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Local Banach algebras as Henselian rings
by
H. G. DALES (Leeds)

Abstract. We use methods of analysis to show that local algebras which are homomorphic
images of Banach algebras or which are projective or injective limits of Banach algebras are
Henselisn. Many of the standard examples from algebra are shown to be Henselian by these
methods, and a number of further examples, not accessible to classical algebra, are given.

1. In the theory of local rings, there is a notion of a Henselian ring ([5,
§ 16], [11, § 30]). The condition is important because it gives a reducibility
criterion for polynomials over the ring. A form of Hensel's lemma—for
example, the form given in [13, VIII, Theorem 17]—is that each complete
Noetherian local ring is Henselian. In this paper, it is shown that rings which
are complete in another sense are also Henselian: each local Banach algebra
is Henselian. More generally, we prove that a local algebra which is a
homomorphic image of a Banach algebra, or which is a projective limit of
Banach algebras, or which is an inductive limit of Banach algebras is
Henselian.

These results are sufficient to cover the standard examples of Henselian
rings, such as the algebras C[[X]] and C (X)) of formal and of conver-
gent power series in one indeterminate, and they cover a number of other
examples, some of which do not seem to be easily accessible to classical
algebraic methods.

This paper is written for analysts: we shall assume that the reader is
familiar with commutative Banach algebra theory, but we shall give some
algebraic details which the experienced reader of, say, Nagata’s “Local
Rings” would find to be elementary.

In § 2, we shall first give an algebraic condition equivalent to the fact
that a local algebra is Henselian. Unfortunately, the proof of this equivalence
involves some rather deep algebra. To avoid reliance on this, and to make
this paper self-contained, it will be proved that a formally stronger condition
implies that a local algebra is Henselian. This latter condition will be applied
in § 3 to show that each local algebra which is the homomorphic image of a
Banach algebra or which is a complete LMC algebra, or which is a pseudo-
Banach algebra is Henselian. We shall conclude in § 4 with some examples
and with some comparisons between our results and standard theorems.
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I am grateful to Professor Peter Vamos for guiding me through some of
the algebraic background, and to Dr. Graham Allan for some valuable
comments.

2. We begin with some basic definitions. It should be noted that there is
considerable variation over the very definitions of “local ring”, “Hensel’s
lemma” and “Henselian” in the standard algebra books, and 50 some care
must be taken.

Since we are concerned with Banach algebras, our particular simplifica-
tion will be to state the definitions for algebras over the complex field C,
rather than for rings. Thus, throughout, the underlying field of each algebra
is C.

Let 9 be a commutative unital algebra. The identity of 2 is denoted by
eq OF by e, the set of invertible elements of U by Inv 2 the Jacobson radical
by rad ¥, and the set of characters on 2 by Pg.

2.1. DeriNITION. An algebra 2 is a local algebra if it is commutative and
unital and has a unique maximal ideal.

Thus, following Bourbaki [3, II, 3.1] and Jacobson [8, Definition 3.1],
but in distinction to Nagata [11, § 5] and Zariski and Samuel [13], we do
not require that a local algebra be Noetherian. Further, a local algebra is not
necessarily an integral domain.

The maximal ideal of a local algebra 2 is denoted by Mgy; we have
rad % = My and Inv % = A\My,. The quotient field WM o is the residue field
of U and we write m: A— WMy, for the quotient map.

The algebras of polynomials in one and n indeterminates with coeffi-
cients in a commutative unital algebra U are denoted by A[X] and
W[Xy, ..,, X,], respectively; we shall also write A[X] for the latter algebra.
Let peUA[X], say p=ao+a, X+ ... +a,X", where ao,..., a,e 2 and
a, # 0. Then a, is the leading coefficient of p, and the degree dp of pis n; p is
a_monic polynomial if a, is the identity of % Two polynomials p and ¢ in
QI[X] are coprime if there is no polynomial r in A[X] with ér > 1 which
divides both p and g¢.

