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Some results on the convergence of weighted sums of
random elements in separable Banach spaces

by

XIANG CHEN WANG (Changchun) and
M. BHASKARA RAO* (Sheffield and Pittsburgh, Penn.)

Abstract. Let X,, n> 1, be a sequence of random elements taking values in a separable
Banach space, 4,, n> 1, a sequence of real random variables and an, n21, k=1, a double
array of real numbers. Under some conditions, we show that Y1 am Ay Xy, n > 1, converges to
0 in the mean if and only if Y4s, @ f(4X,), n>1, converges to 0 in probability for every
continuous linear functional f from the Banach space to the real line (Section 3). The main result
in Section 3 unifies many results in the literature on the convergence of weighted sums of
sequences of random elements. In Section 4, results on strong convergence are established.
Marcinkiewicz-Zygmund-Kolmogorov’s ‘and Brunk-Chung’s Strong Laws of Large Numbers
are extended to separable Banach spaces. Using a certain stability theorem, a general result on
strong convergence for weighted sums is proved from which many results in the literature follow
as special cases under much less restrictive conditions.

1. Introduction. This paper is devoted to a study of limit theorems for
weighted sums of sequences of random elements in separable Banach spaces.
Section 2 presents some preliminaries needed in the subsequent sections.
Section 3 concentrates on the convergence in probability and convergence in
the mean of weighted sums of random elements. Let X,, n> 1, be a sequence
of random elements defined on some probability space (2, #, P) taking
values in a separable Banach space B, 4,, n > 1, a sequence of real random
variables defined on Q and ay, n> 1, k > 1, a double array of real numbers.
Under some conditions, we show that Y5, a4, Xy, 13> 1, converges to 0
in the mean if and only if Y5, a, f(4.X,), n= 1 converges to 0 in
probability for every continuous linear functional f from B to the real line
R (Theorem 3.3). This result unifies many results in the literature on the
underlying theme of Theorem 3.3. Moreover, the conditions imposed in
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Theorem 3.3 are weaker than those imposed in the results whose unification
is the main goal of Theorem 3.3.

Section 4 deals with strong convergence. A result of Rohatgi [19,
Theorem 2, p. 306] on the almost sure convergence of weighted sums of
sequences of real random variables is extended to cover random variables
taking values in separable Banach spaces. Marcinkiewicz-Zygmund—Kolmo-
gorov’s and Brunk—Chung’s Strong Laws of Large Numbers are extended to
separable Banach spaces. Finally, in this section we use a certain stability
theorem to establish a strong limit theorem for weighted sums of random
elements in separable normed linear spaces from which some results of
Padgett and Taylor [17] and of Wei and Taylor [30] follow under much
weaker conditions.

Hoffmann-J¢rgensen and Pisier [10, Theorem 2.4, p. 592] proved a
Weak Law of Large Numbers for a sequence X,, n =1, of Banach space
valued random variables under the following condition: “Given ¢ > 0 there
exists a compact subset C of the Banach space such that

PoIXlldP <e
. -Tald]

for every n > 1.” Taylor [24, Theorem 2] also imposed the above condition
to prove a Strong Law of Large Numbers. He also observed that the above
condition is implied by the conditions that X,, n3> 1, is uniformly tight and
that E||X,J|” < K, a constanL, for every n > 1 for some p > 1. In Section 2,
we show that the above condition is equivalent to the conditions that X w1
2 1, is uniformly tight and that ||X,]|, n > 1, is uniformly integrable. Further,
in Section 3, we point out that the Weak Law of Large Numbers due to
Hoffmann-Jgrgensen and Pisier [10, Theorem 2.4, p. 592] is a special casé of
Theorem 3.3.

2. Preliminaries. Let B be a separable normed linear space equipped
with a norm ||-|l. The Borel o-field on B is the smallest o-lield on B
containing all closed subsets of B, and the sets in this o-field are called Borel
sets. Let (2, i) be a Borel structure, i.e, # is a o-field on Q. A map X from
Q to B is called a random element if it is measurable, ie., X" '(G)=#% for
every Borel subset G of B. If B = R, the real line, random elements are called
random variables.

A subset C of B is said to be torally bounded if for every r > 0 there
exists a finite number of points X1, X3, ..., X, in B such that
C < Ul Otx;, r), where O(x,, 1) is an open ball in B with centre at x, and
radius r. If B is a Banach space, a subset C of B is compact if and only if
C is totally bounded and closed.

Let (2, 4, P) be a probability space. A sequence X,, n = 1, of random
elements defined on Q taking values in B is said to be uniformly tight (pre-
tight) if for every & > 0 there exists a compact (totally bounded Borel) subset
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C of B such that P |X,eC*} <¢ for every n> 1. A sequence X,, n> 1, of
random variables defined on Q is said to be uniformly absolutely continuous if
for every & > 0 there exists § >0 such that [41X,dP <¢ for every nx 1
whenever Ae 4 and P(d) <4. X, n> 1, is said to be uniformly integrable if
X,, n> 1, is uniformly absolutely continuous and sup,sE|X,| < cc.

The following definition plays an important role in some of the limit
theorems in Section 3.

Derinimion 2.1. Let X, n > 1, be a sequence of random elements defined
on a probability space (22, 4, P) taking values in a separable normed linear
space B and r>0. X,, n>1, is said to be compactly (pre-compactly)
uniformly r-th-order integrable if for every ¢ >0 there exists a compact
(totally bounded Borel) subset C of B such that

| IXJ"dP <e for every n>1.
X,eC

The following lemma relates the above notions with other known ideas.

Lemma 2.2. Let X, n > 1, be a sequence of random elements defined on a
probability space (Q, 4, P) taking values in a separable Banach space B. Let
r>0. In the following, (i) and (i) are equivalent, and (ii) implies (iii).

