 ij

for every Q € Q, and ueLipy,.

§2. A class of weighted Sobolev spaces. Let 22 be a bounded open set
whose closure is contained in Q,. For any positive function w in ! (2) define
I2(Q, w) as the space of all measurable functions such that

1
4l 2qg,,,, = (42 w(x) )"
(]
is finite.

Denote by G,(Q) the set of n-tuples of functions » = (vy, ..., v,) such

that there exists a function u in C§(R) with v = Du, i.. v is the gradient of u.

icm
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Define H5(Q, w) as the closure of Go(R) in (I2(£2, w))", denote by H™ (22, w)
its dual and by ¢, -> the duality among them.

Since w(x) >0 ae. in Q, a sequence of functions in G4(2) which is a
Cauchy sequence in (I(Q, w))" has a unique limit in (Z(Q, w))".

Observe that, in general, H3(Q, w) is only a closed subspace of
(2(@, w)".

If w, w™! are in I} (Q) it is known that H}(Q, w) < H} ().

If fis K-quasiconformal on Q,, from (5) of Proposition 1.2 it follows
that

(2.1) Ty (f), f7Y) = (b6 )
Further, it is easy to verify that for every ze R"
(22 MNP < D(x, f) 2 < el (x, )" |2)?

where ¢ is independent of z and x.

From now on in this section, set w(x) = J(x, /)*~%"; in the case n =2
this gives w(x) =1; we will set in this case w""~?(x) = 1.

The following Poincaré type inequality holds.

ae. in Q,.

x-a.e. in Q,

ProposiTioN 2.1. Let f be a K-quasiconformal mapping on Q, and let
Q €Q,. Then there exists a constant ¢ = c(n, Q, K) such that for every u in
C(Q)

[ w(x)""=2dx < ¢ [|Dul* w(x)dx
2 2
Proof. Let ue C§(£) and set U(y) =u(f ' (»), yef(2). By (2.1), (2.2),

Proposition 1.2 and the Poincaré inequality it follows that U is in H§(f (£2))
and

[IDcu(x) T (x, )}~ 2" dx
2]

= 1Ip(r

2c [ ID,UG)dy >
S

IO S) Dy U QNI 00, f) "2 dy

¢ | UpPdy=c; [u(x)?>J(x,f)dx. u
sin 2

From Proposition 2.1 it follows that if an n-tuple v is the limit in
(I2(R, w))" of two different sequences (Doj}) and (Dg}), then (¢)) and (¢}) are
converging sequences and they converge to the same measurable function in
(LZ (,Q, Wn/(n— 2)))n.

This implies that to each n-tuple v in H} (2, w) it is possible to associate
uniquely a function u for which v can be considered the “gradient”.

In the following we will say that a measurable function u is in H} (2, w)
if there exists a sequence (¢,) in C}(Q) such that (¢,) converges to u in
measure and (Dg,) is a Cauchy sequence in (IZ(Q, w))".
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Hence the continuous embedding H}(Q, w) = I? (2, w"*"~ %) holds.
The above considerations imply the following corollary.
CoOROLLARY 22. Let f be a K-quasiconformal mapping on , and let
Q €8,. Then there exists a constant ¢ = c(n, 2, K) such that for every u in
H§(Q, w)

[u?w(x)""" 2 dx < ¢ [[Du* w(x) dx.

2 fe]

It is known (see [BI], Sec. 9.2) that the operator defined by (f, v)(x)
= v(f(x)) is an isomorphism between H{"(f(2)) and Hy"(Q) provided f: Q
- f(Q) is quasiconformal and in (H™(Q))"

In the same order of ideas it is possible to give a characterization of
HE(f () in terms of H§(RQ, w).

ProrosITION 2.3. Given a K-quasiconformal mapping f on Q, let Q € Q,.
Then a function u is in H§(Q, w) if and only if the function U =uof~ ' isin
Hi(f(Q)). Moreover, there exists a constant ¢ independent of u such that

e Hiullgream < NUNgigen < cllvllaicow
23) 0! 0 0
c! ”u“LZ(Q’wn/(n—Z)) < ||U“Lz(f(m) < c“"”LZm,w"/("“Z))'

Proof. First suppose that u is in C}(€). By (2) of Proposition 1.2 it
follows that wojf~' is in H§(f()); further, from the definition of
quasiconformality, (2.2) and the chain rule it follows that there exists a
positive constant ¢ independent of u such that (2.3) holds for u in C}(R).