. Let U be a local algebra with residue field k, and let p
=309 X' e ALX]. Then

"
n(p) = JEO"‘(“J)XJEI‘[X]'

2.2. DerNiTioN. A local algebra U is Henselian if, for each monic
polynomial pe A[X] and each factorization n(p) = fy, where f and g are
coprime monic polynomials in k[X7], there exist polynomlalq g and r in
ALX] such that p=gr and n(g) = f and =({r) =

This is equivalent to the definition given in [11 § 30], and is exactly the
definition given in [3, II[4, Ex. 3]. Raynaud [12] defines a local algebra %
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to be Henselian if each commutative algebra over 2 which is a finitely
generated A-module is a direct product of U-algebras which are local
algebras; by [12, Proposition 5], this is equivalent to our definition.

23. ProposimioN. Let W be a local algebra. Then N is Henselian if and
only if each polynomial p in A[X] of the form

(1) p=dg+X+a, X2+ .. 4a X,

where agerad 0, has a root in rad L

Proof. Suppose that A is Henselian, and that pe ‘ZI[X] has the form
specified in (1). Set

4(Y)=ay Py Y4 o agay YR YA v,
Then ¢ is a monic polynomial over 9 and
(ng)(Y) = Y*~ 4 1*

because aperad A We have (mg)(Y) = Y*"'(1+Y), and so, since A s
Henselian, ¢ = rs, where r and s are monic polynomials over 2, (nr)(Y)
=71 and (ms)(Y)=1+Y, say s(¥)= Y~by, where n(by)= —1. Then
boelnv . Set a = aghy'. Since ayerad A, aerad A, and we have

b p(a) = ag (bl +b8™ " +agas ™+ ... +af ™' a) = apq(bo) =

Since by is invertible, it follows that p(a) = 0, and so p has a root in rad 2

For the converse, we apply Proposition 3, p. 76, of [12]. We have
already noted that the definition of a Henselian algebra in [12] coincides
with our definition. The cited proposition states that 2 is Henselian if each
monic polynomial p in W[X] such that p has a simple root « in k[X] has
aroot a in A with n(a) =a. Let p be such a polynomial, and let q(X)
= p(X+a). Then X is a factor of n(g) and X? is not a factor of w(g), and
so ¢ has the form g = ay+(f+a;) X+ ..., where ay, a;erad A and § +# 0.
Since f#+a; eInv N, the hypothesis shows that g has a root, say b, in rad 2
and a = b—a is a root of p with n(a)=0. =

The non-trivial part of Proposition 2.3 can also be deduced from results
in [11). In [11, § 43], the Henselization * of a local algebra A is defined.
By (43.3), 2* is Henselian and 2* is unramified over %, which implies that
the natural homomorphism from A into A* is injective; we regard A as a
subalgebra of A*, Let he . Then, by (43.9), there is an element a of the
maximal ideal My of ¥* and & monic polynomial

Uy df

p=cote X+ . 4o X4 X

in Q[[X] such that ¢oe My, ¢ elnv 9 and p(a) =0, and such that the
algebra A which is the localization of the algebra €A [a] at the prime ideal
My+aWN[a] contains b. Now, by the hypothesis in 2.3, the polynomial p has


GUEST


284 H. G. Dales

a root ¢ in rad ¥ But p has at most one root in My, and so ¢ = a. Thus

aeMy, My+a%[a] = My, and the localization 2 is just A[a]. This shows’

that be A[a] = U and hence that U* = WA Thus A is Henselian.

I find it surprising that the condition of Proposition 2.3 does not seem
to be explicitly stated in the standard algebra texts for an arbitrary local
algebra; a self-contained, elementary proof would be of interest.

To establish then that an algebra is Henselian, it suffices to verify the
condition of 2.3. However, we now wish to introduce a formally stronger
condition, and to show that, to prove that an algebra is Henselian, it suffices
to verify this stronger condition. In this way, we avoid reliance on the
unproved results. )

Let A be a commutative unital algebra with identity e. The algebra of
n xn-matrices with coefficients in U is M, (), and the identity matrix in
M, (2 is I,. The determinant of an element 4 of M, (W is det A: we have
Aelnv I, () if and only if det A elnv A.

