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Generalized Nash-Moser smoothing operators and
the structure of Fréchet spaces

by

VINCENZO B. MOSCATELLI* (Lecce) and
MARILDA A. SIMOES (Niteroi)

Abstract. In [3] E. Dubinsky related the Nash-Moser Inverse Function Theorem to the
structure theory of Fréchet spaces via the smoothing operators of Nash-Moser type. Motivated
by this, we introduce very general families of smoothing operators and show what implications
their existence has on the structure of a Fréchet space.

Introduction. In recent times, some quite unexpected connections be-
tween two apparently unrelated topics in Functional Analysis, namely, the
Inverse Function Theorem and the structure theory of Fréchet spaces, have
begun to be noted (cf. [3]). The unexpectedness is due to the fact that, as
everyone knows, the Inverse Function Theorem and linear analysis do not
mix well. A crucial point of contact comes from the so-called Nash-Moser
Theorem, which is an Inverse Function Theorem in Fréchet spaces based on
a refinement of the old Newton’s iteration method. (As is well known, the
usual Banach space theorem does not go over to Fréchet spaces.) The
technique, invented by J. Nash [12] in his solution of the isometric embed-
ding problem for Riemannian manifolds, assumes the existence of an approp-
riate one-parameter family of smoothing operators on the space. The method
was later fashioned by J. Moser [11] into an Inverse Function Theorem in
Fréchet spaces which became known as the Nash-Moser Theorem, and wide
applicability of the method and its subsequent generalizations (cf. e.g. [8])
was claimed by various authors over the years (see the survey article [5] by
R. S. Hamilton). However, the impressive results of D. Vogt [20] (cf. also
[4]) show that in the nuclear case, which is the most important. in the
applications, only a very small class of Fréchet spaces can support a family
of smoothing operators of Nash-Moser type. In particular, the nuclear space
H(D) of analytic functions on the open unit disc D of the complex plane does
not belong to such a class and in [3] smoothing operators supported by this
space were found and, through their use, an Inverse Function Theorem valid

* The research of this author was financed by the Italian Ministero della Pubblic::
Istruzione.
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in H (D) was proved (but note that this theorem is quite different in character
from the Nash-Moser one). Again, the smoothing operators introduced in
[3] are tailored to H(D) and hence are suitable only for a certain class of
Fréchet spaces (see § 3).

The purpose of this paper, whose main idea was announced in [10], is
to introduce the most general type of a family of smoothing operators and
to show that, even in this extremely general setting, the existence of such a
family has noteworthy implications for the structure of the Fréchet space
under consideration. We wish to appeal to workers in Nonlinear Functional
Analysis and it is for this that we repeat some definitions and facts that are
well known to Fréchet space specialists. It remains, of course, a big open
question whether our enlarged setting enables one to prove an Inverse

Function Theorem valid in the more general class of spaces that will be
produced here.

1. Preliminaries. Our notation and terminology are standard (cf. e.g. [6]).
We also foliow [2] for what concerns nuclear Fréchet spaces. Throughout
this paper E will always stand for a Fréchet space, ie. a locally convex
space which is metrizable and complete. The topology of E is then generated
by a sequence of seminorms || ||y, k =0, 1, 2, ... (which, in actual fact, will
always be norms). Without loss of generality, we shall assume from now on
that the sequence of seminorms is increasing, ie. that, for every k,
t)]

Ixll < lIxllx+;  for all xeE.

In this case, the sequence (|| ||,) is also called a grading and, once a choice of
grading is made, the structure (E, (| Ilx)) is said to be a graded Fréchet space
(cf. [5], p. 133).

We shall also find it useful to set

E;=(E |l ) and U, ={xek: (Ixlle < 1},
so that U, is the unit ball of the seminormed space E, and the sequence (U,)

forms a basis of neighbourhoods of 0 in E. Obviously (1) is equivalent to
2 Ugrr < U,  for each k=0, 1, ...

The Fréchet space E is Montel if all of its bounded sets are relatively
compact. Also, E will be called: (@) Schwartz, (b) nuclear, (c) countably
normed, if the seminorms || ||, may be chosen so that the canonical mabs
Eisy — E, are, respectively: (a) precompact, (b) nuclear, (c) such that the
induced maps E,,, — E, are injective, where, for each k, E, is the completion
of the normed space associated to E,.