M) (@) X,, n=1, is uniformly tight.

(b) IX,|I", n= 1, is uniformly absolutely continuous.

(i) X, n=1, is compactly uniformly r-th-order integrable.

@) IX", n =1, is uniformly integrable.

Proof The implications (i)=-(ii) = (iii) and (ii)= (i)(b) are easy to
establish. We show that (ii) = (i)(a). Let & > 0.

By (ii), for each i > 1, there exists a compact subset K; of B such that

JIXI"dP < ef(i2)
X7
for every n> 1. We have P{X,e(K;n[0(0, 1/})]%)} <¢/2 for every n>1
and this inequality follows from
1/ P (X,e(KfN[0(0,1/)]9)) < f 1| dP
KEnLO(0,1/0]¢

< [IXrap,
i

where O(0, 1/i) denotes the open ball in B with centre at 0 and radius 1/i.
Observe that, since K; is a totally bounded subset of B, K; U 0(0, 1/i) can be
covered by a finite number of open balls in B each with radius 1/i. Let

K= () (Ku0(, 1))
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It now follows that K is a totally bounded subset of B. Since B is a complete
metric space, K, the closure of K in B, is compact. Note also that
P{X,eK} < P{X,eK)< Y ¢/2=¢
iz1
for every n> 1. This proves that X,, n > 1, is uniformly tight.

Remarks. (i) If B = R, the real line, then (i}-(iii) of Lemma 2.2 are
equivalent. The uniform tightness of X,, n> 1, follows from sup,,, E|X,["
< co. (Use Chebyshev's inequality.)

(ii) In the case when B is a separable normed linear space, Lemma 2.2 is
still valid if we replace uniform tightness in (i) (a) by uniform pre-tightness
and compactness in (i) by pre-compactness.

(ii) The implication (iii) = (i) is not true. A simple example is given by B
=1, the space of all summable sequences (x,, x,, ...) of real numbers with
norm {|(x;, X3, .. | =Y 451 1%, and X, = (0,0, ..., 1, 0, ...) with probability
1 for every n>1, where in the above vector 1 occurs in the nth place,
Trivially, [|X,/], n3 1, is uniformly integrable but X,, n > 1, is not uniformly
tight.

There are other notions related to the uniform integrability of a sequen-
ce of random variables. One such notion is: 4 sequence X,, n > 1, of random
variables is said to be uniformly bounded by a random variable X if

P{X, >a} < P{X|>a}

for every n>1 and a> 0. The following lemma gives the connection
between uniform boundedness and uniform integrability.

LemMma 2.3. Let X,, n> 1, be a sequence of random variables. In the
Jollowing, (a)=>(b) and (c)=-(d).

(@) sup,»1 E|X,[F < o0 for some r > 0.

(b) There exists a nonnegative random variable X on Q such that EX®
<0 for every 0<s<r and X,, n> 1, is uniformly bounded by X.

(©) X,, n21, is uniformly bounded by a random variable X on @ and
E|X|" < oo for some r > 0,

(d) 1X.", n> 1, is uniformly integrable.

Proof. See Wang and Bhaskara Rao [28].

Now we need some notions and results from functional analysis. Let B*
denote the dual of B, i.e, B* is the space of all continuous linear functionals
from B to R. A subset B, of B* is said to be toral if f(x) =0 for every f in
B, fqr some x in B implies x = 0. The weak*-topology in B* is described by
defining convergence in B* as follows: a net Ju» @ed, in B* is said to
converge to an element [ in B* if f,, aed, converges to f pointwise, i.e.,
lim,, , Jo(x) =f(x) for every x in B. In this connection, we quote the
following result from Kelley and Namioka [12, Theorem 16.5, p. 142].
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LemMa 24. Let B be a separable Banach space and B, a total subset of
B*. Let S(B,) be the linear span of By. Then S(B,) is weak*-dense in B*.

LemMMA 2.5. Let B be a separable Banach space. A convex subset of B* is
weak*-closed in B* if and only if it is sequentially weak*-closed in B*.

See exercise 16 of Dunford and Schwartz [9, p. 437].

A Banach space B is said to admit a Schauder basis if there exists a
sequence b,, n > 1, in B with the following property: for every x in B, there
exists a hnique sequence t,, n = 1, of real numbers such that x = Z,,;l tyb,.
For each n> 1 let f,(x) =1t,, xeB. f, is called the n-th-coordinate functional
on B and is a continuous linear functional on B. For each n > 1, the n-th
partial sum operator U, from B to B is defined by

Uu) = ¥ b xeB.

U,, n> 1, is a sequence of continuous linear operators from B to B satisfying
lim, ., U,(x) = x for every x in B. Also, for each n> 1, the n-th residual
operator Q, from B to B is defined by Q,(x) = x— U, (x) for every x in B. Q,,
nz 1, is a sequence of continuous linear operators from B to B satisfying
lim,.,Q,(x) =0 for every x in B.

3. Convergence in probability and mean convergence. If X is a random
element defined on a probability space (2, #, P) taking values in a separable
normed linear space B and A4 is a real random variable defined on Q, one
can show that AX is a random element (see Taylor [23, p. 24]). If X,, n> 1,
is a sequence of random elements, 4,, n>1, is a sequence of random
variables and a,, n>1, k=1, is a double array of real numbers, we"
examine, in this section, under what conditions the sequence

Y ap A X, nx>1,
k> 1
converges to 0 in probability. Specifically, we want to characterize the above
convergence in terms of convergence to O in probability of the sequence
Z Ay f(A X)), n=1,
k=1
for every continuous linear functional f from B to R. Theorem 3.3 provides
such a characterization. We need the following results in the proof of
Theorem 3.3.
Lemma 3.1, Let C be a compact subset of a Banach space B and T,, n > 1,
a sequence of continuous linear operators from B into a Banach space F
converging pointwise to a continuous linear operator T from B to F. Then T,
n> 1, converges to T uniformly on C.
Taylor and Wei [27, Lemma 5, p. 154] established the above result in
the special case when B is a Banach space admitting a Schauder basis b,,
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n21, and the sequence T,, n> 1, is the sequence Q,, n > 1, of residual
operators associated with the basis b,, n > 1. Their proof can be adapted to
prove the above lemma.