Let py, ..., pe U[Xy, ..., X,] = U[X], and set p=(py, ..., p,); we re-
gard p as a map from A" into WX, The Jacobian matrix of p at the element
a of A" is

Pla= (—aa—;‘—j(a): Lj=1,.., n)e M, (2.

The map p is non-singular at a if p'(a)eIny M, ().

24. DerFiNiTION. Let U be a commutative unital algebra, and let ne N.
Then U satisfies condition 2, if, for each pe(A[X])™ which is non-singular
at 0 and which is such that p(0)e(rad ™, there exists xe(rad W™ with
plx)=0.

Clearly, when considering the existence or uniqueness of solutions of the
equation p(X) = 0, where p is as above, it is sufficient to suppose, further,
that p’'(0) = I,.

Proposition 2.3 asserts that a local algebra is Henselian if and only if it
satisfies ;.

‘ 2.5. ProrosiTioN. Let pe(ULX])™ be as specified in 24. Then there is
at most one element xe(rad W with p(x) =0,

Proof. We suppose that p'(0) = I,. Set p=(p,, ..., p,), and set p(X)

= a;+ X;+¢;(X), so that a;erad 2 and each non-zero monomial in each

q; has degree at least two.

Suppose that x, ye(rad W with p(x)=p(}) =0, and set z=x—y.
Then

2 ‘ Z+¢(®—-g;() =0 (j=1,...,n).
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Now g;(x)—q;(ey;., 2% (J=1,...,n), and so equations (2) can be
written in the form Tz =0, where Te M, (2 and
det Tee+rad W < Inv A.

It follows that z =0, and hence that y=x. m

The following result is the implication (d’)=>(e) in [10, Chapter 1,
Theorem 4.2]; we sketch the proof.

2.6. ProprosimioN. Let W be a local algebra which satisfies 2, for each n.
Then W is Henselian. ‘ ‘

Proof. Let the residue field of 2 be k. Let pe A[X] be a monic
polynomial, and let f, gek[X] be coprime, monic polynomials such that
n(p) = fy, say

PX) = (g F @)+ oo F (et Ay ) X" F7 YR
SX) =B+ .. 4B X" X,
g(X) =yt o Ay XX,

Where oty ooy Oppems Bas «oes Pous Vis ovor Tn€k and ay, ..., Gy € My, We must
find by, ..., by, Cy, ..., ¢y€ My such that p = gr, where

q(X) = (Br+b)+ .. +(Bn+bp) X"+ X7,
F(X) = (et o+ Gute) XX

Thus we must find a solution in M{'*" of the equations
P(Xgs o Xpad =0 (i=1,...,m+n

given by equating the coefficients of X°, ..., X™*"~! in the equation p(X)
= ¢(X) r (X). .

Clearly, p;(0) = a; (i = 1, ..., m+n), and an easy calculation shows that
p'(0)e M., (k) and that det p'(0) = R(f, g), the resultant of f and g. Since f
and ¢ are coprime, R(f, g) 0, and so. p is non-singular at 0. The existence
of the required solution in M{'*" follows because 2 satisfies P . w

In fact, each Henselian algebra satisfies 2, for each n. This is proved in
[10, Theorem 4.2], but the proof requires a certain fluency in étale cohomo-
logy.

3. We now prove that various local algebras related to Banach algebras
satisly @, for each n, and hence that they are Henselian, That local Banach
algebras themselves satisfy condition 2, is exactly Lemma 3.2.8 of [7], anq a
similar argument shows that they satisfy 2,. We give a different proof which
leads more easily to the generalizations that we need to consider.


GUEST


286 H. G. Dales

Let % be a commutative Banach algebra. The spectral radius of an
element ae A is denoted by v(a), so that

v(a) = lim |ja"|*", rad A = {acA: v(a) =0} = N {kerp: pedy}.
n—roo

3.1. Lemma. Let U be a commutative Banach algebra with identity e,
let ay, ..., ac W and take ¢ > 0. Then there is an algebra norm ||| on A
which is equivalent to the given norm and such that |le]| =1 and ||a]| < vi(a)+e
G=1,..., k.