Suppose now that u is in H§(Q, w) and let (u,) = C}(R) be a sequence
converging to u in H{(Q, w). Define U, =u,o0f"!; then from the above
considerations it follows that (U,) is a sequence in H§(f(Q)) which is a
Cauchy sequence in this space and in I*(f(€)).

By (3) of Proposition 1.2 and the pointwise convergence of u,(x) to u(x)
ae. in Q we have U,(y) »u(f~*(y)) ae. in f(Q). Therefore uof~* is in
H§(f(£)) and, by standard approximation arguments, (2.3) follows for every
u in H§(Q, w).

Suppose now that U is in C§(f(%). First of all observe that
supp(Uof) Q. Let () be a sequence of Lipschitz functions converging to
fin (H'"(Q)" and let peCP(R), 0 <@ <1, o=1 in a neighbourhood
I of supp(Uo f) such that I € Q.

By (2) of Proposition 1.2 we can write for every h

(2.4) £|D(¢(Uou//,,))~D(Uof)|zw(x)dx
< 2{}[II(DfP)(UO'/lh)—(Dfp)(UOf)IZW(X)dx

+£ID(UO'Wh)—D(UOf)I2W(x)dX+ [leD (U of)=D(U o f)* w(x)dx}.
2

icm®
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From the chain rule and the K-quasiconformality of f it follows that

JID(U oY) —D(U o f)*w(x)dx

2

(2.5)

11Dy Ul (1Dt Do 1" ([ (™ =20

+ [Py U s(9)=D, U (f ()2 I (x, £)dx.

Therefore by (2.4) and (2.5) we have

31_{n ‘j?[D(<p(Uow,,))~D(U of)Fw(x)dx =0.

Hence Uofis in Hy (R, w) by the definition of H(Q, w) and (2.3) holds
for U in C§(f(Q). Again using an approximation argument we can prove
that if U is in H§(f () then Uofis in H5(R, w) and (2.3) holds for U in
Hy(f(Q). =

Denote by M (£2) the space of measurable functions on 2 endowed with
the usual topology. We have

CoroLLARY 24. Under the assumptions of Proposition 2.3 the embedding
of H{(Q, w) in My(Q) is compact.
Proof. Let (u,) be a bounded sequence in H}(Q, w). From Proposition
23 and Rellich’s theorem it follows that there exist a subsequence (1) and a
function U in Hy(f (©)) such that U, =u, of ™' converge to U in I (f ().
Then, by (3) of Proposition 12, (u,) converges in measure to u=Uof
which is in H3(Q, w) by Proposition 2.3. m
§ 3. The convergence results.
1. Let (f,) be a sequence of nonconstant K-quasiregular functions on £,
satisfying
(1) ﬁl - f il'l L}oc (Qo),
@) iy < Q@) for every 2 € Qo.

Let Q, be as in (1.2). From (3.1) (ii) and the K-quasiregularity of each f,
it follows that there exists a subsequence (f,) of (f) such that

(6.2 J(x, fy)' " —~a(x)t
Choosing

3.1)

weakly in I~ 2(Q,).

@, (x) = T (%, f5)' 72" 10y (X)+ X g g, (%)

by virtue of (3.2) we are under the hypotheses of Theorem 1.8. We get the
existence of a subsequence of (k) (still denoted by (h,)) and of a symmetric
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matrix [a;(x)] such that

(33) (Y a;(x)D;uDjudx =TI~

i

(L) lim [ a;(x, f,) D; vD;vdx
roaw 0 ij

for every u in Lip,., @ open subset of Q.

LemMa 3.1. Let (f}) be a sequence of nonconstant K-quasiregular functions
on Qq satisfying (3.1) and let (f,) be a subsequence for which (3.3) holds. Then

[ Y a;() Dy f*D; f*dx = lim fZa,j X, f,,)D T Dy S dx
[o207] reoo @i
Jors=1,...,n
Proof. In order to prove (34) we first observe that from Holder's
inequality it follows that for every Q €,

{2, a;(x, fi) DyuDyudx < ex [J (x, fi)t =" | Du)? dx
)

2ij

(34

< ox( [0 f ) =2 [1Dul"dx)?.