L1. Remark. (b) = (a) = Montel, while (c) implies that E has a
continuous norm and is equivalent to the following (cf. [2], p. 168):
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There is a ko with the property that, whenever j >k > ko, if (X,) is a
sequence in E which is Cauchy in E; and converges to 0 in E,, then (x,)
converges to O also in E;.

{*)

We abbreviate “continuous linear map” to “operator” and denote by Ig
the identity map of E. Then E is said to have:

(a) the approximation property (AP) if there is a net of finite-rank
operators on E which converges to I uniformly on compact subsets of E;

(b) the bounded approximation property (BAP) if the net in (a) may be
chosen so as to be equicontinuous;

(c) an unconditional partition of the identity (UPI) if there exists a
sequence of finite-rank operators T,: E— E such that

3)

x=) T,x unconditionally for each xekE;

(d) a finite-dimensional decomposition (FDD) if the operators T, in () are
projections, ie. such that T, T, = 6,, T);

(e) an absolute UPI if the series in (3) converges absolutely;

() a basis if the operators T, in (d) are such that dim T,(E) ='1; .

(8) a Schauder decomposition if in (d) the requirement that the projections
T, have finite rank is dropped.

1.2. Remarks. (i) We have the implications

®=@=0b)=@ @=@ ©=0

To see that both (c) and (d) imply (b) put S,,,.=Z,,<,.,, T;,,. thereby
obtaining a sequence (S,,) of finite-rank operators converging pointwise to Ig.
But E is barrelled, hence the sequence (S,,) is equicontinuous and, therefore,
it converges to I uniformly on compact subsets of E. .

(i) On an equicontinuous set of operator§ the topology of un.1f0r1'§1
convergence on compact subsets of E coincides with the topology of po%ntw1-
se convergence on a dense subset D of E. The latter topology w111' be
metrizable if E is separable and D is taken to be countable and hence, if E

" has also BAP, from the net in definition (b) we may extract a sequence of

finite-rank operators converging to Iy pointwise. It follows that this happens
in all Fréchet-Montel spaces, since the latter are separable.

(iii) Every nuclear space has AP. Also, in nuclear Fréchet spaces every
basis is absolute, hence unconditional ([14], 10.1.2 and 10.2.1).

2. Nash-Moser smoothing operators. The smoothing.operators intro-
duced by Nash and Moser are a one-parameter family .Of operators
S, E—E (t > 1) on a graded Fréchet space E such that, for all j > k > 0 and
all xe E, we have

“) (18, xll; < ct/~* ]Il llxx— S, xlli < dt*~ [Ixl;,

and
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with ¢ and d positive constants depending on k, j. A space E admitting a
choice of grading for which there exists such a family (S,) will be
said to have the Nash-Moser smoothing operator property (NMSOP). We
refer to [5], II,1.3, where many examples of such spaces are to be found.
Unfortunately, although covering many usual function spaces (cf. [17] and
[19]), the class of Fréchet spaces E with NMSOP is rather restricted,
especially in the nuclear case, since we have

2.1. Treorem (D. Vogt [20]; E. Dubinsky and D. Vogt [4]). If E is
nuclear and has NMSOP, then E is isomorphic (via a “good” isomorphism) to a
nuclear power series space of infinite type

An(@ = {(&): NEMN = X €™"(E) < o0 for all k}.

In the general case we have the following weaker result, where we
simply write ® because the tensor products ®, and ®, coincide in virtue of
the nuclearity of s = A, (logn).

2.2. THEoREM. If E has NMSOP, then E is isomorphic to a subspace of
1*()&s and to a quotient of (1) s for. a suitable index set I.

Proof. It is easily seen that E has D. Vogt’s properties (DN) and (Q) (cf.
[15]) and hence the result follows from Lemmas 2.1 and 3.1 of [19].