Proof. Set b, =a/(v(a)+s) (j=1,...,k. Then v(b) <1, and so
{llbMi: neZ™*} is a bounded set. Thus the semigroup

S= (bt . b ny, ..., meZt)
is bounded in 2. By [2, 5.1], there is an algebra norm ||-|| on %, equivalent
to the given norm, such that |le]| = 1 and ||x]| € 1 (x&S). This norm has the
required properties. m '

Let E be a Banach space. Then E™ is a Banach space with respect to
the norm

lxflop = max {llxl: x = (xy, ..., x,)€ EO),

Let A be a commutative Banach algebra, let py, ..., p,e W[X], and let
p=(ps, ..., p). We associate a constant C(p) with p as follows. Let § be the
set of non-zero eclements of A which are the coefficients of at least one
monomial of degree at least two in at least one of the p;'s, let N be the total
number of non-zero coefficients in all of the p/’s, and let M be the maximum
degree of any of the monomials appearing in any of the P/'s; we set

C(p) = n*+nNMmax {||al|+1: ae8§).
(Take C(p) =n? if S = @)
Except for the estimate on the size of ¢, the following lemma is a
consequence of the local inversion theorem for Banach spaces ([47], 10.2.5]).
32. Lemma. Let U be a commutative unital Banach algebra, let
15 > 4u€ WLX] be polynomials in which each non-zero monomial has degree

at least two, and let q=(qy, ..., q,). Take ¢ >0 with 4cC(g) < 1. Then, for
each ae U with |a||, <&, there exists xe W with

(3) G+x+qx) =0 (j=1,...,n),
and x = Ta for some Telny M, (N
Proof. Let C = C(g). Take ac N with |||, < ¢ and set
B = {xeq"; lx—d, < ¢}

Then B is a closed subset of A, and so B is a complete metric space for the
metric d: (x, Y) —[lx—y||o. -

e ®
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For j=1,...,n and xe&B, set

j)(x) = —a—q;(x), F(x) =(f1 (x), ..
so that F: B— A" js a map. For xeB,

‘!fn(x))7

o Xl € llajll +e <2 < 1
and
113 6x) 4+ afll = [lg, (0| < 4Ce* <,

and so F(B) = B. Take x, yeB with d(x, y) =4, say. Then f;(x)—f;(y) =
¢y () —g)(x). A typical term in ¢, (y)-g;(x) is '

k

k k ky
ayr =Xt Xy,

where ky+ ...+k, = 2 and aeS. Now

Kyt 1

Ky oo k, k,
O =X v

n
ko k ky kn __ ki Ky
Yoyttt = Y Xt 0 AL
r=

and, using (4), || yf’»-xf’ll < M6 whenever k, > 1. Thus

175 ~f; ()l < 26C6 < 46,

and so d{F (x), F(y)) € 4d(x, y). Hence F: B~ B is a contraction mapping.
By the contraction mapping principle, F has a fixed point, say x, in B.
Clearly x satisfies equations (3). .
Since each non-zero term in each g; has degree at least two, we can write
q(x) = Ux, where U = (1) e W, (W and |juyll <2 (i, j=1,..., n). We have
a=(I,+U)x, and so

l|det (1, + U)— eql| < 2en* < 1.

Thus det(I,+U)elnv?, and so I,+UeclovIR,(2). We
L+U)" a w

33, LemMA. Let 1 be a proper ideal in a commutative Banach algebra 2,
let J be the closure of 1, and let m: WI— WJ be the quotient map. Then
7 (rad (WD), = rad (/). ‘

Proof. Since maximal modular ideals in 2 are closed, each maximal
modular ideal which contains I also contains J. w

We now prove that various algebras satisfy condition £,.

34. Turorem. Let 9 be a commutative unital Banach algebra, and let I be
a proper ideal in L. Then WI satisfies condition &, for each neN.

Proof. Let pe(( W [X])" be such that p’(0) is the identity in M, (W)
and p(0)e(rad(N)™, say p =(py, ..., p). Then

pX)=a+X+qX) (=1 ...,

have x =
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where ay, ..., a,erad(WI) and gy, ..., q,e(WI[X] are polynomials in
which each non-zero monomial has degree at least two. Set a = (q,, ey dy),
and let M, N, and § be associated with p as above.