Hence the functionals (IOZ a;(x, fy) DyuD;udx)'* are equilipschitzian
in H'"(Q). Therefore arguing as in [MSb] (Proposmon 3.2) it follows that

(3.5) § Y a;(x) D;uDjudx = I'" ([*(€)) im {2 ay(x, /o) Dy vDjvdx
2ij r—reo ij
vu

for every Q = Q,, u in H"(Q).
For s fixed in {1,..., n} set for simplicity u, = fin, u=f* and a,,(x)
= ay(x, f,,). Then (1.1), wrltten with u, instead of f, holds. Further, u, — u in

‘Lloc( 1)
Let (v,) be a sequence in H'"(Q;) such that v,—u in I*(,) and

lim [ 3 af;(x)D;v,D;v,dx = | Y a;(x) D;ub;udx.
re g i 00
Let Q' €Qq and ¢eC§(R,) be such that 0< ¢
for every t€]0, 1[

{ 2 a0 Dyu, Dyu, dx

<1, ¢=1in Q; then

2 i
< Qf Za{j(x)Di ((pv,+(1—(p)u,)Dj((pv,+(1~(p)u,)dx
y i
Jzau(x){ (D (p)(U r)+ ((PD;U,.'{"(I (P)Diur)}
1

'{;(Dj(/l)(vr r)+ ((PDJU +(1- (P)Dj“)}

icm
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1
<t f z atrj (x) {?(Dl (P) (v,—u,)} {% (D} (P) (vr_ur)} dx

0, i)

+(1-1) jZa,J(x){ (quv+(l @) D; u)}

2y i

X{TI:;(wD,-vr+(1—<p)D,.u,)}dx
4 [ 7 (e o)~ Df o, dx
2

1
iy jZa,,(x)D v, D; u,gadx+—-— { ¥ af;(x) D;u, Dju,(1— ) dx.
1- !21 ij 1- !21 ij
Then we have

(1—9) | Y a5(x) Dyu, Dyu,dx

Q14

<—nD¢uLm(,,l, =l rg j J(x, i) dx) 2

+ [ Y a&;(x) Dy, Djv, @ dx+ | Y af;(x) Dyu, Dju, (1—¢)dx,
o ij 2 ij
that is,
[Zau(x)D v Djvpdx 2 jZa,j(x)D uDju, (1 —t—1+¢)dx
Q1 ij Qi

——— ]|D¢||mel) ” ’“L"(supp(p)(éi; J(x, j;'r) dx)l—Zl’l.

Hence, passing to the limit as r — oo,

fZa,,(x)DiuD udx = limsup [ 3 af;(x) D;u, Dyu, (0 —1t)dx.
Qp ij rew 0 i
Therefore if ¢t — 0
| 2. a;(x) DyuDjudx = limsup | 3. af;(x) D;u, Dju, @ dx
T T
> liminf |} af;(x) D; u, D;u,dx > J"Za,j(x)D uDjudx.
rew 7 if .

From these inequalities, since Q' is an arbitrary open subset of 2, (3.4)
follows. w
THEoREM 3.2. Let (f,) be a sequence of nonconstant K-quasiregular
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Junctions on Qg satisfying (3.1). Then f is K-quasiregular on Q4 and if f is
nonconstant
[Y a;(x, /) DyuDjudx = '™ (L} (Q))}}im ¥ a;(x, f) D;vD; vdx,

— 0 Q|
Qij o J

whereas if f is constant

0=1TI"(L'(Q) im {3 a;(x,f)D;vD;vdx
h=wo 05

Jor every Q €Qy, ueLip,.

Proof. The K-quasiregularity of f on Q, follows from Proposition 1.1.

Since we are going to identify the I-limit of the sequence
(j‘nzwaﬂj(x, S DiuDjudx) we can assume that in (3.2), (3.4) and (3.5) the
convergence of the whole sequences holds.

