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Multilinear singular integrals involving
a derivative of fractional order
by

MARGARET A. M. MURRAY (Blacksburg, Va)

Abstract. In this paper, we obtain L? estimates for certain multilinear singular integrals,
which are analogues of the Calderén commutators involving a derivative of fractional order. The
estimates are obtained by an application of the tent space theory of Coifman, Meyer, and Stein.

1. Introduction. For Ae(0, 1], consider the derivative of fractional order
J, defined for tempered distributions fe %" (R) by

(1.1) (IDI* 1)(©) = £ (©).
Here, ~ denotes the Fourier transform, defined according to the normalization
(1.2) F&=fe ™ f(x)dx.

Let A,, ..., A, R~ C be locally integrable functions; let M, for 1 <j<n,
denote the operator of pointwise multiplication by A;. If T is an operator,
let 8;(T) =[M;, T] = M; T—TM;; let 4, denote the iterated commutator
8,00,-108,-,0...08;. We consider the multilinear operators

(1.3) Cin = CaulAy, ..., A) = 4,(DI™),
(14) él,n = 61,,;(1‘11: s A =4, (H ‘Dll")
where H denotes the Hilbert transform, defined by
(1.5) (Hf) () = —isgn&f (9)-

It is easily seen that C; , = 0 if An is an even integer, and C'l,,, =0if Anis an
odd integer. For all other positive integers n, it is easily seen that

(1'6) C)..nf(x) = 'yn(l) pv. IK,,(JC, y)f(.V)dy1
17 Con () =) pv. [Ryfx, ) S ()dy
where 7,(4), 7,(4) are constants depending on n and 4, and
(18) Ky(x, ) = |x—yr"**lj[f[1 (49— 4,0))

(19) K~n(x:r .V) = Sgn(x'—y)Kn (x,y)
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(see [8], Chapter 3). These operators are generalizations of the so-called
Calder6n commutators, which arise when 1 is taken equal to 1; these
commutators have been extensively studied by Calderén, Coifman, McIntosh,
Meyer, and others (see [1], [3], [4]). In particular, it is well known that C, ,
is bounded on L?(R) if and only. if A, eLip,(R), i, Aje L*(R) (see [1] and
[6]). Coifman, MclIntosh, and Meyer have shown ([3], Theorem III) that C, ,
(for n odd) and 51_,, (for n even) are bounded on L*(R) provided that
Ay, ..., AyeLip; (R). L* estimates for Calderén commutators have also been
obtained as a straightforward consequence of the amazing theorem of David
and Journé ([5]).

Cohen, Gosselin, and others have asked whether it is possible to obtain
L? estimates for the operators C,, and @1,,, under the assumption that the
functions A4, ..., 4, all have differing degrees of smoothness. They found
that the only way to obtain such estimates is to replace each occurrence of
the quotient (d4;(x)—A;(y))(x—»)~* with an appropriately adjusted Taylor
series remainder of A;. They were then able to estimate the L? norms of
these modified operators in terms of the BMO norms of the higher derivati-
ves of the 4; (see [2]).

The case of 4 <1 is fundamentally different. One might well expect that
AeLip, (R) is a necessary and sufficient condition for the L? boundedness of
C;,1 and 51, 1- But the author has recently shown ([6]) that these operators
are bounded on L? if and only if ay = |D|* 4, e BMO(R); i, A; e I,(BMO),
the BMO Sobolev space studied by Strichartz ([9]) which is properly
contained in Lip, (R).

If we consider the restriction of the multilinear operators C;,n and 6,1,,,
to the diagonal 4; = 4, = ... = 4, = 4, it is easy to obtain an estimate of
the form

(L10)  NICon(A, s A Sll2s IC0n(A, .., 4) fll2 < CIAIL Nl L1l

where ||-[l, denotes the norm on Lip,, |||, denotes the BMO norm, o
=|D|*4, and C is a constant independent of A, f, and n. The author has
shown (in [7], Chapter 2) that the estimate (1.10) is valid for n=2; R. R.
Coifman has pointed out that (1.10) for n > 2 is an immediate consequence,
since |K, (x, y), 1K, (x, y)| <1437 K, (x, y) for n> 2 in the diagonal case.

It is natural to ask whether it is possible to obtain L? estimates for Can
and C, , when the functions 4, ..., 4, have differing degrees of smoothness.

In this paper we answer the question affirmatively and prove the following
result for n =2 or 3:

'MAIN THEOREM. Suppose n is a positive integer, and let A;e(0, 1) for
Sjsn Let A=n""(A;+...+4,) and suppose Ajel; (BMO) with o
=|D|7 4; for 1 <j< n Then

©
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(1.11) 1Cam S 125 [ICan fll2 < Cl Al TT Hegll,
j=1
where C is a constant independent of A, ..., A,, f.

The proof of the Main Theorem may be extended to the case of
arbitrary n, but in the interest of relative simplicity we give the proof in the
case of n = 2, 3; the case n = 1 is the result already cited (see [6]). It should
be noted that estimates of the form (1.11) cannot be obtained from the
powerful theorem of David and Journé (see [5]).

We begin by showing that C,, and C,, may be expressed in terms of
operators of the form

7 dt
(1.12) gYOr' {Zs Mgy Y1u Moy o Yom 1 M
oSy,

S A e
Here, S, denotes the symmetric group of degree n; for 1 <j< n, M,,j is the
operator of pointwise multiplication by a;= 4}, and, for 0<j<n,
Y€ {P, Q,}, where P, = (I+t*D*™%, Q, = tDP, and D = —i(d/dx). Expres-
sions of the form (1.12) are obtained by means of the symbolic calculus
developed in [3]. Then, following [3], we show that the problem of estima-
ting the operator norm of (1.11) may be reduced to certain estimates in the
upper half-plane. The necessary quadratic estimates follow from certain
remarkable identities involving the operators P, and Q,, together with the
Tent Space techniques introduced by Coifman, Meyer, and Stein ([4]). These
estimates are computed explicitly in the cases n = 2, 3; we then indicate how
the proofs may be extended to the case of more general n.

The author would like to thank Jonathan Cohen and R. R. Coifman for
helpful conversations during the preparation of this paper, and gratefully
acknowledges the partial support of the National Science Foundation under
NSF grant DMS-8401995.

