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On the M-structure of the operator space L(CK)
by

DIRK WERNER und WEND WERNER (Berlin)

Abstract. Let K be a compact Hausdorf space. We determine the centralizer of the space
of bounded operators on a complex C(K)-space, L(CK), and give a new characterization of the
M-ideals of L(CK) which does not resort to higher duals of this operator space.

Introduction. In this note we completely describe the M-structure of
L(CK), the space of bounded operators on a complex C (K)-space.

In the first section we determine the centralizer of L(CK), which yields a
characterization of the duals among the L(CK)-spaces as well as a Banach—
Stone type theorem. The second section contains a characterization of the
M-ideals of L(CK), based on the earlier paper [8]. Our description has the
advantage of avoiding higher duals of operator spaces and yields also some
further information on the special nature of these spaces.

Our notation and terminology is standard, special objects of M-struc-
ture are explained at the beginning of the respective section. By denotes
the closed unit ball of a Banach space X.

Lastly, the authors would like to thank E. Behrends for encouragernent
and helpful discussions.

1. The centralizer. Let us recall that an operator T on a complex Banach
space X is said to belong to the algebra Mult X whenever T'(p) = ar(p) p for
all peexBy and some ar(p)eC. Belonging to MultX is known to be
equivalent to the following condition [2, p. 57]:

(A) For all xe X, |ly—Ax|| <r for all A with |4 <{|T]| and some r iinplies
lly—~ Tl <r.

The centralizer % (X) cousists of those T in Mult X for which there is an

operator T*e Mult X such that a.,(p) = ar p) for all peex By.

(When eg. 4 is a unital C*~algebra, # (A4) may be canonically identified
with the centre of A.)

Let us write 2°®(X) for the set of all those elements of £ (X) for which

- all the eigenvalues ay(p) are real. It is not difficult to see that
B) ZX)=2FX)®iZMX) and Z¥X)=MultXn#(X),

3 — Studia Mathematica 1, 87 2, 2
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where #(X) denotes the collection of Hermitian operators on X. (An
operator T is called Hermitian iff x'Tx is real for all (x', x)eII(X)
(=, MeX xX: x'(x) =|Ix| = [Ix] =1}, cf. [4])

1.1. Lemma. Let TeMult X and put Ly (S):=TS for all Se L(X). Then
Ly belongs to MultL(X) and, in addition, Lre #®(L(X)) whenever
Te&R(X).

Proof. It is a straightforward calculation involving condition (A) that
LreMult L(X). TeZ®(X) is also contained in #(X) and thus Lg is
contained in # (L(X)) (use [4, p. 46 and 84]). Now (B) yields Lye ZR(L(X)).

1.2. TueoREM. Z(L(CK))= {Ly: Te Z(C(K)}}.

Remark. Z(C(K)) consists of all the operators n(f), /& C(K), defined
by n(f)(g):= fg.

Proof. Define mappings I;: Z*(C(K))— Z*(L(CK)) and
I,: Z®(L(CK)) ~L(CK) by I{(T):=Ly and I,(T):=T{d), respectively,
where Id denotes the unit in L(CK). The fact that I; is well defined is
contained in the above lemma. We show that I, is injective: To this end,
note first that for Te Mult X the kernel and image of T are M-orthogonal,
which means that for all xeKer T and yeX

llx+ Tyl = max {Ixl, 1711}

Now suppose that T(Id)=0 for some 7TeMultL(CK) and let
SeBycxy N Im T Then by the above,

[¥d—S|| = [Ild+S|| = 1,

which yields S = 0 and T'= 0 since the identity operator is an extreme point
of the unit ball.

Next, we make the observation that the image of I, is contained in
%#R(CK): This is implied by the fact that the range of I, is contained in
#(CK) (this is true since (x' ® x, Id)e I (L(X)) for all (x, x)e T (X)), where
the latter set is known to be equal to #®(CK) [5, p. 92].

Combining the above results, ‘we see that II,: Z*(L(CK))
— #R(L(CK)) is an injective projection and hence is surjective. In particular,
I, is surjective, and this is enough to prove our claim.

Remarks. 1. The statement together with its proof that I, is injective
represents a simplified version of a more general result which is due to G.
Wodinski, who has shown that for arbitrary unital Banach algebras I, is
even isometric [11]. :

2. The above proof applies for Banach spaces X for which »#(X) is
contained in % (X), a condition which is satisfied e.g. when X belongs to the
class of L'-preduals (combine [4, p. 851, [5, p. 921, and the fact that
T"eZ(X") implies Te % (X) for a proof).

icm°
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1.3. CoroLLAryY. L(CK,) and L(CK,) are isometrically isomorphic if and
only if Ky and K, are homeomorphic.