Lemma 3.2. Let B be a Banach space admitting a Schauder basis b,, n
> 1. Let Q, t>1, be the sequence of residual operators associated with the
basis b,, n > 1. Let X,, n> 1, be a sequence of random elements defined on q
probability space (2, #, P) taking values in B such that X,, n 2 1, is compact-
ly uniformly r-th-order integrable for some r > 0. Then .

lim sup E||Q, (X,)|I" = 0.
t=o0 nl

Proof. See Wang and Bhaskara Rao [29].

Tueorem 3.3. Let X,, n> 1, be a sequence of random elements taking
values in a separable Banach space B such that X,, nx 1, is compactly
uniformly r-th-order integrable for some r > 1. Let ay, n2 1, k> 1, be a
double array of real numbers and A,, n>1, a sequence of real random
variables satisfying

(3.1) Z (Gl (B | A= D)= 0ir <
k21

Jor every n = 1 for some positive constant I'. Let B 1 be any total subset of the
dual space B* of B. Then the following statements are equivalent:

() 3 awg(4 X,), n> 1, converges to 0 in probability for every g in B, .

k21

(i) E| Y, aug(AcX),n> 1, converges to 0 for every g in B,.
k21

() Y auf(AX), n>1, converges to () in probability for every fin B*.

k=21

(iv) El}; aw [ (A X)), n =1, converges to 0 for every f in B*.
. k21
) k; au Ay Xy, n2 1, converges to 0 in probability,
(vi) EHkZ aw A Xl|, n = 1, converges to 0.
z1

If Ay and || X, are independently distributed for each k > L, X,nz1,is
compactly uniformly first-order integrable and

G2 .§ laul El4) < T
1

Jor every n = 1 for some positive constant T, then the statements (i)~(vi) above
are also equivalent.

P“roof. The proof is carried out in the following steps.

1°. We prove the first part of the above theorem. We show that
Yu>1 4w Ay X, converges ae[P] in B for every n> 1. For every n 1, by
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Hélder’s inequality, we have

(33) Z Iankl E”Ak X,‘H < Z ,a”kl (E”Xk”r)llr(E IAk'r/(r—l))(r— 1/r
k=1 k=1
<SUP(EIXINY T lawd (E |4yl e 0
k21 Kz 1
< I'(sup E|| X1
k21

<ow, by Lemma 2.2.

Since B is a complete metric space, it follows that Yu>10u A X, converges
ae[P] in B for every n > 1. See Chung [8, (xii), p. 42].

2°. Let Y, =451 Ay A X4, n > 1. We show that || Y, n > 1, is uniform-
ly integrable. From (3.3), it follows that sup,», E||Y,]| <. Let Ac#. By
Holder’s inequality, for every n> 1

[IYHdP < [ 3 law!l|4x X/l dP
A k=1

A

<Y laul (JIIXr dP) ([l agle=D apy 10
k21 A A

< T land (B4 D)= 00 ([, dP)".
kz1 A

Thus the uniform absolute continuity of ||Y,||, n > 1, follows from that of

|IX.I", n =1, and the assumption (3.1). The uniform integrability of ||X,)I",

nz 1, follows from Lemma 2.2.

3% Since ||Y,[l, » > 1, is uniformly integrable, Y,, n > 1, converges to 0 in
probability if and only if ¥,, n> 1, converges to 0 in the mean, i.e, E||Y)j, n
2 1, converges to 0 (see Chung [8, Theorem 4.54, p. 97]). The equivalence
of (v) and (vi) is thus established. The equivalence of (i) and (ii) and that of
(iii) and (iv) can be shown in a similar vein. '

4°. We prove (ii) = (iv). Let S(B,) be the linear span of B;. Obviously,
(i) holds for every g in S(B,). Let

B, = {feB*; E|Y. auf(AxX))|, n> 1, converges to 0].
=1

B; is a convex subset of B*. We show that B, is sequentially weak*-closed in
B*. Let g,,, m= 1, be a sequence in B, converging to some f in B* in the
weak*-topology of B*. We show that feB,. By Theorem I1.3.6 of Dunford
and Schwartz [9, p. 60], there exists a positive constant I', such that
llgwll € I’y for every m>=1 and ||f|| < I'y. Let ¢ >0. Since X, n>1, is
compactly uniformly rth-order integrable, there exists a compact subset C of
B such that ‘

(34) | (] IXrdP)" <efarry)

{XyeC®)
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for every n > 1. Without loss of generality, assume that Qe C. Define for each
nzl1
_jx, if X,eC, v
Un= {o if Xx,ec:, "n=%—Us

From (3.4), for every n>1, we have

(33) EIVINT =( | 1XrdP)" <efdarry).

