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A generalized skew product
by
ZBIGNIEW 5. KOWALSKI (Wroclaw)

Abstract. We define a skew product of a family of non-measure preserving transformations
{Ti}xex to obtain the transformation which preserves the product measure. We’ apply such

skew products to perturbations of measure preserving transformations and to factors of endo-
morphisms.

Let h be an endomorphism of a probability space (X, %, m) and let
{T.}cex be a measurable family of transformations of a probability space
(Y, 2, p). By the generalized skew product of the endomorphism % and the
family {T,},.x we mean the transformation T of X xY given by

1) T(x, y) = (h(x), T.(»)

and satisfying the following condition:

) VAeZ VDe2: m(d)pD)= | p(T7 1 (D))dm(x).
B~ 1(a)

Lemma 1. The transformation T defined by (1) preserves the product
measure mx p iff it satisfies (2).
Proof. We show that the equality

(m xp)(T~*(A xD)) =(m xp) (4 xD)
for all Ac # and De 2 is equivalent to (2). Using the Fubini theorem we get
[ dm(x) [15(T.())dp(»)
Y

hig

I p('T;:1 (D))dm(x). »

=14

(mxp) (T~ (A4 xD))

[

From (2) we get
CoroLLARY 1.

® VDe@:  p(D) = [p(T (D) dm(x).
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We note that (3) is not equivalent to (2). Obviously the condition (2) is
equivalent to the following:

T D), -

@ VDed, p(D) > 0: E(BLI—)—(—I—);—)) h 1(ga)>=1

For the rest of the paper we shall assume that the spaces considered are
Lebqsgue spaces.

Remark 1. If h is an automorphism then h™*(4) = # and bence the
transformations T, are endomorphisms. This is part of Theorem 1 in [1].

Let f be a real measurable function defined on X.

Derinition. We say that f is independent of a o-field of < B if f~ ‘(.,4?,)
is independent of of (f (B L ).

Here #x denotes the o-field of measurable subsets of R.

CoroLLARY 2. If for every De D, p(D) >0, the function

_ (D)
fi)= p(D)

is independent of h™'(%) and {fdm =1 then (2) holds.
X

* Another condition equivalent to (2) uses the Frobenius-Perron operator
P, for h: -

Phg(x) = j gdm),— 1(x)
. K 1(x)
where ge L, (m) and {mh_1 (x)}“" is the canonical system of measures for the

partition h™'e. Here ¢ = {{x}: xe X}.
By the equivalence of (4) and (2) we get

LemMA 2. The condition (2) is equivalent to the following:
VYDeD, p(D)>0: P, f(¥)=1 ae
where f (x) = p(T,”* (D))/p(D).

Remark 2. Assume that the trgnsformations {T},,ex are negative

nonsingular for a.e. x, Let

pT‘

Ir;1() =———0).

If Jr-1(y) is a measurable function of x for a.e. y then the condition (2) is
equivalent to PyJr;t =1 m-ae. for ae. y.

Now, we are in a position to.give an example of a generalized skew
product where the function f(x) is not independent of hY(®).
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Examrie 1. Let h(x) = 2xmod 1 and let
[0 =314, () + 14,00, ()+3 14,0
where A; =[0,3), A2 =@, 1], 45 =3, 3], 4, =G, 11. We also put
f2{x) =%1A1(x)+1AzuA4(x)+%1A3 ().
A family of transformations {7}},&0,1] of the interval [0, 1] into itself with
the measure p=m, (the Lebesgue measure) is defined as follows: for
xed,uAdy we put T, (y) =y, for xeA,
o) =12 for ye[0, {1,
~ By+4 for yeld, 1,
and for xe A4,
) = 3y for ye[0, 31,
D= y-1 for yeld, 11.
For any Borel set D < [0, 1] with m(D) > 0 we define
m(D A [0, $] Dn@, 1]
(D [0, 1) £ 9+ m( )
m(D) m(D)
Obviously P,fp=1 and f; is not independent of h~!(4) because
Az U A4€h~1 (g).

In the above example the partition ¢ = f~*(R) consists of three ele-
ments.