2. Integral representation formulas for the commutators. In this section,
we use the techniques of Coifman, McIntosh, and Meyer to obtain integral
representation formulas for the commutators. Following [3] and [6], we
define, for ¢ s O, the operators P, = (I+t2>D?%~* and Q, = tDP,. Then P, and
Q, are the operators of convolution with p, and g,, respectively, where p,(£)
=p(td) = (1+e2EH", (&) = §(td) =t&p(te), p(x)=4e™™, and q(x)
= (isgnx)p(x). We also define R, =I—P,, which may be thought of as
convolution with 8, —p,, where &, is the Dirac measure concentrated at 0;
and we set L = P,+iQ,, L= = P,—iQ,. We observe that

@1 L¥ =(IFitD)™*,
22 Py=3(I+itD)™ +4 (I —-itD)™" = 3 (L + L),

23) Q= 5UI+iD)™! ~5 (I —iD) ™ = 3 (L7 ~ L),
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We obtain the following result:
Lemma 2.1. Let ve(0, 2) and set g, = (2/n)sin(nv/2). Then

oo
(2) IDI"= g, { Rit™"""dt,
0
L
(b) D[DP~*=iH|D|*"* =g, [ Q,t™"dt.
0

Proof. Note that

24) T(tlf!)2{1+(tlfl)2}"‘t‘“_‘dt=Ifl“zs1"“(1+s2)“1ds,

(25) [e2 {1+ 1€ e de= E1EP=2 [t (149 ds,
0 0

o0

If we set g, = {[s'"(1+s%)""ds}™!, then (2.4} and (2.5) yield
o

26 & =g, | 1~} 2dt,
@) Elepr= av:f@(c)r-w.

A calculation using residues shows that g, = (2/n)sin(nv/2). The lemma now
follows from the definition of R, and Q,. w

If h is any locally integrable function, we denote by M, the operator of
pointwise multiplication by h. If he %(R), then M, is an element of .o
= %(#(R)), the algebra of continuous linear operators on the Schwartz
class 7 (R).

As in [5], we may assume without loss of generality that the functions
Ay, Az, ..., 4,€CP(R). For Tes and 1 <j < n we define

28 5/(T) = [Myy, T = M, - TM,,.
It is easy to see that J; is a derivation of the complex algebra 7. We shall
enumerate some of its most important properties (see also [3]). For ease of

notation, let 4, denote the iterated commutator 4;06,0...04,; for
1<j<n let aj=A4). We then obtain the following (see [37):

Lemma 22. Let a, feC and S, Teof. Let n be a positive integer, let
1<j,k<n and let 0<I<n-1, Then, with notation as above, we have

(@) 6;(xS+BT) = xd,(S)+ B3, (T).
(b)  5,(ST) = 6,(5) T+ 85,(T).
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(¢) 8,08, = 6,00

@ If S is invertible, 8;(S™*) = —8718;(S)S™.
(€ 8(D)=iM,, |

O 5;(My) =0.

(&) 4.(D)=0.

() For t#0, §(LF) = FtLfM,LF.

o n . . +
() For ¢ 0, (L) = (FO" T L Mgy L Moy oo L Moy L
| oeSy
. G)  Fort#0, 4,(tDfLE) =(Fi4,(L")
=(FUrmiken T LEM,,  LE My, - L Mo,

TSy

Proof. Properties (a)-(g) are elementary; (h) follows. from (a), (d), (e),
and (2.1). Property (i) follows from (h) by a simple induction argument. We
shall indicate the proof of (j). Notice that :

(2.9) [(¢D) —i¥] Ly = #*[(~itD}—I](I+itD)™ !

k=1
= —*[I—(—itD}][I~(—itD)]"* = — Y (—itDy.
F

=0

Thus, by (a) and (g),
k—1 . _
2.10) 4,((DFL7) = i 4, (L7)— Zo(—it)fA,,(DJ) =i 4,(L).
j:

Similarly,
@11)  [@DF (=P L = (=i (DY —IN(I-itD)™* .
= —(—if [I—(itD))(I —itD) ™' = —(—i)* Y. (itDY

j=0
so that, by (a) and (g),
k=1
(12) 4,(@D)F L) = (=1 4(L)=(=1) T (8 4,(D) = (=3 4,(LO).

Then () follows from (i), (2.10), and (2.12). =
Combining Lemmas 2.1 and 2.2, we obtain

. i tion,
Lemma 2.3. Suppose Ae(0, 1). Let [+] denote the greatest integer func
and set = (nA+1)~2[(nA+1)/2], v = ni—2[nA/2]. For any real number x,
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let g, = (2/m)sin(nx/2). Then
(@) If v#0 and K(n, 3) = —%(~1)""21g  then

213)  Ca, n, 4) J IR M..,,(l,Lf gy e L Mag, Ly

0 oeSy
; At
+('— 1)” L‘t}' Maﬂ.(l) Lt+ Maa(z) Tt Ll+ Ma,(,,) Ll+.] (tl l)nT

() If w0 and K(n, 2) =4$(— DA+ DV2 0, then

@14 G, =K, A)j T LI My L7 M, o L M, LT

0 oeSy

nt1 o+ -+ ,,
LS My L Moyt L Mo, LED(02 7205

Proof. If v #0, then ve(0, 2); since ni—v is even, we have
@19) DI = D"=IDP" = ¢, I@D)"l-v(z-n)rﬂ-ut
by Lemma 2.1. Consequently,
@10 Ci= 4(DM) = —¢, ] 44D P) e

-%0, T {A,,((tD)nA—v Lf)+An((tD)"}"V[«*)}t“M,‘!t_t_‘

Combining (2.16) and Lemma 2.2(j), we obtain (2.13).
If u+# 0, then ue(0, 2); since nA+1—pu 1s even, we have

(217)  HIDP™ = H|D D15 = g, [ —iQ, (DY~ #+1 ¢~ dg
0

by Lemma 2.1. Thus
@18 Cip =4, (HIDI) = g, [ 4,(~iQ,(D)*~#* )¢~ dt
0

w
= o, [ 14Dy L) = 4,0y L),
Combining (2.18) and Lemma 2.2() yields (2.14). w
3. Reduction to estimates in the upper half-plane. By Lemma 2. 3,C,,nand
Cl,, may be written as sums of symmetric multilinear operators of the form

