

STUDIA MATHEMATICA, T. LXXXVII. (1987)

On a theorem of Gleason, Kahane and Żelazko

by

RICHARD ARENS (Los Angeles, Cal.)

Abstract. Let A be a commutative Banach algebra with the sup norm. Let T and φ be continuous functionals where T is linear, and suppose F is some entire function for which $T(F(a)) = F(\varphi(a))$ for every a in A. Then either F is a polynomial of degree at most 1, or T is almost multiplicative, in the sense that $T(a^2)$ $T(1) = T(a)^2$ for all a in A.

1. Introduction. A. M. Gleason [3] (see also J. P. Kahane and W. Żelazko [4]) characterized the maximal ideals of any commutative Banach algebra A. The characterization is based on the following

THEOREM. Let A be a Banach algebra with unit. Let T be a continuous linear functional defined on A such that

$$(H_{inv})$$
 T of any inverse is an inverse.

Then for any element f of A one must have

(h)
$$T(f^2) T(1) = T(f)^2$$
.

Gleason proceeds by pointing out that (H_{inv}) implies (H_{exp}) , which is to say, T of any exponential is an exponential, and from this he deduces (h).

One might entertain the conjecture that (H_F), where (H_F) is the condition

For each f in A,
$$T(F(f))$$
 is one of the values of F,

(F being some fixed, nontrivial entire function, used in place of Gleason's exponential function), might also imply (h). But such a conjecture would be idle, as (H_F) is fulfilled by any T and any A if F(z) is z^2 . One has only to take $\varphi(f)$ to be a square root of $T(f^2)$, and of course $T(F(f)) = F(\varphi(f))$.

Observing that this φ would have to be discontinuous, we amend the hypothesis for the conjecture. F, as before, is a fixed entire function.

 $(H_{F,cont})$ There is a continuous complex-valued function φ on A such that

$$T(F(f)) = F(\varphi(f))$$
 for each f in A.

We conjecture that $(H_{F,cont})$ implies (h) above.

2. A variation on Gleason's theorem. We have good evidence for the conjecture.

Theorem 1. Let A be a Banach algebra with unit, and let F be an entire function for which F''(z) is not identically 0.

Suppose that $(H_{F,cont})$ holds. Suppose moreover that either

(p)

or

(s) A is an algebra of functions on a set Ω and has the norm $||f|| = \sup |f(\omega)|$.

Then (h) holds.

We begin our proof with some lemmas.

LEMMA L. Suppose there holds a condition

(Hzw)

$$T(F(z+wf)) = F(\varphi(z, w))$$

where φ is a linear function. Then

(h)

$$T(1) T(f^2) = T(f)^2$$
.

Proof. Suppose $\varphi(z, w) = a + bz + cw$. Then $F(a + bz + cw) = \sum_{n} F^{(n)}(a) (bz + cw)^{n}/n!$. By Hzw, this is equal to

$$\sum_{n} F^{(n)}(0) T[(z+wf)^{n}]/n!.$$

Hence

$$F^{(n)}(0) T[(z+wf)^n] = F^{(n)}(a)(bz+cw)^n$$

for each n. Since F is not linear, there must exist an n, at least 2, such that $F^{(n)}(0)$ is not zero. Hence $T(f^k) = K_n b^{n-k} c^k$. The desired (h) follows at once.

Lemma AC. Let F, ψ , and F_1 be entire, and let M, respectively M_1 , be the maxima of their moduli on the circle of radius R around the origin. Suppose there are positive constants a, b, c such that

$$F_1(z) = F(\psi(z)) + \text{constant } K, \quad M_1(R) \leq aM(bR + c).$$

Then either F is constant or ψ is a polynomial of degree 1 at most.

Proof. We consider two cases.

Case 1. There is an R_0 such that whenever z_1 and z_2 are given with $|z_2|=2R$ and $|z_1|=R>R_0$, then there is a w with $|w|< R^{2/3}$ and such that $\psi(w)$ is either z_1 or z_2 . Select $R>R_0$, and select z_1 such that $|F(z_1)|=M(R)$, and z_2 such that $|F(z_2)|=M(2R)$. If $\psi(w)$ is z_1 , then $F(z_1)=F(\psi(w))=F_1(w)-K$, whence $M(R)\leqslant M_1(R^{2/3})+|K|$. If on the other hand $\psi(w)$ is z_2 , then we obtain $M(2R)\leqslant M_1(R^{2/3})+|K|$. We may thus conclude that $M(R)\leqslant M_1(R^{2/3})+|K|$, and thus $M(R)\leqslant aM(bR^{2/3}+c)+|K|$, or $M(R)\leqslant aM(bR^{4/3}+c)+k$, where 0< h<1. From this we can deduce that M(R) is bounded.