OBSERVATION 1. If card & = 2 where ¢ = f~'(R) then ¢ is independent of
h (@)
Proof. Here f = alg+bl . where a# b. By (4) we get
m(A) = | (alg+blg)dm
14

= am(h™'(4) nB)+bm(h™*(4) N B)
for every Ae 4. Hence we obtain the following equalities:
m(h™'(4) " B) _'_brzz(h‘1 (4) " BY)

fol)= S2(x).

m(A4) m(A) =1
1-b_m(h™*(4)nB)
a—b  m@

1-b sou
For A= X we get e m(B). This implies

m(h™*(4) " B) =m(h™* (A)m(B). »
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As an application of the generalized skew product we shall describe a
class of functions ¢(x, y) satisfying

® Pyo(x,y)=1.

Let ¢(x) be an integrable function satisfying Pj¢(x) =
measurable function on Y. ¢(x, y) defined by

(6) e, ) =1+¢(x) S0
satisfies (5). If ¢ (x, y)
by ¢(x, y}= 0 and

0 and f(y) a

= Jr71(y) for a family of transformations {T:}vex then

[Irztdp = p(T7H(Y)) =

we get [f(y)dp=0.

It is well known that ker P, # {0} iff h is a noninvertible endomorphism;
in that case there exists a function g,e L%, g, # 0, g, eker P,.

Let us fix an ¢ > 0 and let ¢ (x) = &g, (x)/||g1l| - Assume that Y = [0, 1]
and p=m, is the Lebesgue measure. Then for any function ge C'[0, 1]
such that g(0) =0, g(1) = 1, satisfying the inequalities

I-e"'<g'(y<e™ +1, <,
0<{l—p(M)y+e®gk) <1

we can define a family of transformations {7T.},.x such that

Ir;10) = 1+9(X) (g () ~1) = o(x, y).

Namely, we obtain
[T @) =1+0() (@) -1)
if we put
L@ =(1-
7;} is a family of e-perturbations' of the jdentity transformation. Here
T.(0)=0 and T,(1)=1.

Let T be any transformation of [0, 1] into itself preserving the

measure mo. Define a family of stationary a-perturbatlons of T by putting
T.= T,oT Here

(X)) z+0(x)g(2).

Trz10) =T 1 d-10) = 0(x, ).
The family { T} and h(x) determine the generalized skew product Ty (x, y)
= (h(x), T(y)) Using Birkhoff's ergodic theorem we get
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OBSERVATION 2. For every noninvertible endomorphism h and a family of
stationary e-perturbations of T the limit

hm Z f ( h"(x)

n—roo M=

o T()

exists a.e. and in L, for every feL,(my).

The second application of generalized skew products is connected with
factors of endomorphisms of Lebesgue spaces. It is well known that if T is an
endomorphism of the space (X, 4, m) then any factor of T is a T; transfor-
mation where £ is a measurable partition such that T~ ¢ < £ 'Let us assume
that £ has an independent complement, i.e. a partition # such that ¢ (&) Lo ()
and { vy =e¢ Then X = X;xX, and m =m, xm,. In this case we may
define the family of transformations {T¢}ce, Tp: X, — X, by the equality
Te(D) = PT(C, D) where P: X~ X,, P(C,D)=D for Den. {Telee is a
measurable family of transformations. From Lemma 1 we conclude that
T(C, D) = (T;(C), T:(D)) is the generalized skew product of {Tz}¢. and T;.
The family {Tz}c. is uniquely determined by ¢ in the sense that if #' =7
modulo a set of measure zero then T® = T; ae. for every Ceé. It is not
difficult to find an endomorphism 7T and a partition &, T7!¢ < ¢, such that
¢ has no independent complement. A partial solution of the problem of
existence of an independent complement is given by the following theorem:

TuroreM 1. Let ¢ be a partition such that T ¢ <& and E v T le=¢
for an ergodic endomorphism T. The following conditions are equivalent:

(a) mg has an atom for a.e. Bet.

(b) There exists a set X', m(X')=1, and a finite number k such that
card(BNn X') =k for a.e. Bel.