Let J be the closure of I in % Then WJ is a commutative Banach
algebra with identity ey Let my: U— W, n,: U WJ, and n: QI/I
— U/J be the canonical maps, so that m, = non,. We can also regard these
three maps as acting on A[X], A™, M, (AW, etc, in the obvious way,

Consider the element =#(p) of ((WJ)[X])”. By Lemma 33

- (np)(0)e(rad (WJ))™. Let

C =n*+nNMmax {y (n(a)+2: aeS},

and take ¢ > 0 with 4eC < 1. By Lemma 3.1, there is an algebra norm ||| on
QI/J, equivalent to the given norm, with llewll = 1, with |[z(a)]|, <&, and
with |In(@)] <v(z(@)+1 (aeS). We have C(p)<C, and so it follows
from Lemma 3.2 that there exists ze(WI)™ with (np)(z) =0 and with
zen(a) Inv I, (WJ) = (rad (W)™,

Choose ye A" with 7,(y) =z, and take Pe(UALX)" with =, (P) = p
and with P'(0) equal to the identity of 9,(2). Then P(y)eJ™. Also,

?

detP(y)eeg+ Y 9,
J=1

and so
7, (det P (y)) € eqyy +j§1 z(WJ) = eqs+1ad (WJ) < Tnv ().

Since M, (WJ) = M, (W/M,(J), it follows that there exist T p) d

U = (u;)e M, (J) such that P(y)T=1I,+U. ST e
Let R(X)=P(T(X)+y) so that Re(A[X])™. Then R(0) = P(y)eJ"

and R'(0) = P'(y) T = I,+ Ue M, (2). O=F0e
Since I is dense in J, there exists V = (v)e M, (1) with

n’[]u,j+v,.,|] <l G,j=1,...,n..

Then |idet(I,+U+V)—eyf <1, and so [ : =
ey ol s ‘,,+U+Velnvfm,,(‘l[), say W=
Now let

SX) = R(W(X)+Vw(x),

so"that Se(ALX™, .S(O) = R(0)eJ™, and §'(0) = (R(0)+ V)W =1, Let D
be. the con(i}anF associated with S, and take # > 0 with 4nD < 1. Th'zan there
exists belI™ with ||S(0)~b), < 7. By Lemma 3.2 again, there exists ce 9™
with S(¢) = b and ‘ce S(0)Inv MM, (AW < JO, '
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We have
P(TW(c)+y) = R(W(0) = S(¢)~ VW (¢) = b— VIW(0).

Since bel™ and Ve W, (1), P(TW(q)+y)el™. .

Finally, set x = 7, (y+ TW(c)). Then p(x) = 0 in 1. Since'ceJ, 7 (x)
=, () = z&(rad (WJ))™, and so, by 3.3, xe(rad (W)™

Thus W/ satisfies condition #,. w

The natural proof that I satisfies condition #,, the condition that
ariges in Proposition 2.3, is essentially the same as the above, but of course it
is notationally a little cleaner,

A more general class of algebras than that of Banach algebras is the
class of LMC algebras. The theory of these algebras is given in [9] and [14].
Briefly, it is as follows. Let 2 be an algebra which is also a topological linear
space, Then is an LMC algebra if the topology is given by a family of
algebra seminorms, say {||*||,}. Let 21, be the Banach algebra which is the
completion of the normed algebra W(ker|-||,). The family {|[-||,} can be
taken to be a directed set, and there is a family {r,,: u <v} of norm-
decreasing homomorphisms, m,,: U, — U, such that {A,; =,,} is a projec-
tive system. It is standard that each complete LMC algebra % is algebraically
and topologically isomorphic to the projective limit of the system {2; m,,}.
Thus a complete LMC algebra can be identified with ,

lim proj {2,; 7.} = {@)e[T % m(a) =4, (#< ).

We write n,: ar+a,, [] %, — U, for the natural projection.

A complete LMC algebra is a Fréchet algebra if its topology is metri-
zable. This condition is equivalent to the requirement that the topology be
given by a countable family of algebra seminorms.