(3-1) S(ay, ..., a,) = J"(t1 M, lag, ..., an)_t_
. )

©
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where, for feL*(R),
(32) Mn,x(ala EREY n)f Z XllMao(”XZtMn a(2) * X M Xn+1,!f:

8g(n)
aeS)y
with X, X5, ..., Xp+1 € {P, Q). We aim to show that S(ay, ..., a,) f satisfies
the estimate

(33) IS(ay, ..., a) flla < K(n)(f"l el ) 11f 12
. J=1

where K (n) is a constant depending only upon n. Our Main Theorem is an
immediate consequence of this,

Let RZ = R x (0, co), and let ||-||7 denote the norm on L*(R%, dxdt/t).
In this section, we contend that (3.3), and hence the Main Theorem, are
consequences of the following:

MaiN Lemma. With notation as above, and under the hypotheses of the
Main Theorem, there exists a constant K independent of Ay, ..., A,, f, such
that, for Xe{P, Q},

B4 X M, Moy (@ss s au- ) fII7 <K(ﬁ fotsl) I11)2-
ji=1

(We convene that, for n=1, “M,.,,(ay, ..., a,~,)” is simply P, or Q).

In the interest of simplicity we restrict our attention to the case
n=2; the general case is similar. For notational ease we write a; = a, a,
=b, X, =X, X, =Y, X3 =Z. Abusing notation in the usual way, we do
not distinguish between a and M,, b and M,. We are interested in estimating
the L? norm of

63 (6, 0)f = | (X,aXbZ4 X,bY,aZ) (%
0

We claim, first of all, that an expression of the form (3.5) can be written as a
sum of expressions of the following types:

6O L bf=(@X.a5bZ+0XbYaZ) [P 5
0

() R(@, b)f= ] (X,a%bZ,0,+ X,b%,aZ,0) £ (1'%
0

B9 1 b= | (KW TbZA KW KaZ) [
0

where W, X, Y, Ze{P, Q}, and the X, ¥, Z occurring in (3.6)~(3.8) need not
be the same as those occurring in (3.5).


GUEST


146 M. A. M. Murray

We can easily compute the L? norms of (3.6)-(3.8) by duality. If £, g are
complex-valued functions in L?*(R), let us define the (real) inner product of f
and g by setting

(39 flgy = [fx)g(x)dx.
R

With respect to this inner product, P¥ = P,, Qf = —Q,, and multiplication
operators are selfadjoint. Let us compute the norm of the operator L(a, b) by
duality; it is equal to

(3.10) sup  [<L(a, b} flg)l.

Irl2=llgll2=1
Now note that

@311 [KL(a, b fig) =

o0

T @uX,ax b2, 1+ X %z, o>
[

= dt
g <X,aY,bZ,f+X,bY,aZ,f[ ng>(t1_l)2‘t"’

I(£* =42 (X, a¥%,bZ, f+ X, bY, aZ, fIF Q. gll3
10:gllF {47 X, a¥,bZ, fII5
+]I(t1~%? X, bY, aZ, f ||}

where we have used the fact that QF = —Q,, together with the Schwarz
inequality and the triangle inequality. An application of the Plancherel
theorem shows that

. 1
ERY) IQ:gll3 < :/—ngHz

<
<

(see [3], Proposition 4). Thus estimating the operator morm of L(a, b) is
reduced to estimating

(3-13) e~ X,a%,bZ, fl7  and |t~ X,bY,aZ, 1|3 .

The problem of estimating the operator norm of R{a, b) is completely
analogous, in view of the fact that :R(a, b)) and L(a, b) are “essentially”
adjoint to one another. )

It remains to estimate the operator norm of I(a, b). We have

(-14) [I(a,b)flg)l

o0
= |[ KA 62, 1+ X, bW T a2, 7165 (0=

[ {<X,aW YbZ 119>+ X, bW, Y,aZ, [ |9} (£ ™)

0 t

o
<
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o . ~ di
[ (CYbZ, [ W aX, g>+ Y aZ, | W bX, g} (¢! ’1)27
0

<

o d
[ %bZ,f] Wax,g><z1"*)27’i
0

0 dt
+ r (YaZ, f| W;bng>(th}')27‘~
0

If we let Ay =8, Ay =¢ then ("M% =:'"%'"% and, by the Schwarz
inequality, we obtain
(3.19) I<I (a, b) f 19| <IE* 9 %bZ, 1113 " =) W, aX, glI3
+Ie* D Y, aZ, £ ) Wb Xl

Hence the problem of estimating the operator norm of I(a, b) is reduced to
that of estimating expressions such as
(3.16) ¢ ~% Yaz, fll5 and |[(™9) bZ, fll7
where Y, Ze{P, Q}. _

Thus it remains for us to establish our claim that any expression of the

form (3.5) may be written as a sum of expressions of the form (3.6)3.8). We
shall make use of the following identities:

Lemma 3.1. (a) P, = P2+ Q7.
0
(b) t—é—t-P, = ~207.
0
(©) t‘é‘,Qt =2P 0,0,
It
Proof, Identities (b) and (c) are given in Proposition 2 of [3]. To prove
(a), note that the symbol of P?+Q? is given by
(3.17) (142 242 P+ 8) 2 = (142877

which is the symbol of P,. m

To prove our claim, we consider various cases, corresponding to the
yarious possible values of X, ¥, and Z in (3.5):

Case 1: Y= P. In this case,

© d
(3.18) S(a, b) f = [(X,aP,bZ,+ X, bP, aZ,)f(tl”‘)z—tﬁA

0
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We may use Lemma 3.1(a) to write S(a, b)f as the sum of Iy(a, b)f
+1,(a, b) f, where, for j=0 or 1,
® o dt
(3.19) I;(a, by f = [(X,aY3bZ,+ X, bY}] az) f (¢! ‘)2—[
0
with Y, = P, Y; = Q. Iy(a, b) and I, (a, b) have the same structure as I(a, b).
Case 2: X =Y=Q, Z = P. In this case,
(3.20) Sa, b = j"(Q. aQ, bP,+Q, b0, aP) f (1 l)z ------

we integrate by parts, using Lemma 3.1(b),(c). Let du=t'"2*dt and
v =(Q,a0Q,bP,+Q,bQ,aP,) f; we obtain

(3.21)
1 1
S(a, b)f— S(a, b)f Lz(a b) f- lz(a, b)f+ Rz(a b) f
where
(322 Ly(a, b) f = }J(Qr P,aQ,bP,+Q, P, bQ,aP) f (t‘"‘l)zﬂtE
0

®

(323) I(a, b) f= j(QtaQtPtth+thQt Plapl)f(tl“l)zii;
0

]

(3.24) Ry(a, b) f= [(Q:aQ,bQ}+0,bQ,aQd) f ('~ ’1)2%5

o

Consequently, we have

(3.25) S, b)f = ~L2(a b+ 212(a, b) - Rz(a b/,

where L,(a, b), I,(a, b), and R, (a, b) have the same structure as L{a, b)
I(a, b), and R(a, b) respectively.