(XyeC
For the compact set C chosen above, by Lemma 3.1, there exists mq > 1 such
that

(3-6) |~ (Ux W) < e/(4D)

for every w in Q and k > 1 whenever m > my. Also, by (ii), there exists ne =1
such that

(37) E|Y. tuGmg (A X)| < /4
k=1

whenever n > ny. So, if n> ny then

E Ik; au f (A X,)| < E Ik; O (f~Gme) (A X,)| + E |k§1 Uk Gimgy (Ai X )|
< k; 12l E1 4 (f—gmo) (XN +6/4, by (3.7)
< k_/; (il E| Ay (f~Gmg) (U]
+ g,l (@] E| Ak (F = gimg) (V)| + /4
<[e/(4D)] k}/;,l (0l E| 4y +28/4

+ k; 1aul (B (S~ Gumg) (V)" (E | 4= D)= rr,

by (3.6) and H&lder’s inequality
<[e/4)] T+
FE/A+ 1S~ Gmoll L la] (E|| VI (E |4yt~ Dy,
k21
by (3.1)
< &f4+¢/4

2 [6/ATT1)] 3 lad (E| A7)0 =20 by (3.5)
k=1

<e&/4+ef2+8/d =g, by (3.).

icm®
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This shows that fe B, and that B, is sequentially weak*-closed in B*. By
Lemma 2.5, B, is weak*-closed in B*. Since B, = S(B,), by Lemma 24, B,
= B* This establishes (iv).

5° Now, we prove (iv) = (vi). Since every separable Banach space B can
be embedded isometric isomorphically onto a closed subspace of C [0, 1], the
Banach space of all real-valued continuous functions defined on the unit
interval [0, 1] equipped with the supremum norm, we can assume, without
loss of generality, that each X, takes values in C[0, 1] (see Semadeni [20,
Theorem 8.7.2, p. 157]). C [0, 1] admits a Schauder basis b,, n > 1. Let f;,
t21, U, t>1, and Q,, t > 1, be the sequences of coordinate functionals,
partial sum operators and residual operators respectively associated with the
basis b,, n>1. Let ¢ > 0. By Lemma 3.2, there exists t, > 1 such that

(3.8) (ENQ, (X" <&/2D)

for every k= 1. By (iv), there exists ng = 1 such that

(39) E| Y aufi(4Xad| <e/21bdlto)
k21

for t=1,2,..., ts, whenever n> n,. So, if n > n, then
E|Y tu A Xo = E[JUs (T A X + Qug (S ame i X,
k=1 k=1 k>1

H)
SE|Y AT an A X)b| + X lawl ENQ,, (A X
t=1 k21 k21 .

to
< Y E| Y anfi(AcXD| 161+ Y laul Ell4c Qi (X
=1 k=1 k=1

k=

<62+ 3 lamd (E Qi (XN (E|Ayl70 1) b,
k21
by (3.9) and Holder’s inequality
<8/24 [6/20)] 3, |awl (E14J7C™ =D by (3.8)
k=1

<¢/2+¢/2=¢, by (31).

Hence E|[Yy51 au Ai Xif|, n > 1, converges to 0.

6°. The implication (vi)=+(ii) is obvious.

7°. We now come to the second part of the theorem. If 4, and || X,|| are
independent random variables for each n 2 1, the equivalence of (i}{vi) can
be shown essentially in the same way as above. We use the fact that
E|d, Xl = (E|ANE|X,) for every nz=1 instead of the inequality
E(lA, X,J| < (E||XJINM(E|A4,7 )= in the proof given above.

This completes the proof of the theorem. :
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Using the argument given above, one can establish the following result,

TueorEM 34. The conclusion of Theorem 3.3 is valid with A, X, replaced
by A, X,—EA, X,.

The above two theorems have the following analogues in the context of
separable normed linear spaces.

CoroLLARY 3.5. (a) Let X,, n2 1, be a sequence of random elements
taking values in a separable normed linear space B such that X,, n = 1, is pre-
compactly uniformly r-th-order integrable for some r > 1. Let ay, n 2 1, k > 1,
be a double array of real numbers and A,, n > 1, be a sequence of real random
variahles satisfving (3.1} of Theorem 3.3. Assume that i1t Ay X, converges
a.e[P] in B for every nz 1. Then (iii)~(vi) of Theorem 3.3 are equivalent,

(b) If 4, and ||X,|| are independent random variables for each k > 1, X,,
n1, is pre-compactly uniformly first-order integrable, ¥ s ay Ay X, con-
verges a.e[ P] in B for every n > 1 and (3.1) of Theorem 3.3 is replaced by the
condition that

Z IanklEIAkl < r
k21

Jor every n 2 1 for some positive constant I, then (iii)}-(vi) of Theorem 3.3 are
equivalent.

Proof. Let B be the completion of B. The sequence X,, n > 1, can now
be assumed taking values in B. Observe that X,, n3> 1, is compactly
uniformly rth-order or first-order, as the case may be, integrable in B.
Theorem 3.3 is now applicable to the sequence X,, n > 1. Note also that B*
and B* are isometrically isomorphic.

Remarks. The above results generalize the following results in the
literature.

(1) Taylor and Padgett [26, Theorem 2.5, p. 233] proved the equivalence
of (i) and (v) of Theorem 3.3 under the following conditions. (a) B admits a
Schauder basis. (b) X, n > 1, is identically distributed. (c) E||X4|]" < o for
some r > 1. (d) ay, 1<k<n, n=1,is a triangular array of real numbers
satisfying lim, ., , a, = 0 for every k > 1 and Yyl < I* for every n> 1
for some positive constant I'*. (e) (3.1) of Theorem 3.3 holds. () EA, X,
=EA, X, for every nz1. () B, consists of all coordinate functionals
associated with the given Schauder basis of B. If X w N2 1, is identically
distributed and E||X,|" < 0, then, obviously, X,, n> 1, is compactly uni-
formly rth-order integrable.

Taylor and Padgett [26, Theorem 2.6, p- 235] also proved the equival-
ence of (iii) and (v) of Theorem 3.3 under the above conditions but the
condition that the separable Banach space B has a Schauder basis was
dropped. .

Theorem 2.3 of Taylor and Padgett [26, p. 231] is a special case of

icm®
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Theorem 3.3 (second part) if we take 4, = 1 for every n > 1. Theorem 2.4 of
[26, p. 232] also follows from the second part of Theorem 3.3.