3. Dubinsky’s smoothing operators. The space H (D) of analytic functions
on the unit disc of the complex plane cannot have NMSOP. In fact, H(D) is
nuclear and isomorphic to the power series space of finite type

® Ar(m) = {&): I = X e™"|&,| < oo for all k)

and this space can never be isomorphic to a subspace of s, as shown in [21].
Thus, in order to prove an Inverse Function Theorem in H (D), Dubinsky
introduced a family (S,) of smoothing operators satisfying, instead of (4), the
following inequalities for all j> k> 1 and all xcE:

(6) IS, xl; < ce =] x| [1x =58, xlli < de™= 1% 1)),
with ¢ and d positive constants depending on k, j. Of course, the estimates (6)

are forced by the particular structure of H (D) or, equivalently, of the space
A;(n) in (5), and are obtained by considering the operators defined by

&, for n<m,
0 forn>m

and

™ Si€) =(m), with p,= {
and. m = [logt]. Note that these operators have finite rank.
Unfortunately, as in the case of (4), the inequalities (6) are so strong that

they too characterize a very special class of nuclear Fréchet spaces. Indeed,
we have
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3.1. TueoreMm. The following assertions are equivalent:

() E is nuclear and admits q Jamily (S,) of operators satisfying (6) with
respect to some grading. .

(i) E is isomorphic to a nuclear power series space of finite type

Ar@) = {&): IEM =T ™™ (2| < oo for all k).

Proof. (i) = (ii). Given any k> 1 we have, by (6),
el < 11 Xl + 11— S, X[l < et =120 1 4 gy = 120 [l 2k,
from which, computing the minimum on the right-hand side, we obtain
lixlle << C Il ][ 17028,

Thus E has property (DN) (cf, [16], Definition 1.2). Also, for each k =1, 1if
r>1and I > 2k we have, for any xe Uy,

lle— S xlle < dt ™12 x|, < dp= 120,
”er”1< ct1/(2k) = lll”x”u < etz - 171 < Prane))

and hence, choosing ¢ = (dr)** we obtain (with C = cd)
1
UycCr U,+;U,‘.

Thus E has also property (Q) (cf. [16], Definition 1.3) and (ii) follows from
Satz 1.6 of [16]. :

(i) = (i). It suffices to give E the grading of 4, («) and to define S, as in
(7), where now m is such that ™ <t < ™™+,

4. Generalized smoothing operators. In §§ 2 and 3 we have seen that the
existence on a Fréchet space of a family of smoothing operators with certain
properties forces the space to belong to a well determined class. This is SO
because such a family imposes, by its nature, rather strong conditions on the
structure of the space. Also, inequalities (4) and (6) depend on the choice of
grading. It is in order to obtain a family of smoothing operators that can be
supported by as many spaces as possible that we give the following very
general definition, which is also “grading free” in a fairly general sense.

We say that a Fréchet space E has the Smoothing operator property
(SOP) if it admits a family of operators S, E—E (1 » 1) such that, with
respect to some grading (|| |,) on E,

®)
©)

where the functions ry; are such that r;(t)—0 as t —> + oo,

S;: E,~ E; is continuous for all k,j>0;

Ix=S:xlly <ry@ilxl]; for all 0 <k <j and all xeE,
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We now investigate what kind of structure spaces with SOP must have,
First of all, note that (8) is equivalent to
109 IS, xlf; < s (®)|Ixll;  for all'0 <k <j and all xekE,
for some positive functions s (t).

Clearly (9) and (10) continue to hold if we pass to an equivalent
sequence of norms.

4.1. LemMA. If E has SOP then it admits a continuous norm.

Proof. It suffices to show that || ||, is a norm. Supposing the contrary,
we can find an xe E with ||x]|, = 0 and ||x|| # 0 for some k > 0. We apply
(10). For any t > 1 we have

[1S: Xl < seo0 (B)lIxl[o = 0
and hence ||S, x|, = 0. It follows that
Ixlle < %= S xlle € Tpeer @ IXlier =0 as £~ o0,

hence ||x||, =0 and we have a contradiction.

4.2. LemMmA. If E has SOP, then the following assertions are equivalent:

(i) E is normable (hence Banach).