The value g(0) is independent of R. Thus we may apply Schottky's theorem [6], and conclude that $|g(t)| \le C$ where C is independent of R, for $|t| \le 1/2$. From this one can deduce that $|\psi(R^{2/3}t)| \le RC_1$ where C_1 is independent of R, for $|t| \le 1/2$. This shows that $\psi''(t) = 0$.

LEMMA FA. Suppose $T(F(f)) = F(\varphi(f))$ where φ is continuous on the Banach algebra A (with unit), F is entire, and T is a continuous linear functional. Let z and w be complex variables, and let

$$G(z, w) = T(F(z+wf)).$$

Suppose (s) holds, namely that A is a function algebra. Then

$$|G(z, w)| \le ||T|| M(|z| + |w|||f||),$$

where M is the maximum-modulus function for F, and

$$G(z, w) = F(\psi(z, w))$$

where ψ is holomorphic.

The inequality (*) follows at once from the sup norm assumption (s). The function ψ is holomorphic because it is a continuous solution of a holomorphic relation.

Proof of Theorem 1 with assumption (s). Because of (*), we can apply Lemma AC. We deduce that $\psi(z, w)$ is linear in z for each w, and linear in w for each z. We can therefore apply Lemma L and deduce (h).

I am very grateful to Prof. L. Carleson for suggesting the use of Schottky's theorem for a proof of the case where A is just C^2 .

Proof of Theorem 1 with assumption (p). As already noted, if $T(F(f)) = F(\varphi(f))$ where φ is continuous on the Banach algebra A, then we get $T(F(z+wf)) = F(\varphi(z,w))$, where φ is holomorphic. But if F is a polynomial, then φ can be at most of degree 1. Then Lemma L applies.

A remark about T(1). For some F, T(1) is arbitrary, but not for all. For example, when $F(z) = z^2$, and α is any complex number, then a T can be easily exhibited for which $T(1) = \alpha$. On the other hand, when $F(z) = z^2 + 1$, one always has T(1) = 1, unless T is the 0 functional.

3. Remarks about the case in which T maps not into C but into another commutative Banach algebra B. Suppose $T: A \rightarrow B$ is a bounded linear transformation such that $(H_{F,cont.})$ holds, where now φ is a continuous map $A \rightarrow B$. If now either (p) or (s) holds, we can deduce that

(h₀)
$$T(1) T(f^2) - T(f)^2$$
 lies in the radical R of B.

This we do by applying the theorem to the pair $\beta \circ T$ and $\beta \circ \varphi$, for each complex-valued homomorphism β of B. We want to discuss the type of T satisfying (h_0) , regardless of how it was obtained. We assume T(1) = 1. As Gleason observes, this makes T into a homomorphism, of course, modulo the radical. Such a T can be obtained in the following way. Let U be a genuine Banach-algebra homomorphism of A into B, with U(1) = 1. Let V be a linear bounded map of A into B. Then T = U + V satisfies (h_0) .

We want to show by an example that in general such a decomposition is not possible.

Let $\mathfrak A$ be the algebra of C. Feldman [2], in the notation of [5, p. 297]. This algebra has a radical spanned by an element q, and the quotient algebra is isomorphic to a certain $l_2(A)$. The latter shall be our A. A is spanned by certain elements u_k . Feldman's algebra shall be our B, and our T shall be defined by $T(u_k) = [u_k, q]$, again in Rickart's notation. It is easy to verify that $T(u_k u_m) - T(u_k) T(u_m) = q$.

One can strengthen Feldman's argument (cf. [1]) to show that for any homomorphism U of $l_2(A)$ into \mathfrak{A} , one must have $U(u_k)=0$ for almost all k. This makes a representation of T as U+V where V maps A into the radical, impossible.

References

- [1] W. C. Bade and P. C. Curtis, Jr., The Wedderburn decomposition of commutative Banach algebras, Amer. J. Math. 83 (1960), 851-866.
- [2] C. Feldman, The Wedderburn principal theorem in Banach algebras, Proc. Amer. Math. Soc. 2 (1951), 771-777.
- [3] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172.
- [4] J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343.
- [5] C. E. Rickart, General Theory of Banach Algebras, van Nostrand, New York, 1960.
- [6] E. C. Titchmarsh, The Theory of Functions, edition of 1939.

DEPARTMENT OF	MATHEMATICS, UNIVERSITY OF	CALIFORNIA
405 Hilgard Avenue,	Los Angeles, California 90024, U.S.A.	

Received June 25, 1986 (2183)