(2) Wei and Taylor [31, Theorem 4, p. 285] proved the equivalence of
(iii) and (v) of Theorem 3.3 under the following conditions. (a) X,, n> 1, is
uniformly tight each with mean zero. (b) A4, =1 for every n>1. (¢
$upyz1 E[|X,/I" < oo for some r> 1. (d) Y5, |au < T for all n= 1 for some
positive constant I'. Note that, by Lemmas 2.2 and 23, X,, n>1, is
compactly uniformly first-order integrable.

(3) Taylor and Wei [27, Theorem 4, p. 153] proved the equivalence of (i)
and (jii) of Corollary 3.5 under the following conditions. (a) X,, n> 1, is
uniformly tight. (b) sup,»; E||X,J" <o for some r>1. (c) a, =1/n if
I<k<gn =0ifk>n foralnz1.(d) A, =1 for all n > 1. This result can
be deduced from Corollary 3.5.

Theorem 3.3 can be used to derive some Weak Laws of Large Numbers
for sequences of random elements taking values in a separable Banach space,
As an example, we give a result (Corollary 3.8) which generalizes Theorem
24 of Hoffmann-Jgrgensen and Pisier [10, p. 5927 from which a Weak Law
of Large Numbers follows. Before that, we observe the following.

ProrosiTion 3.6. Let X,, n > 1, be a sequence of random elements 1aking
values in a separable Banach space B such that X,, n =1, is uniformly tight
and || X |, n = 1, is uniformly absolutely continuous. Then X,—EX,, n 2 1, is
uniformly tight.

Proof. Taylor [23, Lemma 5.2.1, p. 121] established this result under
the stronger assumption that sup,>, E||X,/I" < v for some r > 1. This result
is also valid under the weaker assumption that ||X,||, n> 1, is uniformly
absolutely continuous and essentially, the same proof works.

Prorosimion 3.7. Let X, n2 1, be a sequence of random elements taking
values in a separable Banach space B. If X,, n = 1, is compactly uniformly r-
th-order integrable for some r = 1, then X,—EX,, n = 1, is compactly uniform-
ly r-th-order integrable.

Proof. By Proposition 3.6 and Lemma 2.2, X,—EX,, n > 1, is uniform-
ly tight. It is not difficult to see that || X,—EX,l, n=1, is uniformly
absolutely continuous. By Lemma 2.2, X,—EX,, n> 1, is compactly uni-
formly rth-order integrable.

CoroLLary 3.8, Let X,, n=1, he a sequence of pairwise independent
random elements taking values in a separable Banach space B such that X,, n
2 1, is compactly uniformly first-order integrable. Then

"
l Y (X—EX), n21,

converges to O in the mean.
ne .

Proof. By Proposition 3.7 and Lemma 2.2, f(X,—EX,), n21, is
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uniformly integrable for every f in B* By Theorem 3 of Wang and
Bhaskara Rao [28],

1 n
- Y f(X,—EX,), n>1, converges to 0 in the mean.
k=1

By the second part of Theorem 3.3, the assertion now follows.

The following result of Wang and Bhaskara Rao [29, Theorem 23] is
also a consequence of Theorem 3.3 above.

CoroLLAry 3.9. Let X,, n> 1, be a sequence of random elements taking
values in a separable Banach space B such that X, n=1, is compactly
uniformly r-th-order integrable for some r > 1. Let g, n2 1L, k21, be a
double array of real numbers satisfying

Z lawl < T

k21

Jor every n = 1 for some positive constant T'. Let B,

for < - be any total subset of the
ual space

of B. Then the following statements are equivalent :

(i E]g(; au X,)|'s n> 1, converges to O for every g in B,.
k=1

(D g(Y awXy), n=1, converges to 0 in probability for every g in B,.

k=1

(iii) E|f(,§ aw X,)[', n>= 1, converges to 0 for every f in B*.
51

(iv) 1{ Z au X), n> 1, converges to 0 in probability for every f in B*.
k=1

™ E[| Y awXy|, n=>1, converges to 0.
Kz 1

(vi) k§1 A Xy, 1> 1, converges to O in probability.

) Proof. From Theorem 3.3 it follows that (if), (iv) and (vi) are equivalent.
Using the uniform integrability of the sequence ||y, ay X", n=1, one
can show that (i) and (ii), (iii) and (iv), and (v) and (vi) are equivalent as in
steps 2° and 3° of Theorem 3.3.

3. Strong convergence. In this section, we establish some strong limit
theorems for weighted sums of random elements in separable Banach spaces.
Genera]izi.ng a result of Pruitt [18, Theorem 2, p. 769], Rohatgi [19
Theorem 2, p. 306] proved the following result. 1
THEOREM 4.1. Let X,, n>1, be a sequence of independent real random
variables uniformly bounded by a random variable X with E|X|'"*Vr < o0 for
somer>0. Let ay,n> 1, k> 1, be a double array of real numbers satisfying

icm®
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@ Y. lawl < T for every n2 1 for some positive constant I', and
k=1

(b)max|a,l =0(Mm"") as n— 0.
kz1
Then Y. an(X,—EX,), n>1, converges to 0 a.e[P].
k21

Some comments are in order on the above result. Rohatgi imposed an
additional condition that each EX, = 0. This is not necessary. We note that
X,—EX,, n =1, is uniformly bounded by |X|+ E|X|, and E(|X|+ E|X|)** "
< o0, Further, we observe that the above theorem for r > 1 is true under the
weaker assumption that X,, n> 1, is pairwise independent. Lemma 3 of
Pruitt [18, p. 773] is valid under the assumption of the pairwise independen-
ce of X,, n>1,if r > 1 and this ensures the validity of the above theorem
under the assumption of the pairwise independence of X,, n > 1, in this case.