(i) There is an equivalent sequence of norms on E with respect to which
(10) holds with

Sup S+ 1k(t) = ¢, <o for all k.
=1

Proof. (i) = (i). Take S, = Iy (= the identity of E) for all ¢ = L.
(i) = (). For every k and for every xeE we have

lxlle+ 1 < 1% —8, Xllg+ 1 + IS, Xl ; < Pi tkr 2 O] 2+ ¢ 1%l < 205 (1],

if ¢ is chosen sufficiently large. Thus all norms are equivalent and (i) follows.

The above lemma shows that SOP is uninteresting for normable spaces,

hence from now on we shall assume that E is not normable or, equivalently,
that

(11) sp(t)— +o0 as t— +oo whenever k<j, and s;(t) = const.

We now strengthen Lemma 4.1 by proving
4.3. TuroreM. If E has SOP, then it is countably normed.
Proof. We use the equivalent formulation (v) of § 1, Let then j >k >0

and suppose that (x,) is a sequence in E which is Cauchy for || ||; and
converges to O for || [|,. Let ¢ >0 be given .and let n, be such that

I, —x,ll; <& for nn,

@ ©
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Next take a sequence t, /' +co for which Sk (t) %0l — 0, so that there
will be an m, with

Su ) llxdl <& for n>m,.
Now choose p, = max(n,, m,) such that

rl,j+1(rn)”xnc”j+1 <e¢ for nzp,.

Then for n = p, we have
”xn“j < ”xn'-St,, Xn”j "H'Sr,, xn”]
< len"x'1“|[j+’|xns“st,, xnu“j'}'“Sln(xnc—xn)“j'!'nst,, xn”j
S A 1% =2, A7 g 1 E 10 1+ 850 (ED I
<(3+s)))e.
Thus |x,]|;—~ 0 and E is countably normed.

Lemma 4.1 and Theorem 4.3 already enable us to give the following
examples of Fréchet spaces that cannot have SOP: spaces of continuous or
C functions on open sets, strict projective limits of Fréchet spaces with
continuous norms, in particular, countable products of Banach spaces,
quojections and the twisted spaces constructed in [9] (because for all these
spaces Lemma 4.1 fails), as well as Dubinsky’s [2] and Vogt’s [18] counter-
examples to BAP (because BAP = countably normed by [2], Proposition
(3.1.6), p. 169).

4.4. ProPOSITION. If E has SOP and F is a complemented subspace of E,
then F has SOP.

Proof If P: E— F is a continuous projection, then (PS,) is a family of

smoothing operators for F. In fact, if || Px|l; < ¢ ||Xlloq (x€E) with (k) a
suitable function, then for each k and each x = Pxe F we have

llx— PS, xlx < cillx—S, Mo < ¢ Foti,atiy+ 1 (&) 1 X] gy + 1

so that from the sequence (| ||} of norms we may extract a subsequence
(Il ll,), with k., = ¢(k,)+1, with respect to which the estimates (9) hold.
Then the inequalities in (10) are automatically true:

128, x|l < ¢, 1S Xllogeyy S oy Satipiion O IXllk,, — for m <n.

4.5. Lemma. If E has SOP and S,(E) is closed (in particular, if S, is a
projection), then S,(E) is Banach.

Proof. Let E, = E/S;*(0), let ¢ be the quotient map and let R,: E, — E
be the induced map, i.e. R, 09 = S;. By the Open Mapping Theorem R, is an
isongorphism onto S,(E), so that there must be a k such that
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IR yllo < cllyll for all yeS,(E). Put £=R;'y and choose xe X such that
Ixllo < 2[|%llo. Then if j >k we have, for yeS,(E),

Il < Il = IR, &Iy = IS, X5 < 550 D 1xllo
< 2550 (DIRS Yllo < 2850 () Yl

Thus all norms || ||; with j > k are equivalent on S, (E) and the result fol lows

4.6. THEOREM. Suppose that E has SOP and that the family (S,) contains a
sequence (S,) such that each map S,—S,—1 (S = 0) has closed range. Then E
is isomorphic to a complemented subspace of a space with a Schauder decompo-
sition.