Proof. If L(CK,) = L(CK,) then
C(Ky) = Z(L(CK,)) = Z(L(CK,)) = C(Ky),
and with the aid of the classical Banach-Stone theorem the more difficult
implication follows.
1.4. CoroLLARY. L(CK) is a dual precisely when CK is.

onof. For dual spaces X (with predual X)) we always have L(X)
= (X ®, X))

On the other hand, assume that L(CK) is isometric to the dual of some
Banach space. Using &' (L(CK)) = C(K) we infer that C(K) is a dual, too (ie.
K is hyperstonean) since 2 (X) is known to be a dual space whenever X is
[2, p. 1147, [3, p. 25]).

2. M-ideals. This section is devoted to the description of the M-ideals of
L(CK). Recall [1, 2] that an M-ideal J of a Banach space X is defined to be
a closed subspace the polar J° of which is an L-summand of X, i.e. there is a
projection P onto J° satisfying the norm condition ||x/|| = ||Px/||+[|x'— Px/|)
for all x'e X'. :

Let D < K. Define a closed subspace J,, of L(CK) by

Joy = 1T Hm[T'(8)l| = O for all keD).
t—k

We shall show that exactly the subspaces Jip, with D closed are the M-ideals

of L(CK). It will be convenient to introduce some more notation. For
TeL(CK) put

vp(k) = T"(6 I,  |TI(k) = linrl Sup vy ®)
so that Jgy = {T: |T||p = 0}. Moreover, lot Jp = {fe C(K): flp =0}. It is

well known that the spaces Jp, D = K closed, constitute the M-ideals of
C(K) [2, p. 40].

2.1. ProposiTioN. Let D < K be closed. Then
Jiwy = {n(h)oS: heJp, Se L(CK)}.

Proof. Let TeJp, with ||T|| = 1. According to a result of Tong’s [9, p.
27] there is he C(K) such that

ITIV? < h < 1xp.

(Note that |T| is upper semicontinuous by definition)) In particular, heJp. It
follows easily that

(TN K] < 2 W@)1A
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for feC(K) and ke K. Define a function g on K by g (k) = 1/h(k) if h(k) 5 O,
g (k) = 0 otherwise, and put §f =g-Tf for feC(K). Then Se L(CK) and T
=n(h)oS. The other inclusion is obvious.

2.2. THEOREM. A closed subspace J of L(CK) is an M-ideal if and only if
there is a closed subset D of K such that

J=Jg = {T: im||T"(8)|| = 0 for all ke D}.
t—k

Proof. To prove that Jyp, is an M-ideal for closed D, we make use of
Lima’s characterization [10, Th. 6.17]. Hence it suffices to show:

Givene > 0and Ty, To, Ty € Jpy, Te LICK) with || T < 1, || T|| < 1, there is
SeJp, such that ||+ 1= < 1+efori=1,23
In fact, consider the open set V = ;<5 {k: |T]| (k) <&} and choose a contin-
uous function h with 0<h <1, h(k) =0 for keD, h(k) =1 for k¢ V. It is
easily verified that S == (h) T has the required properties.

Conversely, assume J is an M-ideal in L(CK). It has been shown in [8]
that there is a closed subset D of K such that J = {T: =n"(1p): T = 0}, Here
we understand 1, to be an element of C(K)”, and we identily T with its
canonical image in L(CK)". Finally, the multiplication of the two elements of
the second dual of the Banach algebra L(CK) is the first Arens multiplication
as defined eg. in [4, p. 106]. -

J ©Jpy: Consider the directed set ¥" = {V < K: V is an open neigh-
bourhood of D}. Choose continuous functions f,: K — [0, 1] indexed by
Ve such that f,(t) =0 for t¢V, fy(f) = 1 for teD. Then the net (fy)yey
converges to 1, w.r.t. the topology o(C(K)", C(K)); this is ensured by the
regularity of the measures ueC(K). It follows that

7' (fy) = =(fy) g " (1p)

w.rt. a(L(CK)Y', (L(CK))).

Now let TeJ. A continuity property of the Arens multiplication, which
is easily derived from the definition, allows us to conclude

n(fy) T = n'(lp) T =0
Vev
wirt. o(L(CK), (L(CK))). Note that hy:=1—f,eJp and thus
W(hv) T T

weakly. Therefore T is in the weak closure of Jip), which equals Jy) by
Proposition 2.1.