The following result is an extension of the above result to separable
Banach spaces.

THEOREM 4.2. Let X,, n>1, be a sequence of uniformly tight random
elements taking values in a separable Banach space B such that || X,|l, n> 1, is
uniformly bounded by a real random variable X on Q satisfying E|X]**Y" < o0
for some r>0. Let ay, n=1, k=1, be a double array of real numbers
satisfying (a) and (b} of Theorem 4.1.

(@ If0<r<1 and X,, n>1, is independent, then

lim ¥ au(Xi—EX)=0 ae[P].

n—ookzx1
) If r=1 and X,, n=1, is pairwise independent, then
lim ), au(X,—EX)) =0 ae[P].

ntao k1

Proof. Assume, without loss of generality, that B admits a Schauder
basis b,, n=1. (Since every separable Banach space is a closed linear
subspace of C[0, 1], the Banach space of all real-valued continuous func-
tions on [0, 1], and C[0, 1] admits a Schauder basis, we can assume that
each X, takes values in C[0, 1]) Let Q,, n > 1, be the sequence of residual
operators associated with the basis b,, n > 1. There exists a positive constant
I'y such that ||Q,|| < I'y for every n>1 since Q,, n>1, converges to 0
pointwise on B (see Dunford and Schwartz [9, Theorem IL.3.6, p. 60]). Let
e>0. Since X,, n=>1, is uniformly tight and (|X,[, n> 1, is uniformly
bounded by an integrable random variable, by Lemmas 2.2 and 2.3, X, n
2 1, is compactly uniformly first-order integrable.

By Lemma 3.2 there exists to > 1 such that

(4.1) EjjQ, (Xl < &/(2D)
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for every n> 1 whenever t >t,. From (4.1), we note that

“2) kzl laul ENIQ (X —Q (EX < .;1 |l CENQ, (Xl + ENIQ, (EX)II]
< 2k§>]1 law] ENIQ (X

<2[e/2M]T =¢

for every n> 1 whenever t > t,.

Let f,, n =1, be the sequence of coordinate functionals associated with
the basis b,, n > 1. Let U,, n> 1, be the sequence of partial sum operators
associated with that basis. Note that || X,~EX,|, n> 1, is uniformly boun-
ded by |X|+E[X| with E(X|+E|X])'"" <co. For each k1, f,(X,
—EX,), n21, is uniformly bounded by ||Q,/|(X|+E|X]) with E[||Q, (X
+E|X|)]* " < x. By Theorem 4.1

to
43) Y |Y aufi(Xi—EX)|Ibdl, n =1, converges to 0 a.e[P], and
, X

i=1 k2

“4) k; laud (1@ (Xx— EX N~ EN1Q,o (X = EXPII), n> 1,

converges to O ae.[P].
Note that

”k; au (X, —EX)|| = III‘;1 e Uy (X —EX()+ kgl @ Q1o (X —EX|

‘o
= IIkZ1 Gu 3. [i(Xe—EXy) b,
= i=1

+ u; e Qo (X, “EXk)”

10
<YI|Y ankﬁ(Xk"EXk)“lbi“

i=1 k21
+ k; lam] (1Q1 (Xi— EX)ll = ENNQ, o (X, — EX,)I)
+ .;1 [l E11Qiq (Xx—EX ).
From (4.2)-(4.4), it follows that
lim sup || 2 aw(Xe—EX))| <& ae[P].
noroc kz1

Since ¢ > 0 is arbitrary, we have lim, .o, 3451 @ (Xy—EX,) = 0 a.e.[P]. This
completes the proof.

e ©
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Remarks. (1) In case B is only a separable normed linear space, the
above theorem is still valid under the additional assumptions that EX, exists
for every n.> 1 and that Zk; 1 4 (X — EX}) converges a.e.[P] for every n
=1

(2) Padgett and Taylor [16, Theorem 3, p. 395] established the conclu-
sion of the above theorem under the stronger conditions that X,, n> 1, is
independently identically distributed and that EX, = 0 for every n> 1.

(3) Theorem 5.1.3 of Taylor [23, p. 112] in the context of separable
normed linear spaces can be deduced from Theorem 4.2 above.

(4) Theorem 7 of Wei and Taylor [31, p. 288] is a special case of
Theorem 4.2 above (use Lemma 2.3).

(5) Theorem 3.2 of Bozorgnia and Bhaskara Rao [3, p. 433] also follows
from Theorem 4.2 above.

The following result used in the proof of Theorem 4.4 is a trivial
corollary of Theorem 4.2 above. See also Taylor and Wei [27, Theorem 1,
p. 151].

CoroLLARY 4.3. Let X,, n>1, be a sequence of pairwise independent
random elements taking values in a compact subset of a separable Banach
space. Then

l n
im ~ Y (X;—EX)=0 ae[P]
n=s o i=1

Now, we extend Marcinkiewicz—Zygmund-Kolmogorov's Strong Law of
Large Numbers and Brunk-Chung’s Strong Law of Large Numbers to
separable Banach spaces. For these results on the real line, see Chung [8,
p. 125], Chow and Teicher [6, Theorem 3, p. 333], Chung [8, p. 348] and
Brunk [4].

The following is an extension of these results.

TueOREM 44. Let X,, n> 1, be a sequence of independent uniformly tight
random elements taking values in a separable Banach space B such that {| X,
n =1, is uniformly absolutely continuous.