Case 3: X = P, Y= Z = (. This case is essentially adjoint to Case 2, An
analogous integration by parts shows that S(a, b) is again expressible as a
sum of operators of the form L(a, b), I(a, b), and R(a, b).

Case 4: X =Y=2 = Q In this case

(326) S(a,b)f = J"(Q,astQﬁQ;bQ'aQ,)f G ‘)Z

i

Once again, we integrate by parts, using Lemma 3.1(c), letting du = '~ 234y,
v =(Q,aQ,b0;+0,b0,aQ,) f. In this manner we obtain

327

500,801 = 52550, ) =1 L@, B~ 1@, b - Re(a, b
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where

62 La(@hf = [(QPaQbO+0,Pb0Q)f (-

629 Lila b= (.00 PbO+Qib0, F,aQ) f (A,

2 ©

(3.30) Ry(a, b) f= [(Q,aQ,bP,Q,+Q,bQ,aP, Q) f ('~ ‘)2%5

<

Consequently, provided A # 4, we have

(3.31) S(a, b)f = 51 2 57— Rala, b) f.

2
241
Note that, if 1 =%, the operator Cm = 0; moreover, consideration of the
formula (2.13) shows that, regardless of the value of J, the operator (3.26)
does not arise in the expansion of C, ;. Thus, whenever the operator (3.26)
arises, it can be expressed as a sum of operators having the same form as
L(a, b), I(a, b), and R(a, b). .

This establishes our claim, and thereby shows that, for n = 2, the proof
of the Main Theorem can be reduced to proving the Main Lemma.

We make a few remarks concerning the case of more general n.
Analogous arguments, making use of Lemma 3.1, can be used to show that,
in general, any operator of the form (3.1) arising in the expansion of C, , or
C“ may be expressed as the sum of operators of the form

L Laa, B e by f

—andt
B30 @)= ] 5 VMo o YoMy Yovs %
0 oeS)y
in which, for some je{2,3,...,n}, Y,,e{P? QF P,Q,}, and for all other
values of j, Y;e {P, Q}; and operators of the form

] dt ° dt
(3.33) (4" Q My (0, .y a) or [E 7 Myy(ays - ) Q—
S 0

t

with M, defined as in (3.2). Duality arguments may then be used to show
that the Mam Theorem follows from the Main Lemma in the case of n > 3.

4. The tent space, In order to prove the Main Lemma, we will make use
of certain ideas from the theory of tent spaces of Coifman, Meyer, and Stein
([4]) together with facts from Hardy space theory. We begin with some
definitions.

DermviTION 4.1, Let f: R — C be a measurable function with respect to
the measure dxdt.

4 ~ Sludia Mathematica t. 87 z. 2
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(a) The square area function of f, S(f), is given by
@1 SHE=[ [ IS, oF e 2dyd]"
vyl 1

(b) We say that f is an element of the tent space T, if and only if
S(f)e L' (R). We define

“2) ANz, = SN

(c) We say that f is an arom for Tp, if and only if there is a finite
interval I < R such that f is supported in [ = {(x, )e R%: [x—t¢, x+t] €1}
and

(43) [ 1S v, 07 dyde]? < |12,
I

The set T is called the tent based on I.

Coifman, Meyer, and Stein have obtained the following useful characte-
rization of T, (see [4], Lemmas 1 and 2 and Theorem 2):

ProposiTion 4.1. Let f: Ry — C be a measurable function with respect to
dxdt.

a) IS(Nl, = \/illfllz, moreover, sz is a Ty, -atom, then feT,; and

nfnyz,1 <2

(b) f is an element of Tp,; if and only if there is a sequence {a) of T~
atoms and a sequence {A» of complex coefficients such that

(44) f=3 hay
k=1

@5) 3 4l < +oo.

k=1

Moreover, the T, norm of [ is equivalent to the infimum over all
representations (4.4) of the sums (4.5).

There is an intimate relation between the space T, and the Hardy
space H?, defined in terms of atoms. We shall recall a few theorems and
definitions from Hardy space theory (see [10], section 2).

Dernirion 4.2. Suppose g > 1, s is a nonnegative integer, & > max {s, 0},

=¢g+(1—1/g), and x,eR. Let f be a locally integrable function on R, and
let SO x) = f (%) —xo]®.

(a) f is called a (1, g, s)-atom centered at x, if and only if f is supported
in a finite interval I centered at x,, and

@6) IIflly <ty
@n If (x)x’ dx =0 for all ronnegative integers j < s

e ©
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The atomic space H'%* is the set of all locally integrable functions f such
that

(4.8) f=Y ha

where A eC, g is a (1, ¢, s)-atom, and Y |4] < + oo.

(b) f is called a (1, q,s, ¢-molecule centered at x, if and only if
fifeel’(R), f satisfies (4.7), and

49) HANgeNsely = = (f) < + 0.
It has been shown that, for all ¢ > 1 and for all nonnegative integer:

s, H** = H', the atomic Hardy space whose dual is BMO (see [10]).
Moreover, the quantity

(4.10) inf {14 S =Y Ao, @ (1, g, s)-atoms, Y |4 < + o0}

is equivalent to all other norms on H'. Moreover, the (1, g, s, £)-molecul: ::
belong to H! und are fundamental building blocks for the space, in the
following sense:

PropPoOSITION 4.2, Let q > 1, and suppose s is a nonnegative integer and
¢ > max {s, 0}. There is a constant C depending on gq, s, & such that

(@) If f is a (1, q, s, &)-molecule, then feH"%° and

(4.11) 1/l < CR(f).