@ © ‘
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Jipy =J: Stick to the above notation. Then for feJp, SeL(CK):

" (1p) 7 (f) S = weak*-limit (75 (fv) m(f) S)
= weak limit(z(fy 'f)-S)
=m(weak limit fyf)-S
=0,

and again the result follows from Proposition 2.1. )

Theorem 2.2 shows why the M-ideal J,, differs from the space of Jp-
valued operators L(CK, Jp) in general. T belongs to the latter space if the
numerical function v, defined above vanishes on D, whereas in order that T
belong to Jp, it is necessary that not only vy but also its upper semicontin-
uous regularization |T| vanishes on D.

We are going to examine the relationship between J;, and L(CK, Jp) a
bit closer.

2.3. ProPOSITION. (a) A compact Jp-valued operator belongs to Jp,.

(b) Every operator in Jy, is compact iff K\D is discrete.

Proof. Let Te K(CK, Jp) (i.e. T is compact and Jp-valued). Then vy is
a continuous function on K [7, p. 4907 so that |T| coincides with v;. Hence

_assertion (a) follows from the above remark.

To prove (b) assume first that K\D is discrete. Let T =7 (f)-SeJy,). It
is enough to show that n(f) is compact, ie. t+—4,0n(f) = f(t)-J, is norm-
continuous (cf. [7] again). By assumption we only have to consider this
property on D, where in fact the function in question is norm-continuous
since feJp.

On the other hand, let t,e K\D be a cluster point of K\D. Choose
helJp with h(ty) = 1. It is easy to see that the operator 7 (h) is a noncompact
member of Jp.

Remarks. 1) W(CK, Jp) = Jp, is false in general (W denoting the
operator ideal of weakly compact operators). In fact, let K =N and D
= BN\N. Then by Proposition 2.3, Jp, = K(CK, Jp) = K (I, ¢o). The Josef-
son-Nissenzweig theorem tells us that K (X, co) # L(X, ¢g) for a Banach
space X of infinite dimension, finally the Grothendieck property of [* is
equivalent to L(I%, ¢o) = W(I*®, ¢o} so that Jp) is a proper subspace of
W(CK, Jp) in this case. (The reader who is unfamiliar with the notions and
results employed above is referred to [6] for relevant information on these
topics.)

2) Letting K = BN and D = BN\N we obtain the (well-known) result
that K(I®, ¢) is an M-ideal in L(I%, [*).

3) Let us point out that the M-structure of the space K(CK) is far easier
to determine. Since K (CK) is isometrically isomorphic to C{K, M(K)), it
follows from [2, p. 168] that the M-ideals of K(CK) are in one-to-one
correspondence with the subspaces K(CK, Jp), D < K closed.
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Multilinear singular integrals involving
a derivative of fractional order
by

MARGARET A. M. MURRAY (Blacksburg, Va)

Abstract. In this paper, we obtain L? estimates for certain multilinear singular integrals,
which are analogues of the Calderén commutators involving a derivative of fractional order. The
estimates are obtained by an application of the tent space theory of Coifman, Meyer, and Stein.

1. Introduction. For Ae(0, 1], consider the derivative of fractional order
J, defined for tempered distributions fe %" (R) by

(1.1) (IDI* 1)(©) = £ (©).
Here, ~ denotes the Fourier transform, defined according to the normalization
(1.2) F&=fe ™ f(x)dx.

Let A,, ..., A, R~ C be locally integrable functions; let M, for 1 <j<n,
denote the operator of pointwise multiplication by A;. If T is an operator,
let 8;(T) =[M;, T] = M; T—TM;; let 4, denote the iterated commutator
8,00,-108,-,0...08;. We consider the multilinear operators

(1.3) Cin = CaulAy, ..., A) = 4,(DI™),
(14) él,n = 61,,;(1‘11: s A =4, (H ‘Dll")
where H denotes the Hilbert transform, defined by
(1.5) (Hf) () = —isgn&f (9)-

It is easily seen that C; , = 0 if An is an even integer, and C'l,,, =0if Anis an
odd integer. For all other positive integers n, it is easily seen that

(1'6) C)..nf(x) = 'yn(l) pv. IK,,(JC, y)f(.V)dy1
17 Con () =) pv. [Ryfx, ) S ()dy
where 7,(4), 7,(4) are constants depending on n and 4, and
(18) Ky(x, ) = |x—yr"**lj[f[1 (49— 4,0))

(19) K~n(x:r .V) = Sgn(x'—y)Kn (x,y)
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