1
(@) If1<r<2and Y ’—;r»EHX,,H’ < ., then
nxt

lim | Y (X,—EX)=0 aelP].

nee x0Ty

[
O rz2 and ,2;1 i EIX,Jr < %, then
1 n
lim >~ Y (X,~EX)=0 aelP].

noer MY

4 - Studia Mathematica 86/
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Proof. First, we remark that, by Lemma 2.2, the uniform tightness and
uniform absolute continuity of ||X,ll, n>1, are jointly equivalent to the
condition that X,, n > 1, is compactly uniformly first-order integrable. Let
¢ > 0. There exists a compact, convex and symmetric subset C of B such that

4.5 { IX,ldP <¢
X,eC®}
for every n> 1. For each n> 1, let
Y = X, |if X,eC,
"0 if X,eC¢,
By (4.5), E||Z,]| <¢ for all n> 1. The SCquence Y,—EY,, n> 1, of random

elements takes values in the set C+C = {x+y; x, y yeC}. C+C is a compact
subset of B. By Corollary 4.3 above,

. Zn =Xn_“Yn'

1 h
lim Y (Y~EY)=0 ae[P].
n-+o0 i=1

We now prove (a). By C,-inequality and Jensen’s inequality,

2‘1 ENZN~ENZNMYr' < T 27 [ENZIf +ENZ )y Y

nz1

< ¥ 27HEIZI+ENZ,)1Yn

nz1
<2 ; (ENZry/n
<2 Y (EIXMYn < oo.
nz1
By Marcinkiewicz-Zygmund-Kolmogorov's theorem,

1 n
m - ‘);‘ (IZI~E|Zl) =0 ae[P].

Observe that for every n > 1

™ Zomxl <t £ i + o~ 3 2452
LS T EVRVED WIEY
<l 5 th-EWl+2~t $ B1z)
+n7! k}; (1Zll~ EllZ )

<[nt S h=EX)+ 224071 T (121~ EliZd).
k=1 k=1
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Consequently,

hmsup Z ~-EX))<0+2%+0 ae[P].

n-+oo

Since ¢ > 0 is arbitrary, it follows that

lim - Z (X, —EX,)=0 ae[P].
n—’m

The proof of (b) is analogous to that of (a).

Remark. The above theorem can also be proved using results of Wang
and Bhaskara Rao [29] and de Acosta [1]. By Theorem 24 of Wang and
Bhaskara Rao [29], n™* 3., (X,—EX,), n > 1, converges to 0 in probabili-
ty. By Theorem 3.2 of de Acosta [1, p. 159}, n” 'Y 1., (X, —EXY), n> 1,
converges to 0 a.e[P].

Also, compare Theorem 44 above with . Theorem 5.4 of Hoffmann-
Jgrgensen [11, p. 210].

Hoffmann-Jgrgensen [11, Theorem 5.4, p. 210] presented a result char-
acterizing Banach spaces for which Theorem 4.4(a) is true. More precisely,
bhe showed that B is of type p for some 1<p<2 if and only if
n~'Y . (X;—EX;), n> 1, converges to 0 ae[P] whenever X,,n> 1, is a
sequence of independent random elements taking values in B and satisfying
Yz 1 8 PE|IX,)IF < co. Theorem 4.4 above relaxes the geometric condition
imposed on the Banach space B in Theorem 5.4 of Hoffmann-Jgrgensen and
imposes an additional condition on the sequence X,,n>1, in that it is
compactly uniformly first-order integrable for the same conclusion to be
valid.

As a consequence of Theorem 4.4, we obtain the following result of
Taylor and Wei [27, Theorem 2, p. 152]. See also Kuelbs and Zinn [13,
Corollary 2, p. 80].

CorOLLARY 4.5, Let X,,n2> 1, be a sequence of independent uniformly
tight random elements taking values in a separable Banach space B such that
sup,s  E|X I < oo for some r> 1. Then '

14
lim ! Y (Xi—EX)=0 aelP].
nevx My ‘

Using a certain stability thecorem, we now establish a limit theorem for
sequences of weighted sums of random elements. This limit theorem general-
izes quite a number of limit theorems in the literature under much weaker
conditions.

THEOREM 4.6, Let X,, n =1, be a sequence of random elements taking
values in a separable normed lmear space B such that || X )|, n = 1, is uniformly
bounded hy a real random variable X satisfying E|X|" < oo for some r > 0. Let
p>max {r, 1) and g > 1 satisfy 1/p+1/qg=1. Let ay, 1 <k<n,n>1bea


GUEST


148 X. C. Wang and M. Bhaskara Rao

triangular array of real numbers satisfying
n
- limsup ¥ |ay/? < 0.

no k=1

Then
1 n
lim v Z a,,ka =0 ae[P]
n-oo N /r k=1

Proof. Observe that, by Hélder’s inequality, for every n > 1

1< - 1Xl)
;T/‘;k;l Qpy Xk” < k; Iankl"?’/r

- v [ & I XlIP VP
S(kg,l laul) (k; o .

Also, we note that 0 <r/p <1 and || X,||, k= 1, is uniformly bounded by
| X[ with E(|X]?)"? < c0. By the Stability Theorem [14, E, p. 387],

1y
lim 2 ¥ Xl =0 ae[P].
n—oe k=1

Since limsup ) |a,|? < oo, it follows that

n—o0 - g=g

n- o

. 1 n
im = 3 a,0X, =0  ael[P).
ntEy

The following result was established by Padgett and Taylor [17, Theo-
rem 3, p. 192] under the additional assumptions that X,, n =1, is indepen-
dently identically distributed with E|lXy|| <o and EX, = 0.

CoroLLARY 4.7. Let X,, n> 1, be a sequence of random elements taking
values in a separable normed linear space B such that XM, n =1, is uniformly
bounded by a real random variable X with E|X| <x. Let ay, 1 <k<n n
2 1, be a triangular array of real numbers satisfying

n

limsup ¥ a2 < oo,
[T TE

Then

"

Co 1
lim~ % a,X, =0 aelP].
)

n-x N2
Proof. In Theorem 4.6, take r = 1 and p=2.