Proof. Put T, =8, and T, =S,—S,; for n>1. A proof similar to
that of Lemma 4.5 shows that each subspace T,(E) is closed in E; hence is a
Banach space. Now note that, by (9), x =Z"']},x for all xeE. Then it is
standard that on E the norms

n
e = supl| . T

form a sequence equivalent to the sequence (|| ||;). Define

F = {(y): y.e T,(E) and } y, converges in E},

n

with topology given by the sequence of norms

[yl = S‘iP ”;1 yi“k-

It is then easy to see that F is a Fréchet space in which the coordinate
projections form a Schauder decomposition, that the map x— (T,x) is an
isomorphism of E into F and that the map (y,) —»(’I;,(Zi y,)) is a continuous
projection.

Note that the spaces considered by R. S. Hamilton in [5] form a
particular case of Theorem 4.6 and of the following
4.7, ProposimioN. Let B be a Banach space and let E be a Fréchet-
Schwartz space with an absolute basis. Then the space E &, B has SOP and
the corresponding fumily (S,) of smoothing operators may be chosen to consist
of projections.

Proof. By assumption, E is isomorphic to a Kd&the space

= {&: Il =L aun & < 0o for all k},
where the matrix P = (a,,) may be chosen to satisfy

lim—2_ — ¢

for each k. Il
n Gk,

e ©
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Since A(P) is perfect and B is complete, by a result of A. Pietsch [13] (cf. also
[7), §41.7(5)) E®,B is isomorphic to the space

P)(B) = {(x): %,&B, ol = ¥, thollxulls < 0 for all k}

and the latter is easily seen to have SOP with smoothing operators S, given
by

X if ngt
Si(xy) =(yy),  where y,.={0" ifZ;t

It is clear that such maps §, are projections.
The above proof also shows that the assertion holds for spaces of the
type
A(P)(B,) = {(x,): xu€ By, Il = Y thnllXlls, < 00 for all k},

n
where the B, are Banach spaces and A(P) is Fréchet--Schwartz.

4.8, Remark. By Proposition 4.4, complemented subspaces of the
spaces in Proposition 4.7 also have SOP.

449, Remark. The proof of Proposition 4.7 also shows that Kothe
spices A(P) of type Fréchet-Schwartz have the stronger property FSOP
discussed in the next section (the same being true, of course, of their
complemented subspaces).

5. A stronger property. Often in the applications the smoothing opera-
tors S, have finite rank, as shown by the examples given in § 3. This leads us
to introduce the following stronger property: a Fréchet space E will be said
to have the finite-dimensional smoothing operator property (FSOP) if it has
SOP and for a subsequence (S,) =(S;) the operators S, have finite rank.

Clearly, also FSOP is invariant for complemented subspaces.

Our central result is the following

5.1, TueoreM. For a Fréchet space E the following assertions are equiva-
lent;

(i) E is Montel and has AP and SOP.

(i) E has FSOP.

(iii) E is Schwartz and has BAP and a continuous norm.

Proof. (i) = (ii). By (10), 5;(Uo) = sp0(t) U, for all j= 0 and all 121
and so each S, is strongly bounded (i.e. maps a neighbourhood of 0 onto a
bounded set). Because b is Montel, S, (U,) is relatively compact for t > 1. Put

—+E such that d1mT(E) <0 and

(12) suplly Toylln < rou(m).

yeKy
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Given k,j with k <j, for all n>j we have from (12)
(1~ T Sy Xllie < 1% — Sy Xl +118y X~ T, S Xl
<rgM Xl +ron (M IXllo < 2ry (mllxll;  (n large).

Thus putting R, = T, S, for n <t < n+1, we see that (R,) is a family as in the
definition of FSOP for E with the same rate of decreasing ry;(f) as the
original family (S,).

Note that we also have

IR Xy < TS — Sy Xlln+ 118, xll; < 7ou (1) 16110 + 56 () [1¢] 1

< 283 (W) []x]]-

(i) = (iii). Pick m > dim S1(E) and then choose a sequence (t,: n> m)
such that t,— oo and dimS$, (E) <n (allowing repetition of the s if
necessary). If k is fixed, then for every xe U,,; we have

x=(x=5, X)+S,, x€rypr1(t) Up+S, (E)

so that for the diameter§ of Upyy with respect to U, (cf. [14]) we have

G(Uis1, U S a1 (t) =0 as n— 0.