Let A be a complete, commutative LMC -algebra, say U
= lim proj {2,; m,,}, and let a =(a,)e W By [7, 5.2], acInv A if and only if
a,cInv 2, for each v, and, by [7, 7.3], acrad W if and only if a,erad ¥, for
each v,

3.5. TueoreM. Let W be a complete, commutative, unital LMC algebra.
Then W satisfies condition &, for each ne N.

Proof. Let p,&e(, [ X])™ be obtained by applying =, to each coefficient
of each component of p. Then p,(0)e(rad 2)* and det p| (0)eInv 2, so that
Py (0) is non-singular at 0.

By 3.4, there exists x,e(rad )" with p,(x,) =0, and, by 25, x, is
uniquely specified by these conditions. ‘

Take u, v with < v. Then m,,(x,)e(rad )" and p, (%, (x,) = 0, and
so, by the uniqueness of x,, m,,(x,)=x, Thus x=(x)e(rad W™, and
pix)=0. w

A second generalization of the class of Banach algebras is the class of
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pseudo-Banach algebras, which was introduced in [1]. In [1], pseudo-
Banach algebras were defined in terms of certain “bound structures”, but it is
now more convenient to give an equivalent definition in terms of inductive
limits: a unital algebra U is a pseudo-Banach algebra if U is isomorphic to
the inductive limit of a system {2,; =,,} of unital Banach algebras 2, and
of continuous unital monomorphisms =,,: %, — A, (u<v). (The inductive
limit, limind {2,; =,,}, is the algebra () 2,/~, where, for ae 20, and be W,
a~ b if there exists A with 1>y, 4> v, and 7,,(a) = m,,(b).)

3.6. THEOREM. Let U be a commutative pseudo-Banach algebra. Then A
satisfies condition &, for each ne N.

Proof. Let U =limind {2,; =,,}, and take p as in 2.4. Choose u so
that all the coefficients of all the components of p have a representative in
9, and regard p as a member of (2, [X])™. Let M, N, and § be associated
with p as before, set

C = n*+nNMmax {y(a)+2: aeS},
and take & > 0 so that 4¢C < 1.

By [1, 1.6], rad A = {ae W ¢(a) = 0 (pePy)}, and so, by [1, 3.(ii)], for
each acrad A and each n > 0, there exists A such that v;(a) <7, where v,
denotes the spectral radius of 4 in 2.

Let p(0) =(ay,...; a,). By increasing u if necessary, we can suppose that
vu(a) <e(j =1, ..., n). This change of u does not increase C. By 3.1, there is
an algebra norm on 2, equivalent to the given norm, with ||p(0)|[,, < ¢ and
lall <v(@)+1 (aeS). By 3.2, there exists xe AP with p(x) =0, and so U
satisfies #,. n

The main result now follows from 2.6 and either 3.4 or 3.5 or 3.6.

3.7. Tueorem. Let W be a local algebra which is either a homomorphic

image of a Banach algebra or a complete LMC algebra or a pseudo-Banach
algebra. Then W is Henselian. m

4. In this final section, we give some examples of algebras which can be
shown to be Henselian by an application of Theorem 3.7.

Let A be a local algebra with maximal ideal M. The set
@a+M": ae A, neN} is a base for the open sets of a topology on 9L; this
topology is the M-adic, or Krull, topology. The M-adic topology is Hausdor{l
if and only if N{M": neN}={0}. In this casé, set

v(a) = max {neN: asM"}  (aeM\{0)),
and, for a, be M, set d(a, b) = e™"“~¥ (with d(a, b) = 0 if a = b), Then d is-a

metric on M defining the M-adic topology. The algebra is a complete local

algebra if the M-adic topology is Hausdorff and if the corresponding metric
space is complete.

Nagata’s theorem ([11, (30.4)]) assetts that a complete local algebra is
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Henselian. The M-adic topology is necessarily Hausdorfl if o is a Noetherian
algebra, and so this result subsumes the version of Hensel's lemma given by
Zariski and Samuel ([13, VIII, Theorem 17]).

The M-adic topology in a Jocal Banach algebra is certainly not Haus-
dorff in general. For example, let

o

R={f: I/l = [If @l dt < oo}.
0 .
Then R is a radical Banach algebra with respect to convolution multiplica-
tion given by

(S *a)(t) = z[f(l'»-s)g(s)ds t>0).