The following result was established by Padgett and Taylor [17, Theo-
rem 3, p. 194] under the additional assumptions that X,, n > 1, is indepen-

icm
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dent, EX, exists and equals zero for every n > 1, and B > «, using Theorem
3(ii) of Stout [21].

CoroLLARY 4.8. Let X,, n> 1, be a sequence o f random elements taking
values in a separable normed linear space B such that sup,s E||X,||* < co. Let
Ay, 1 < k< n, nz1 be a triangular array of real numbers such that for o > 0
and f>1

() lawl <Iyn™* forall 1<k<nand n=1,

n
(i) Y law STyn*"? for every n>1
k=1
Jor some positive constants I'y and I',. Then

n
lim Y 4, X,=0 ael[P].
n—ok=1
Proof. By Lemma 2.3, there exists a real random variable X such Fhat
|1 X.ll, n =1, is uniformly bounded by X and E|X|" < co for 0<r <2 since
sup,»; E||X,J|2 < w. Choose p>0 and 1 <r <2 satisfying

and

i

1
-;—:T<ﬂ.
2. Let dy =n'"a, for every

r<p<2

If g>0 satisfies 1/p+1/g =1, then gq>
1<k<nand n>1. We rewrite

n n
Za,,ka=;l—1/—,Zd,,ka for alln?l.
k=1 k=1

We check for every n> 1
H n 1 n /,
Y ldal? = Y laulfn" < max |aul'"" Y |aul
k=1 k=1 1<k<n =1
< F«i—l n-u(q~1)r2 n* Bpalr
—= rxi—l r2 n—aq+2a: nq/r-ﬂ_

Since ¢ > 2, —ag+20 <0. Since 1/g+1/p=1, q=p/(p—1) and so, g/r
= (p/r)[1/(p—1)] < B. Consequently, g/r—p < 0. Therefore,

n
lim Y, |dul* =0.
n- o0 ko= |
The conditions of Theorem 4.6 are met with respect to the triangular array
dy, 1< k<n nzl, of real numbers. Hence
1

llql'i ;;‘17;; k§1 dnk X“ =0 ae[P]


GUEST


150 X. C. Wang and M. Bhaskara Rao

n

But _}F Y duXy=Y ayX, for every n> 1. This completes the proof,
n =1 k=1

CoroLLary 49. Let X,, nz 1, be a sequence of random elements taking
values in a separable normed linear space B such that || X,)l, n = 1, is uniformly
bounded by a random variable X such that E|X|" < o for some 0 <r < 2. Let
au, 1 <k <n, nx1, be atriangular array of real random variables satisfying

n

limsup Y e =TI <x ae[P].
1

n—x k=
Then

lim -:—/; Y ap X =0 ae[P].

n=oo 7 2y

Proof. The proof of Theorem 4.6 can be adapted to prove this result by
taking p=g¢g = 2.

Wei and Taylor [30, Theorem 3, p. 55] established the conclusion of the
above result under the stronger condition that X,, n> 1, is independently
identically distributed with E||X,||" < x for some 1 <r < 2. (In fact, Theo-
rem 4.6 is valid when a,,, 1 <k <<n, n> 1, is a triangular array of random
variables satisfying imsup, ., Y r<qlaul! =I' < o a.eP]) Incidentally, the
above corollary extends in one direction Theorem 9 of Chow and Lai [5,
p- 823] to separable normed linear spaces for the case 0 < r < 2. Chow and
Lai assume that X, n> 1, is a sequence of independently identically
distributed real random variables with E|X 1" < oo for some 1 < r< 2 For
the case 0 <r <2, the above assumption is dropped and we merely assume
that X,, n>1, is uniformly bounded by a real random variable X with
E|X]" <o for some 0 <r <2 When 1 <r < 2, Chow and Lai centre their
random variables at their means but this is not necessary.

CoroLLARy 4.10. Let X,, n > 1, be a sequence of random elements taking
values in a separable normed linear space B such that IXll, n = 1, is uniformly
bounded by a random variable X satisfying E|X|" < % for some | <r < 2. Let
G, 1 <k<n, n21, be a triangular array of real numbers satisfying

max laul=0(n""% as n— oo
L€k<n

Jor some O < 1/a <r—1. Then

im 3 a,X, =0 ael[P].
neroo k=1
Proof. For each 1 <k<n and n3> 1, let dyy. = aun'”. Then

n
Y di < max ak Y (') < Bn~ 2 p2rp
k=1 1Sksn k=1

< Bn~—2t—- l)nn2/r = Bp! ~2/rtr~10) as n—r %,

e ©
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for some positive constant B. If 1 <r <2, we have r®*—r—2 <0 so that
2/[r(r—1)] > 1. Consequently, ‘

limsup ¥ dZ <.

n=w k=1

Now Corollary 4.9 is applicable. So,

1 n
lim —- Y du X, =0 ael[P]
nsa M0 Dy
and the conclusion follows. If r = 2, choose p and ¢ such that p >r =2, 1/p
+1/g =1 and ag > 2. This is possible because lim,,ag = 22 > 2. Then

n

n
< X lduff < max |aylt ¥ (n'%)
k=1

1<ksn k=1
<Bn"m? as n— 0.

Consequently,

limsup Y, |dul* < o0.

ne oy k=1
An application of Theorem 4.6 covers the case r = 2. This completes the
proof. ‘

Taylor [23, Theorem 5.3.1, p. 137] established the conllusion of the
above corollary under additional assumptions that B is Beck-convex, X,,n
=1, is independent, EX, =0 for all n> 1, sup,; El| X' < for. some
r > 1, a,’s are nonnegative with sum over k less than or equal to unity for
all n>1 and

n

i —n min a,)=0.

For the definition of Beck-convexity, see Beck [2].
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