Proof. The implication (b) => (a) is obvious. Now, we show the
converse. Using the reasoning of Rokhlin (see [2], p. 41) we get a measurable
set C such that for a.e. Be§, Cn B consists of an atom of the greatest
measure.. Let us observe that

BAT '(C)=ly: ADeé: yeT (DN C)n B!
={y: ADeé& yeT " (DNC)nB and T(B)nD # Q).

By the definition of & T(B)nD # @ implies T(B) =D and there exists
exactly one such D. Denote it by Dg. Hence

@ BNTHC) = { 1Dy~ C) N B}.

Since T| B is 1-1, there exists exactly one yge T~ !(Dg n C) n B. Therefore
card(BNT™*(C)) =1 for ae. B. By induction we get this property for the
sets T™'C for i =1, 2, ... The ergodicity of T implies

m(g0 T7i(C) =1

v yeT™
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From the equality .
m(C) =m(T™H(C) = | (15; Licig (x)dmg)dm;

Xg
it follows that T™*C N B is an atom of maximum measure. Hence the sum
of measures of atoms of maximum measure in B is equal to 1. Therefore there
exists a set X’ of measure 1 such that card(Bn X') < ¥, for ae. Be¢ and
BN X consists of atoms of the same measure. Hence (b) follows easily.

CoRrOLLARY 2. If a partition ¢ satisfies the assumptions of Theorem 1 then
it has an independent complement. In this case T is 1-1.

We now show that as a matter of fact if an endomorphism T(x, y)
=(g(x), T,(») has a 1-sided generator of finite entropy and T, is 1-1 for ae.
x then T is a skew product. Namely, the following theorem holds:

TaeoreM 2. If T has a 1-sided generator of finite entropy and the
transformations {T,},x are 1-1 for a.e. x then T, is an automorphism for a.e. x.

The proof is based on the following lemma:

LemMa 3. IA T satisfies the hypotheses of Theorem 2 then

JT (X, y) = Jp(x) JT,(.Y) ae.
Proof of Lemma 3. Let Be # be a set such that g | B is 1-1. Then for
any Ded, T|BxD is 1-1 ae. and
[J609 [Jr, 0)dpdm = [J,) p(Tu(D)dm = | p(T, , -y, (D))dm
3 b 3 o) (grB) ™ ()
=(mxp)(TBxD)= [ Jr(x,y)d(mxp).
BxD

Now, let Ce #. The endomorphism ¢ is countable-to-one because T is
countable-to-one as a transformation with a countable generator. Therefore
C is a disjoint sum of sets C; where g [ C; is 1-1 for i =0, 1, ... and

@©
[Jg{ I dpdm="Y (J, [Jr_dpdm
c'p T i—o¢& D

0

=Y [ Jrdmxp = [ Jpd(mxp).

=0 ¢;xD cxD

The above equalities hold for any Ce # and De 2. Hence by the separability
of the Lebesgue space we get Jo(x, y) =J,(x)Jr,(3) ae. =

Proof of Theorem 2. By the hypotheses of the theorem and by
Lemma 3

h(T) = flogJrd(mxp) = [log(J,Jr)d(m xp)
= jlogJ,dm+j"10gJTxd(m‘><p).
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Here [logJ, dnr < h(g) < h(T). Hence 0 < flog Jr, d(m x p). By the concavity
of logx we get
0< flogJy d(mxp) <log [Jr_(y)d(mxp)
and by the Tiinvariance of the product measure m xp we have
[Tr,0dp=p(L(Y))=1 for ae. x.
Therefore
flogJr d(mxp) =log[Jr d(mxp)=0.

The above equality holds only in the case logJr (v)=0 ae. and hence
J.(») =1 ae. This implies that T is an automorphism for a.e. x. =

In general, the assumption that T has a 1-sided generator and the
transformations {T,},.x are 1-1 for a.e. x is necessary.