M) If fis a (1, q, s)-atom, then it is also a (1, g, s, &)-molecule and
(4.12) QN <

Proof. This is the content of Proposition 2.3 and Theorem 2.9
of [10]. m

We now examine the relationship between H' and T,,;. For conveni-
ence, we begin with the following definition.

DeriniTion 4.3. Let fe L!(R) and let B, f > 0. We say that f is a (B. fi)-
psi function if and only if

413) fO) =0
4.14) if |x| = 1, then |f ()| < Blx|"**;

415) :lef (£ "f <B.

We obtain the following generalization of Theorem 3 of [4]:

PropositioN 4.3, Let W be a (B, p)-psi function, Y, (x) =ty (xt "), f1(x)
=f(x,t)eTy,, and set

0

d
416) 9= [hi

[
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Suppose, moreover, that 0 <& <p.
(a) If f, is a Tyq-atom, then g is a (, 2, 0, g)-molecule, and
(4.17) Q2(g) < Ce, p)B
where C(e, B) is a constant depending only upon &, B.
(b) If f, is any T,y function, then geH', and
(4.18) lgllr < C e, B)Bllfllry,,

where C(g, ) depends only upon ¢, B.

Proof. Note first that (b) is immediate from (a) by Proposition 4.1 and
Proposition 4.2(2). Thus it suffices to prove (a).

We begin by observing that, so long as g is integrable, we must have

4.19) jg (x)dx =
because i (0) = 0. The integrability of g will follow from our estimate of 2(g).

Suppose that f; is a T, j-atom supported in a tent I, and let x, be the
center of I. We shall show that g is a (1, 2, 0, &)-molecule centered at x,. If ¢

=2 in Definition 4.2, then w =¢+1/2, a/w =262+, 1—g/w=(2
+1)~ 1. Thus
(420) Q(g) = lgllF=+ ™" gellg+ 0™
where
@21) g+ 17" = [ 1g G x—xof2+* dx] e 2,
R

We compute ||gll, by duality. For he L*(R), we have

62 (Gl =[] i
- [ @mpt
()
=7 | (¥ (-i0R @1~ zsd""’f‘
+
2
<@t [H (- hepid f‘“J [Hu, e:)l”"“’J

R
<Bllhllz||f||z B|[hllo 2]~ *2,
where we have used Plancherel's Theorem and (4.3). Thus
(4.23) ”g||72.u(2g+1r1 < p2e2e+ 1)1 ”l—a(zan)"l.

©

Multilinear singular integrals

Moreover,
4.24) [lg () [x~xo/* ¥ dx = I, +1,
R
where, letting |I] denote the Lebesgue measure of I,
(4.25) Iy = I 1g 0ol Ix—xo** ' dx
|x—xgl <10/ K
< 102u+1 11[23—% 1 llg”% < 102n+1 BZII'Ze’
(4.26) = [ g2 x—xel**" dx.
%= xgl > 10[1]

For |x—xq| = 101}, we have

1172
j jrlw( )f(y, r)dy%‘

@z lg (o)l =

b2 dydr
<B [ [P0, rnl—

dydt
CEBl—x" | [#1705 012
0
where C(f) is a constant depending on . Now

/2
@m) ] o100 b

['”;2 jos- 1dydr]1’2( I 1150, )izdy‘”)

S@B)™VA2THIPFIA TR = (2p) 7 V2 27,
Thus

(4.29) lg ()l < BC(B) P |x— x| =177

where C(pB) is a constant depending on f. Moreover,

(4.30) [ o2 Vdx = (26 ~2)" (10|12

[l 2 1001|
whence, by (4.26), (4.29), and (4.30),
(431) I, < C(e, B)B*|I|™.

Thus, by (4.21), (4.24), (4.25), and (4.31),
(4.32) O llgeNger D7t ¢ Cle, p)B™* 1)—1"]«(2”1)—1

153
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so that, by (4.20), (4.23), and (4.32),

(4.33) Q(g) < Cfe, B)B.

This completes the proof of (a). m

We are now in a position to prove the following useful generalization of
Lemma 9 of [4]:

ProrosimionN 4.4. There is a constant K such that, if

(a) ¢4, @, are two functions such that, setting @;, =t"" @;(-t™"), we have
(434) lo; ()] < Ci(1+xH) 1,
where C; is independent of xeR for j=1, 2;

(b) g(x, 1) =g,(x) satisfies y = sup|g,e L*(R)

t>0
(© f(x, 1) =£(x) satisfies f,e L*(R%, dxdt/t);
(d) M(x, 1) = M,(x) satisfies M, = sup||M,]l,, < o0,
>0

then F(x, t) = (p1, *f) ()02, %9} (x) M, (x) defines a function in Ty, with
norm dominated by KC; C, M|\ flIF |1¥ll2-

Proof. Let ¢, denote the Poisson kernel on R; i.e.,

(4.35) 0 () = 2t

nﬁ+x
Then, for j=1,2 and xeR,
(4.36) [@;(x) < nCylop, ()]
Thus
(437) IF (v, )l < ©* Cy C, M, (@, %1 £il) (@1 *lgel) ().

If [x—y| <t, it is easily seen that
(4.38) @+l fDO) <H*(x), (@ *1gh(¥) < 5g¥ (%)

where * denotes the Hardy-Littlewood maximal function. Thus the square
area function satisfies

(439) SO <2 CCML ] 15 9gr (P e dyai]
Jx=yl<

1/2
512 Cy Cy May® (3 (ﬂf* (P )
* whence

(440) IS(EMl; < 25/202 C1 Co ML 1Y, 144115

e ©
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by the Schwarz inequality. Since the Hardy-Littlewood maximal operator is
bounded on L?(R), we obtain, by Fubini’s theorem,

(441) ISy < KCL Cy M, IIAlZ . =

The following generalization of Theorem 4 of [4] will be crucial to our
proof of the Main Lemma:

Prorosition 4.5. Let Be(0, 1), and suppose that

(a) For j=1,2, @; is an L' function and C;, T; are constants such that
supp &; & [— T, Tj1, ¢,€ C*(R), and, for all ¢cR,