Thus Uy, is precompact in E, and, since this holds for every k, E is
Schwartz. Also, we have 8;,x — x, so that E has BAP. Finally, the existence

of a continuous norm on E follows from Lemma 4.1.

(iii) = (i). The hypotheses imply that E is Montel and has AP. To show
that it has also SOP we proceed as follows. Let (S,) be a sequence of finite-
rank operators such that S,x — x for all xeE. Clearly (8) is satisfied. Also,
because the set (S,) is equicontinuous and E is Schwartz, we may choose a

sequence (|| [;) of norms such that each Uy+, is precompact in E, and
Ule~8)(Ups)) €Uy for all k 2 0.
n .

Now Ig—S§,—0 (as n— o0) pointwise in E,, hence also uniformly on each
precompact subset of E, and, in particular, on each U, with j > k. This
means that inequalities (11) must hold.

52. CoroLLary, If E satisfies one of the equivalent assertions of Theorem
5.1, then E has an absolute UPI and is a complemented subspace of a Fréchet—
Schwartz space with an FDD and a continuous norm.

Proof. Apply the results of [1].

‘Since every nuclear space has AP, from Theorem 5.1 we obtain, in
particular,

53. CorOLLARY. In a nuclear Fréchet space SOP is equivalent to FSOP.

e ©
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Hence in most of the usual spaces of analysis (which are nuclear) we can
always choose smoothing operators with finite rank.
A further case of equivalence is afforded by the

5.4. PropoSITION. Suppose that E has SOP and that the family (S,)
contains a sequence of maps §, with closed ranges. Then dim$,(E) < oo (and
hence E has FSOP) if E is Montel or if there is a sequence (|| ||) of norms for
which all the canonical maps E;— E, (j > k) are strictly singular.

Proof. Apply Lemma 4.5,

5.5. Remark. Finally, note that, by virtue of Theorem 5.1, the spaces
E &, B of Proposition 4.7 exhibit examples of Fréchet spaces with SOP but
without FSOP if dim B = o0.
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On the M-structure of the operator space L(CK)
by

DIRK WERNER und WEND WERNER (Berlin)

Abstract. Let K be a compact Hausdorf space. We determine the centralizer of the space
of bounded operators on a complex C(K)-space, L(CK), and give a new characterization of the
M-ideals of L(CK) which does not resort to higher duals of this operator space.

Introduction. In this note we completely describe the M-structure of
L(CK), the space of bounded operators on a complex C (K)-space.

In the first section we determine the centralizer of L(CK), which yields a
characterization of the duals among the L(CK)-spaces as well as a Banach—
Stone type theorem. The second section contains a characterization of the
M-ideals of L(CK), based on the earlier paper [8]. Our description has the
advantage of avoiding higher duals of operator spaces and yields also some
further information on the special nature of these spaces.

Our notation and terminology is standard, special objects of M-struc-
ture are explained at the beginning of the respective section. By denotes
the closed unit ball of a Banach space X.

Lastly, the authors would like to thank E. Behrends for encouragernent
and helpful discussions.

1. The centralizer. Let us recall that an operator T on a complex Banach
space X is said to belong to the algebra Mult X whenever T'(p) = ar(p) p for
all peexBy and some ar(p)eC. Belonging to MultX is known to be
equivalent to the following condition [2, p. 57]:

(A) For all xe X, |ly—Ax|| <r for all A with |4 <{|T]| and some r iinplies
lly—~ Tl <r.

The centralizer % (X) cousists of those T in Mult X for which there is an

operator T*e Mult X such that a.,(p) = ar p) for all peex By.

(When eg. 4 is a unital C*~algebra, # (A4) may be canonically identified
with the centre of A.)

Let us write 2°®(X) for the set of all those elements of £ (X) for which

- all the eigenvalues ay(p) are real. It is not difficult to see that
B) ZX)=2FX)®iZMX) and Z¥X)=MultXn#(X),
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