By Titchmarsh’s convolution theorem, R is an integral domain. Let y, be the
characteristic function of the interval [0, 1/n]. Then the sequence (ny,: ne N)
is a bounded approximate identity for R, and so, by Cohen’s factorization
theorem ([2, 11.12]), R* = R. Let 4 = R*, the algebra formed by adjoining
an identity to R. Then A4 is a local Banach algebra, M, =R, and
N{MYy: neN} =R

Let Q be a compact Hausdorffl space, and let P be a prime ideal in C(£),
the Banach algebra of all continuous complex-valued functions on Q. Then P
is contained in a unique maximal ideal of C(Q). Let A = C(Q)/P. Then A is a
Jocal algebra which is an integral domain, and M3 = M,. Theorem 3.7
shows that A is Henselian.

The form of Hensel's lemma given by Bourbaki ([3, II1.4.3]) applies to
“linearly topologized topological rings”, and no Banach algebra other than C
belongs to this class.

The algebras C[[X,, ..., X,J] of formal power series in n indetermi-
nates are the standard examples of complete local algebras, and so they are
Henselian algebras. These algebras are also Fréchet algebras with respect
to the simple topology of coordinatewise convergence. Specifically, for

a=Yay, . X0 X0 in CIIX G X1, set

lally = 3 flty gt S oo Fin S k) (kEN).
Then (|||} is & sequence of algebra seminorms defining a complete metric on
C[[X,,.... X,]], and this metric induces the simple topology. Thus, Theo-
rem 3.7 also implies that C[[ X4, ..., X,]] is a Henselian algebra. The simple
topology is strictly weaker than the M-adic topology on CI[X,,..., X, 1]

The subalgebra C ((X, ..., X,>> of C[[Xy, ..., X,]] consisting of the
formal power series which are absolutely convergent on some neighbour-
hood of the origin in C" is a pseudo-Banach algebra. For let 4; be the
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polydisc with centre 0 and polyradius 1/j in C", let H*(4)) be the uniform
algebra of bounded analytic functions on 4, and let ry: H™(4)) — H™(4,)
{k > j) be the restriction maps. Then C {{Xy, ..., X,>) i8 the inductive limit
of the system (H®(4)); ry). Thus C (X, ..., X,)) is a Henselian algebra.
The classical proof of this fact ([11, (45.5)]) is an application of the
Weierstrass preparation theorem.

Let C ({X4, ..., X,)>) have the inductive limit topology induced by the
natural injections r; from the algebras H®(4)): this is the strongest locally
convex topology on C<{{Xjy, ..., X,>> such that each map r; is continuous.
(It is the Folgen topologie of [6]) By [1, Example 4.6], C<{{Xy, ..., X,)>
is a complete LMC algebra with respect to this topology—and so this is
another reason why C ({X, ..., X,>)> is Henselian.

There is a natural generalization of the above example. Let E be a
locally convex space, let U be an open subset of E, and let H™(U) be the
uniform algebra of bounded analytic functions on U: here, we define
“analytic” as in [2, 21.17. Let xeE. Then 0,, the algebra of germs of
analytic functions at x, can be identified with the inductive limit of the
system {H*(U); ryy}, where U and V are open neighbourhoods of x in E,
and, for V < U, ryy: H®(U) - H*(V) is the restriction' map. Then 0, is a
local pseudo-Banach algebra, and so it is Henselian.

We conclude with two further examples of local Banach algebras. Let w
be a continuous function on R* such that w(f) >0, w(s+1t) < w(s)w(t)
(s, teR™), and w()** >0 as t — 0. Set

1QYo)={a= T ab;: lldl =Ylxlo@) < o},
te@”t
FPRY o)={a= Y o6: |lal = Yo <ol
teRt
Here, &, is the characteristic function of the singleton {t}. Then I*(Q™, w)
and I'(R*, w) are both local Banach algebras with respect to convolution
multiplication, and so they are Henselian. This does not seem to be apparent
from the classical algebraic theory.
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