(4.42) ePE<C T

where the superscript denotes the derivative of order s, and se{0, 1, 2};
(b) M(x,t)=M,(x) is a function and Ty > 1 a constant such that
suppM, S [~t"! Ty, t 7 Tp] and

(4.43) M, = sup|IMil|o, < +o0;
t>0
(©) g(x, t) = g.(x) satisfies y = sup, »olgd € L* (R);

() f(x, 1) = f;(x) satisfies feL*(R%, dxdtft).
Furthermore, set @, =1t~ @;('t™") for j=1,2 and define

(4.44) G=HIDI" [ M, (@1, %f) (24 %g) t* " dt.
0

Then Ge H*(R), and
(4.45) Gl < KpCy Cz(To+T1+Tz)"M [Py WAL
where K, is a constant depending only upon f.
Proof. Let S = Ty-+Ty+ T;. For j=0,1,2, let &; =0q;5; ie,
(446) ®)(x) =S o;(x87Y),  B)(8) = ¢;(50).
Note that supp®; < [—1, 1]. For ¢t >0, we let &;, =t &;(-t™"

Let ne CP(R) be an even nonnegative function, supported in [—2, 2]
and identically one on [—1, 1]. Define ¥ to be the function for which

(447) V(&) = —isgn & n(&).
It is not difficult to show that there is a constant B depending upon f for
which ¥ is a (B, p)-psi function. It is easily seen that

d
(4.43) G(x) = 8" [ Wys* My (@1,% 1) (@2 *gx)}(x)Tt

mSﬂ lPx“‘y]wSr (e %Py % fr) (nr*¢21*95t)}(x)"

o R oqa
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Now note that

449) ||y, % fellF = 2m)*? [

ey

o dEd
jecaer st | < coums.

.8

Moreover,

(4.50) 4C, |ly¥(,

”SUP {1®2, *gs:llnz ”SUP {lad * V;Hz

by an application of Theorem 2, Chapter 3 of [8].
" It is easily seen that there is a constant C, >0 for which
(4.51) (Il < C(1+[xH) 1
Thus we may apply Proposition 4.4 to obtain
(4.52) [|M s, (1 % Py, % foo) (1 % Dae *gSt)”Tz 1 S Cz Cy CaMLILANS ]2,

where K is a purely geometric constant. The estimate (4.45) then follows
from (4.48), (4.52), and Proposition 4.3. =

5. H' estimates, We now turn to the proof of the Main Lemma, which
involves an estimate in L*(R%, dx dt/t) which we can obtain by duality. Note
that

(51) “(tlﬂl)"XtManMn—l !(ah LEEF] an—l)f“;
: N It
= sup [T MM, (e D 1h%
gl =110
T u . dt
g (j;(tl My My-3 (@15 s @) 1 X B~
= sup || Gu-1(ay, ..oy Gyq) S
Il 3 =1
where
(52) (Gn~1(a1» ey an-—l)f)(x)

= HID ™ [ LX) (Mo, an..lyf}(x)('v"“‘)"flf

Thus the Main Lemma is proved once we have estimates of the form

(53) ’(HIDP-A:ftxtha(x)[m(x)a-“%i’; < CIHIE 1Al

ul
=1
K(H llo 1) 1Al 3 41.£1 2,

where C is a constant depending only upon A, K is mdependent of
A, ...y Ay, by, and £ and Y is equal to P or Q. In this section, we will use

G4 1Gu-1(ay, ..., @y fllgt <

nz2,
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results from the previous section, together with identities involving P and Q,
to establish (5.3), and (54) for n = 2, 3. Finally, we will indicate how (5.4) can
be obtained for n > 4.

We proceed via a series of lemmas.
Lemma 5.1. Suppose that 6€(0, 1), Ae S (R)nLips(R), a=dA’, and
Xel{P,Q}. Then, for all t >0,

(55) =2 LX, alll < T(14+8) [|Al}5

where ||*||; denotes the norm in Lip,.

Proof. Since tDP, = Q, and tDQ, = R, = I~ P,, we have
7 [Pa] = it™%(q, * A),
17Q, a]= it ™% (A~ p, * A).

(5.6)
.7)

Now, 4,(0)=0, #(0) =1, and |g,(2)) = p(2) =3¢, s0

58) (¢ Poalo) =74 .fq[f—j—y] {4 (x)—A(y)}dy’
<t "'Ilp[ ]IAHalx ydy
= HllAll [ el de = T (1-+9) 1Al
(59) |10 Qa() =170 jp[ }{A(x) Ay)}dy]

<ri-d j'p[%l}u,:{“”x—yﬁdy =T(1+8)|4ll5. w
R

Lemma 5.2, Let 6&(0, 1). Then 1;(BMO) is properly contained in Lips(R).
Moreover, there is a constant Cy such that if AeI,(BMO) and o = |D|’ A, then

(5.10) 14lls < Callodl..-

Proof. See the proof of Theorem 34 of [9]. m
Lemma 5.3. Let p(x) =4e™ " and q(x) = isgnp(x), as above. Then there
are sequences (P Do, {Gxoreo < S (R) having the following properties:
(@ pe and §, are supported in A,, where Ag=[—1,1] and A,
= {x; 2k~2 <ix| <24 for k= 1.
b) p= Z and § = Z Gy

k=0 k=0
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(c) There is a constant C such that for all nonnegative integers k and for
j=0,1,2, we have

(5.11) (B (&) < C27 3%,

(5.12) g8 (&) < C27 Ik

(5.13) Pe(X) < 2Cinf (27% 87 *[x)~2),
(5.14) g () < 2Cinf {1,47%|x| 2},
(5.15) lpall < 4C-47F,

(5.16) llgelly < 4C-27%

where, in (5.11) and (5.12), the superscript denotes the derivative of order j.
Proof. The functions p, and g, are defined and discussed in [6], Section
3; properties (a) and (b) and inequalities (5.11) and (5.12) follow from that
discussion. Inequalities (5.13) through (5.16) can be shown via direct compu-
tation using the inverse Fourier transform. m -
In what follows, let p, =t"1p(-¢7") and g, =1t~
nonnegative integer k.