ExaMmpLE 2. Let X = Hf: {1, ..., k}, let T be the 2-sided Bernoulli shift
and m a product measure on X. We represent X as the product YxZ where
yeY and zeZ are sequences y = (X_y, X3, ..., Z =(Xq, Xy, .., and

¥y 2) ~ (e X2y X, Xy o0 4)-
Here m =m, xm, and T(y, z) = (¢ (y), T,(z)) where
o(y) = (x-2, X_3, ..2),

Then T,

5 is 1-1 and does not preserve the measure m,.
The above example was suggested by M. Misiurewicz.

ExampLE 3. Let h(x) =2xmod1,

T,(2) = (X1, X0s X1, .-

b xel0,3, L. f 1 ye[0,3,
"’(x)':{—%, xe@, 1], f(”‘{—l, yed, 1.

We define a family of transformations ;{’I;}xqo_u such that JT;l(y) =1
+¢() f(y) by

3y, yel0, 31,
4 1 3 3
IV—1% )’E(s',z]a 1
= f 0, 31,
TO=4-3 yeaq, 0
4y-3, ye(@ 1]
4y, yel0, &1,
4y"'%: ye(ﬁl-a %]s
= for xe(3, 11
L= 4y4d yeds 4, 1]
%y_%n ye[%, 1]
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The generalized skew product T(x, y) =
tor

(h(»), T.(y)) has the*l-sided genera-

a = {[Oa 3'] 8? 4] (4: E] (E> ?‘] ) I] (%a %]: (%a 1]}
x{[0, 11, G. 11}

because T | C is expanding for any Cea. By Jr;1 5 1, the transformations
T, do not preserve the measure my.

References

[1] L. M. Abramoy and V. A. Rokhlin, Entropy of the skew product of measure preserving
transformations, Vestnik Leningrad. Univ. 1962, no. 7, 5-13.

[2] V. A.Rokhlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl. Ser.
1 10 (1962), 1-54; Mat. Sb. 25 (1949), 107-150.

INSTYTUT MATEMATYKI POLITECHNIKI WROCLAWSKIET
INSTITUTE OF MATHEMATICS, WROCLAW TECHNICAL UNIVERSITY
Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland

Received October 12, 1985

¢ (2110)
Revised version August 1, 1986

icm°®

STUDIA MATHEMATICA, T. LXXXVIL (1987)

On the space of Bloch harmonic functions
and interpolation of spaces of harmonic and
holomorphic functions

by

EWA LIGOCKA (Warszawa)

Abstract. We prove that the orthogonal projection P from I*(D) onto I*Harm(D), the
space of square-integrable harmonic functions, maps L* (D) onto the space BlHarm(D) of Bloch
harmonic functions on D if D is a smooth bounded domain in R". We prove an interpolation
theorem which permits us to interpolate between Sobolev or Holder spaces of harmonic
functions and the space I Harm(D, |g|) of harmonic functions from I#(D, |gl"), where g is a
defining function for D. We prove analogous results for spaces of holomorphic functions on
strictly pseudoconvex domains,

1. Introduction and the statement of results. The present paper is the
direct continuation of [14] and [15]. First, let us recall some notation from
those papers.

For a bounded domain D in R" we denote by P the orthogonal
projection from I?(D) onto the space I?Harm(D) of square-integrable har-
monic functions. If D is a domain in C" we denote by B the orthogonal
projection from I?(D) onto the space I[?Hol(D) of square-integrable holo-
morphic functions (the Bergman projection). Harmj(D) is the space of
harmonic functions from the Sobolev space W,(D), —o0 <s < +o, 1 <p
< o0, and A,Harm(D) the space of harmonic functions from the Holder
space A,(D); analogously, Hol(D) denotes the space of holomorphic func-
tions from W;(D) and A, Hol(D) the space of holomorphic functions from
Ay(D). If D is a C®-smooth domain in R" then a function 0eC®(R") is a
defining function for D iff D = {xe R": g(x) <0} and gradg #0 on &D.

The space of Bloch harmonic functions on D consists of functions
harmonic on D such that

I[Alls; = S‘:IJJ(IQ(X)h(X)HIQ(X)grad h(x)) <0

for a defining function g. We denote it by BlHarm (D). If D < C" then
BlHol(D) denotes the subspace of BlHarm(D) consisting of holomorphic
functions.
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