As in the previous Lemma 3.1 set u,=f;, u=/% s=1,..., n, and
afi(x) = a;(x, fi). As usal let Q, € Q.

If

v v
®= 3 kxa» A open, meas (2 — ) 4)=0,4 >0,
i=1

i=1
from (3.5) it follows that
(3.6) liminf [} afi(x)D;u, Dy pdx > Y a;;(x) D; uD;ug dx.
ko 0y ij [ 7]
Further, it is easy to show that (3.6) still holds if @ isin CO(b:), 0 =0,
since such functions can be approximated in C° (2,) by functions of the type

Ziv=1 Ai ;-

Actually, for every ¢ in C°(Q,) equality holds in (3.6). In fact, for a
subsequence (h,)

37  lim IZa,{'j’(x)Diu,,rDjuhrgadx=J P(¥)du(x)  VoeeC(Q;)
1

ro0 0 ij

where, by Theorem 1.3, u is a positive absolutely continuous measure. There-
fore if ¢ > 0, from (3.6) it follows that

(3.8) | 3 a;(x) D;uDjugp dx < [ @(x)du(x).
9, 9j 2

Let S be a measul;able subset of Q; and let () = C° (51—) be such that

O (x) - x5(x) ae. in Q,. Then from (3.8) and the Lebesgue theorem it follows
that

(3.9) Y a;;(x) D;uD;udx < fdu(x).
5% 5
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On the other hand, from (3.7) and Lemma 3.1 we deduce that
(3.10) [ 20 (x) DyuDjudx = | du(x).
T, &
Then from (3.9) and (3.10) it follows that equality holds in (3.9), hence
the Radon-Nikodym derivative of y equals Zi ey () Dyu(x)D;u(x) ae. in Q,.
Therefore we have for the whole sequence .
(3.11) lim { Y af(x) D,u,D;uy pdx = | ¥ a,;(x) D,uD;ue dx
h—oo Q ij 21 i
for every peC°(R,).
Recall that in our hypotheses we have

(3.12)
Zaij(x,ﬁ,)D,-ﬁ,’(x)D}f,f(x) =J(x,f4),s ae in Q, r,s=1,..., n
1

From the symmetry of the matrix [g (6, W1 (11), (3.12) and
Proposition 1.1 we get
(313) [ Ya;()D, fD; ffpdx = hlim § a0, ) Dy fi D, ff o dx

a0 —e0 Gy ij

= lim j. J(x’ﬁu)(srs(/)dx = I J(x’f)5rslpdx
h~w gy 2
where peC§(Q,), r,s=1,...,n
Therefore if f is nonconstant, J(x, f) # 0 a.e. in Q, and, passing to the
Lebesgue points in (3.13), we have

a;(x) = a(x, f)  ae in Q.

Since @, is arbitrary, the above equality holds ae. in €.

If f is constant the assertion follows from (3.5), Lemma 3.1 and the
nonnegativity of the functionals. w

. In this part we prove the main results of our paper. We will need the
following lemma which can be proved by the same arguments as for
Proposition 3.2 in [M Sb].

Lemma 3.3. Assume that the hypotheses of Theorem 3.2 hold and suppose
Jurther that for a function we I}, (Qo) with w™ e I . (20)

0w I, )< AW(X) ae in Q,, A>1, heN.
Then

{2 ay(x, /) DiuDjudx = I'" (B () im {Y ai;(x, fi) D;vD,v dx
27

h—w 9 jj

Jor every Q € Q, and u in H§(RQ, w).

Tueorem 34. Let (f}) be a sequence of K-quasiregular mappings on Qo
converging in L. () to a function f. If w is a nonnegative function on Q, such
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that w, w™ e B (Qo) and

(314 0<w)<J(e, )L Aw (x)
then f is K-qudsiregular on Q, and satisfies
315 0w < J (6 ) < Aw(x)

Further, for every Q € Qq and for every ge H™*(Q, w) the solutions of the
problems

ae. in Q5 A= 1, heN,

a.e. in Q.