Lemma 54. For 6e(0, 1) there is a constant Cjs such that for all

Y (-t~ 1) for each

AelLips(R), and for all t >0,

(.17 (|4~ o+ Al < CyllAls,

(5.18) 0P * Al < C 27414 for k>0,
(5.19) 70 lgu % Allo < ;274 A)); for k=0

Proof. Note that, since p,(0) = 1, we have

(520 JA(X)~po,*xA(x) =

- ,!‘Po[ic{l] {A(x)~A(y)}dy’

<\ Alls [ Ipo (@)l |2/° dz
R
1 ot
< )| Alls 4C {[28dz+ [ 272 dz}
0 i

4c
=1*]|4ll, =%

where the second inequality follows from (5.13). This establishes (5.17). If &
=1, we have p,(0) =0, so that

icm°

(5.21)
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[Py x A (X)) =

-1 X~
t 1!‘11,,[-—;—)1—] {A(x)—A(y)}dy’
<) Alls {1pi (2 |2/ dz
R
27k w©
SO Ally-4C 27% [ 22dz+87% [ 2272dz)
0 2ok

4ac

~ 52

,6HA“ 2 (2+&k,
1-

where again we have made use of (5.13). This establishes (5.18); an analogous
argument, using i (0) = 0 and (5.14), establishes (5.19). m

Lemma 5.5. There is a constant C such that if

(@ Ay ..oy 4e(0, 1), with Aj+24,+...+4,=nd;

(b) For each je{l,...,n}, Bjef/(R)r\Liplj(R) and b; = B;

(c) For each jel{l, ..., n}, X;e{P, Q}, while X,e{P, 0,, R};

(d) g,(x) = g(x, 1) satisfies y = sup,,o|gd e L*(R),
then w, = (rlyl)" [Xl.lbl] '[Xz,:sz [Xn,rbn]'[Xrgz] satisfies @ = Supt>0|wt|
e L*(R), with

C(ﬁ ra +A'j)“Bj”Aj)”’y“2-

J=1

(622 llwollz <

Proof. By Lemma 5.1

"

llollz < (H

(5:23) (1+4)1B)l13,) Hfglg [X.g]|l2-

Now note that

(524 supl[R;gJ(x)! sup {lg. (| +1[P, g I ()]} < X)+supl[P:gr](x)l

Moreover, if Xe{P, Q}, it is easily seen, by Theorem 2, p. 62 of [8], that
(5.25) sup [LX, ] (3 < {f sup. Ip()l dz}y* (%)

={4.r£e "’dZ}v (%) = y*(%)

where * denotes the Hardy-Littlewood maximal function. The result follows

from the L? boundedness of the Hardy-Littlewood maximal operator. m
LeMMA 5.6. Let n be an integer greater than 1, let' Ye{P, Q}, and let

heL?(R%, dxdt/t). Under the hypotheses. of Lemma 5.5, the Junctions G and A
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defined by

(5.26) G=HID|“‘"T("1:[ (X, b0) [ X, k] [Yig ('™ ‘)”
0 j=1

(5.27) A= H|D]*™* f[X h1-[Y g1~ ‘)*

are in H', and satisfy the estimates
n=1

(5:28) Gz < C(TT B ) Iz A5
i=1

(5.29) llr < Kl7ll2 llA]lZ

where K is a constant depending on A and C is a constant depending on n and
Aty eees Ay

Proof. The proof is an application of Proposition 4.5. Notice that, for
each jell, 2,...,n—1},

(5.30) X1 = f b,

th

where Xt = Prye OF Guyy according as X; =P or Q. In turn, we have

(A —pos#d) if X;=Q and I, =0,

1- Z -
(531 (" Mxyxb; = tmj{(p,j,,*A) if X;=0Q and ;> 1,
t J(qu,t*A) if Xj=P and 1]?0.
By Lemma 5.4, we have
1—-2; -
(532) Sup(t" ™) %y, bl < €427 B,
If we set
5 ‘ nl s
( 33) M((lla (R ln-— 1) = jl-Il (t /) x}.l,l:' *b.l':
(5:39) My, bny) = ?EIOJHMJH, covs byl

then we have

(5.35)
Supp M, (I, ..., hyoy) € [—71 42" 4. 4+2 1), 1421 4 42y,

. . oh—1
(5.36) Moty oo by < TT €327 By,
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Moreover, we have

o

(5.37) G=3Y ¥ ... Y Gloly, ..., 1)

1=011=0  1,=0

where

(538) Glos Iys -y ) = HID|' ™ [ Gatgu ) My(l . be1) O, % gt dt

and x;,, = Prg. OF ¢y, according as X = P or Q, with y, , defined analo-
gously.

Using Lemma 5.3(a),(c), we may apply Proposition 4.5 with § =1-2,,
to see that G(lo, Iy, ..., L)e H'(R), and

(539) ”G(lOs lla LEERY ln)llﬂj'

n
! - - -
sKM[Z 29 T T ML e L ) I IS

The estimate (5.28) now follows on combining (5.37) and (5.38).
The estimate (5.29) is still easier. Note that we may write

(5.40) A= 2 Z A(l, m)
= 0m=0
where
(541) A(l, m) = H[D[*™* [ (xy % h) (e ¥ gt dt.
V)

By a simplification of the argument in Proposition 4.5, we obtain the
estimate

(542 (AU, mllgs < K @427 727127 " |2 I3 5

combining (5.40) and (542) yields (5.29). w

To complete the proof of the Main Lemma, we show how the estimate
(54) can be obtained from Lemma 5.6, To do this, we need the following
identities involving P and Q: ‘

Lemma 5.7, Let f, g be functions in & (R), possibly depending upon t.
Let Dy =tD. We have

(a) P.(fg) = [P, f1'9~Q,((P. /1 [D,g])~ P.([Q, f1-[D gD
(b) 0,(fg) =[Q: f1 9+ P.([(P. f1-[DgD) - (2, f1-[D; 4D,
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©  Pfug=CPf11Qg]-Q(PS1[RgD—P([Q ][R g].

@) PfPg=[P.f1[Pgl-Q(P ST [QgD)~P([QS] [Q:g],

©  GSfg=[0/110g]l+P (P S1[Rg)-Q[Q ][R gD,

O QfPig =10 f1 [Pgl+ P[P f1[Qg])—0Q([Q ][O gD
Proof. It is not difficult to show that

(543) L¥(fg) = [Lé £1-g kit LECLE £1-[D,g))

where, as before, L* = P, iQ, = (IFiD)™! (see Section 6 of [3]). From this
it is easy to establish (a) and (b). Identities (c) and () follow from (a) and (b)
by letting [0, g] play the role of g; likewise, (d) and () follow from (a) and (b)
by letting [P, ¢] play the role of g. m

Lemma 5.8. Let a, b be functions in 5(R), possibly depending upon t. We
have

(@)
(b

Q:aQ,b+Q,b0,a = R,([Q, a]-[Q,b]) + R, ([P, a] [P, b]),
P aQ,b+ P, bQ,a= 0, ([Qal [0, b])"{'Qt([Pt al [P, b]).

Proof. Since Q, =D, P, and R, = D,Q,, (a) will follow from (b). By
Lemma 5.7(c), letting f =a and g = b, we have

(544)  PiaQ,b =[P ] [Q,b]~Q,([P,a]-[R,b])— P,([Q, ][R, b)).
Moreover, since R, = I—P,, we have
(545) —Q([P.a] [R b)) = —Q,bP.a+Q, ([P, a] [P, b]),
(5.46) —P([Qa]-[R b)) = — P, bQ, a+ P,([Q,a] - [P, b])
whence, substituting into (5.44), we obtain .
(547) PyaQ.b+ P bQ,a =[P, a]-[Q,b]—Q,bP,a

+Q, ([P a] [P, b])+ P, ([Q, 4] [P, b]).
By Lemma 5.7(f), we have
(548)  [P.al [Qb]~Q,bP,a+P,([Q,a] [P,b]) = Q,([Q, ] [Q, b)).

.Combining (547) and (5.48), we obtain (b).

We now use Lemmas 5.7 and 5.8 to show how the estimate (5.4) may be
obt‘auned in the cases n=2 and n=3. We begin with the case n =2, in
which we are concerned with the function

54 Gi@)f = HIDA2 [ R Xy X, 0P
]

e ©

icm
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where X, X, X, P, Q]. By Lemma 5.7(c}(f), G, (a;)f may be rewritten as
the sum of

(5.50) G = HIDI"™ ™ JX;h] [X10.]-[Xa, £ et

and two functions of the form

G50 A= £HID' T LAY WK e (2,700

where W, Ye {P, Q) and Ze{P, Q, R}. We claim that G and A4 are in H?,
with norm bounded by C|l4yl,, I/ Nz 1715, where C depends only on 4, and
A,. In the case of the function G, this is immediate from Lemma 5.6. For 4,
we use Lemma 5.5 to see that

w =Y a1 2 /]

satisfies @ = sup,s.q|w/eL?(R), with lleoll2 < Cay [l A44lls, Ifll2. The desired
estimate for A is then a consequence of Lemma 5.6. We obtain (54) in the
case of n =2 by applying Lemma 5.2.

In the case n =3, we consider the function

. o0 _ d[
(552 Galay, a)f = HIDI'™ [[X,h]- My, (as, @) /(4P
0
where

(5.53) My (ay, ) f = X1,00 X202 X3, [+ X102 X5,01 X5, f-

We make repeated use of Lemma 5.7(c)-(f), beginning with the expression
X,,a X5, f for j=1,2 In consequence we see that

(5.54) My, (ay, ay) f =8z, (ay, a3) [+ E;p (a4, ay) f
where

(5.55) :
Solas az) f = Xy (g [Xap 00 [ X, SO+ X (a2 [Xasa1] [ Xar D

and E, (a;, ay)f is a sum of functions of the form
(5.56) W, ([ Yo, ] Zoy ([Ya, @) [Z1, /D)
where We (I, P,, Q,}, Yo, € (P, Q}, and Zo, Z,€{P, @, R}. Defining

@ s dt
(557)  Ey(ay, a)f = HID|'™ [LX K] By (ar, a0 /¢ o

we easily obtain an estimate of the form ’
(5.58) (B3 (a3, a2) fllgt < Cagoagas 1Asllay 4allay 12 1612
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by Lemmas 5.5 and 5.6. It therefore remains to estimate
~13 % —padt
(559 Sy(ana)f =HID'™ [[X.h]-Saulas, a) f£' 74
0

It is in estimating this operator that we make crucial use of the fact that
Sa.(ay, az) is symmetric in a; and a,, in an application of Lemma 5.8.

By Lemma 5.7(c)(f), S,,(a, a;) f may be written as a sum of expres-
sions of the form

(5.60) W[Ya, Xy a0+ Yia, Xa,00]-[2, 1))

where We{l, P,, @}, Y& [P, @}, and Z,e{P, Q. R} I Xy =P, Lemma
5.7(d)(f) shows that [Ya; X,,a,+ Y, a;, X, ,a,] may be expressed as a sum of
functions of the form

(5:61) . WY, a00Y2,4,),

with Wi,e{l,P,Q}, Y,e{P,Q} If X,, =0, then [Ya, X0
+%a;X,,46,] has a similar expression; but in this case the symmetry is
crucial and Lemma 58 must be used. In any case, Lemmas 5.7 and 5.8
enable us to write S,(ay, a,)/ as the sum of H! functions which can be
estimated by Lemma 5.6.

In the case of n =2, 3, we have actually proved the following:

LeMMA 5.9. Under the hypotheses of the Main Theorem, we have, for n
=2,

n- 1
(5.62) 1Gy-1 (a1, ..., @pey) flln < K(jﬂ AL R LA
=1

where K is independent of Ay, ..., A,_, by, and f.

To prove Lemma 5.9 for n > 4, we must make repeated use of Lemmas
5.7 and 5.8 to express G,-,(ay, ..., ,.,) f in terms of H' functions which
can be estimated by Lemma 5.6. At every stage there will be at least one
term for which symmetry in a,, ..., @,-, is crucial. To treat these terms,

analogues to Lemma 5.8 may be developed which show, for example, that
the expression

(5.63)
Z [Q: aq) 0, o2y -+ Ot Agin- 1] —[Q, 1] [Qia:1[Q 4] ... [Q au-1]

oeSy_ |
can be written as a sum of functions built up from P, Q,, [P, a;], and [Q, a],
where 1<j<n~1. We omit the details.

The Main Lemma, and hence the Main Theorem, now follow from
Lemmas 5.9 and 5.2,
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