Min | Y a;(x, f) D;vDjvdx+<g, v}
usﬂé(n,w) Qij
converge in I} (Q) to the solution of the problem
3.17) Min [Y a;(x,f) D;vD;vdx+<g, v).

very(2w 2 Y

(3.16)

Proof. The K-quasiregularity of f and (3.15) follow from Proposition
1.1. Further, (3.15) implies that f is nonconstant. From Lemma 3.3 and the
compact embedding of H5(Q, w) in I'(Q) it is easily verified that

(318)  [Yay(x,f) DiuDyudx+ (g, up
o'l
=I"(Z(Q) lim [ ay(x, ) D;vDyvdx+ g, v)
]

for every Q € 2y, u in H}(Q, w) and ge H™*(Q, w). At this point we only
have to observe that the functionals in (3.18) are equicoercive in the topology
I}(Q). Hence the assertion follows from Theorem 1.7. m

Let us now prove that if the functions f, are K-quasiconformal, the only
hypothesis that w is in I} (Q,) is sufficient to guarantee a convergence of the
solutions of problems (3.16) to the solution of problem (3.17).

THeOREM 3.5. Let (f)) be a sequence of K-quasiconformal mappings on Q,
converging in I3,.(Qo) to a function f. If w is a positive function on Q, such that

(319) O<wX)<KI(x, "< Aw(x) ae in Qy, A= 1, heN,
then f is K-quasiconformal on Q, and satisfies
(3.20) 0<w(x) < J(x, N < Aw(x)

Further, for every Q € Qq and for every g in H™*(Q, w) the solutions of
the problems

ae. in Q.

Min [¥ a;(x, £) D, vD,vdx+ {g, v}
veHi(am 24

icm
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converge in Mo (Q) to the solution of the problem
Min (¥ a;(x,f)D; vD;vdx+ (g, v).
veHy(0,w) @ U

Proof. The K-quasiconformality of f and (3.20) follow from (3.19),
Proposition 14, Remark 1.5 and Proposition 1.1. Hence it is not restrictive
to assume that w(x) = J (x, f)1 2",

As in Lemma 3.3 and in the first part of the proof of Theorem 3.4, by
Corollary 2.4, it is easily verified that

(3.21) f}l:a,j(x,f)Di uD;udx+{g, ud
o'

=TI (Mo (@) lim | ¥a;(x, fi) DivDvdx + g, v
~0 0
for every Q € Qo, ue H{(Q, w), ge H™ (R, w). At this point we only have to
observe that by Corollary 2.4 the functionals in (3.21) are equicoercive in the
topology M, (Q). Hence the assertion follows from Theorem 1.7. m
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Improper integrals of distributions
by
RYSZARD WAWAK (Warszawa)

Abstract. We introduce a space of functions with bounded variation on R" and call its dual
space the space of improper integrable distributions. This definition turns out to be a
generalization of the classical Schwartz definition of integrable distributions and of the definition
of improper integrals for Li,, functions. We also define the improper convolution of
distributions,

In this paper we define improper integrals for distributions. This is a
slight modification of the definitions of Sikorski [15] and Musielak [9] and a
generalization of the classical Schwartz definition. This modification allowed
us to prove a representation theorem. The class of distributions having
improper integrals turns out to be the dual space of a space which can be
called a space of functions with bounded variation in R".

We also define the convolution of two distributions using the notion of
improper integral. This definition is more general than the classical Schwartz
definition of convolution. We show that the exchange formula is still valid
for the wider definition of convolution.

0. Notation, definitions and basic facts. We employ the usual notation of
the theory of distributions. We denote by 4,, s, for ke Ny, = {0, 1, ...} the
seminorms in the spaces 2(R") and #(R"), ie.

d(p)= Y, sup|D*q| for e CF(R"),

|| €k
si(0) = Y sup|l+|x»*D*a(x)| for ae F(R".

la| Sk
For every compact K < R" and every ke Ny, 9, (K) denotes the space C%(K)
with topology given by the norm di; % (R") is the space of all e C*(R") with
s (0) < + o0, with topology given by s;. %, (K), &% (R") are their dual spaces.
The Fourier transform and inverse Fourier transform are denoted by
and “ 7" ie.

G0 =@2m) " fo(x)e"™dx for oe F(RY.

If f is a function on R" we define f as the function satisfying J(x) =

LGAM
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