

STUDIA MATHEMATICA, T. LXXXVII. (1987)

The Pólya characterization of a Gaussian measure on groups

b:

G. M. FEL'DMAN (Khar'kov)

Abstract. Let X be a locally compact Abelian group and ξ_1 , ξ_2 , ξ_3 , ξ_4 independent identically distributed random variables with values in X and distribution γ . The paper deals with a complete description of groups X on which the identical distribution of random variables $2\xi_1$ and $\xi_1 + \xi_2 + \xi_3 + \xi_4$ implies that the distribution γ is invariant with respect to a compact subgroup $K \subset X$ such that 2K = K, and by means of the natural homomorphism $X \to X/K$ induces a Gaussian measure on the factor group X/K.

A characterization theorem for Gaussian distributions on the real line was proved by Pólya in 1923 [8]. The theorem results in the following:

Theorem A (Pólya [8]). Let ξ_1 , ξ_2 , ξ_3 , ξ_4 be independent identically distributed random variables with distribution γ . If $2\xi_1$ and $\xi_1 + \xi_2 + \xi_3 + \xi_4$ are identically distributed, then γ is a symmetric Gaussian distribution.

In terms of characteristic functions, the condition of $2\xi_1$ and $\xi_1 + \xi_2 + \xi_3 + \xi_4$ being identically distributed is evidently of the form

$$\widehat{\gamma}(2y) = (\widehat{\gamma}(y))^4,$$

and Theorem A is equivalent to the statement that the only solutions of (1) in the set of characteristic functions are $\hat{\gamma}(y) = \exp{\{-\alpha y^2\}}$, $\alpha \ge 0$.

The Pólya theorem was the first result in a series of investigations made by J. Marcinkiewicz, Yu. V. Linnik, A. M. Kagan, S. R. Rao, A. A. Zinger and others who studied identically distributed linear statistics of resampling (see [5]). In the list of unsolved problems given in [5, Ch. 2] there is a problem of constructing a theory of equidistribution of forms on algebraic structures. The generalization of Theorem A to groups which is considered in the present paper may be regarded as a step in that direction.

Let X be a locally compact separable Abelian metric group, let $Y = X^*$ be its group of characters and (x, y) the value of the character $y \in Y$ on the element $x \in X$. The convolution of two distributions μ and ν , the characteristic function of a distribution μ and the distribution $\bar{\mu}$ are given by

$$(\mu * \nu)(E) = \int_X \mu(E-x) d\nu(x), \quad \hat{\mu}(y) = \int_X (x, y) d\mu(x), \quad \bar{\mu}(E) = \mu(-E).$$

10

Let us denote the degenerate distribution concentrated at a point $x \in X$ by E_x . The convolution $\mu * E_x$ will be called a *shift* of the distribution μ . A distribution μ is said to be *idempotent* if $\mu^{*2} = \mu * E_x$ for some $x \in X$. As is known, a distribution μ is idempotent if and only if it is a shift of the Haar distribution of a compact subgroup of X ([6]). A distribution μ_1 is called a *factor* of a distribution μ if there exists a distribution μ_2 such that $\mu = \mu_1 * \mu_2$. We denote the support of a distribution μ by $\sigma(\mu)$, and the groups of reals, integers and rotations of a circle by R, R and R, respectively. In solving the problem, standard facts will be used concerning the structure of locally compact Abelian groups and the Pontryagin duality theory (see [2]).

G. M. Fel'dman

DEFINITION 1 ([6]. A distribution γ on X is called Gaussian if its characteristic function admits the representation

(2)
$$\widehat{\gamma}(y) = (x, y) \exp\{-\varphi(y)\},\$$

where x is a fixed element of X and $\varphi(y)$ is a continuous nonnegative function on Y which satisfies the equation

(3)
$$\varphi(y_1 + y_2) + \varphi(y_1 - y_2) = 2 [\varphi(y_1) + \varphi(y_2)]$$

for any $y_1, y_2 \in Y$.

A Gaussian distribution γ will be called *symmetric* if x=0 in (2). The set of Gaussian distributions on X will be denoted by $\Gamma(X)$ and that of symmetric Gaussian distributions by $\Gamma^s(X)$. (It is evident that if $\mu \in \Gamma^s(X)$, then $\mu = \overline{\mu}$. Conversely, if $\mu = \overline{\mu}$, then clearly 2x = 0 in the representation (2).) As was proved in [6], the support $\sigma(\gamma)$ of a distribution $\gamma \in \Gamma(X)$ is a coset of some connected subgroup of X.

DEFINITION 2. A distribution γ on X is called Gaussian in Pólya sense if there exist independent random variables ξ_1 , ξ_2 , ξ_3 , ξ_4 with values in X and with distribution γ such that $2\xi_1$ and $\xi_1+\xi_2+\xi_3+\xi_4$ are identically distributed.

Let us denote by $\Gamma_P(X)$ the set of distributions on X Gaussian in Pólya sense. Then Theorem A implies that $\Gamma^s(R) = \Gamma_P(R)$. For an arbitrary group X, as in the case X = R, the condition $\gamma \in \Gamma_P(X)$ is equivalent to (1). Note that the inclusion

$$\Gamma^{\mathrm{s}}(X) \subset \Gamma_{\mathrm{p}}(X)$$

follows from (1)–(3). Unlike the case X = R, however, in general there may exist non-Gaussian distributions which belong to $\Gamma_P(X)$.

For K a subgroup of X, let $K^{\perp} = \{ y \in Y: (x, y) = 1 \text{ for any } x \in K \}$ be its annihilator. If K is compact, the Haar distribution on K will be denoted by m_K . From (1) it is easy to derive necessary and sufficient conditions which must be satisfied by a compact subgroup K in order that $m_K \in \Gamma_P(X)$.

A group G is called a *Corwin group* if the mapping $G \to G$ given by $x \to 2x$ is an epimorphism, i.e. 2G = G (see [4, Def. 5.3.6]).

Lemma 1. Let G be a closed subgroup of X. Then the following statements are equivalent:

$$1^{\circ} \ \overline{2G} = G.$$

2° If $2y \in G^{\perp}$, then $y \in G^{\perp}$.

Proof. $1^{\circ} \Rightarrow 2^{\circ}$. Let $2y \in G^{\perp}$, i.e. (x, 2y) = 1 for all $x \in G$. Then (2x, y) = 1 for all $x \in G$. Since $\overline{2G} = G$, we have (x, y) = 1 for all $x \in G$, i.e. $y \in G^{\perp}$.

 $2^{\circ} \Rightarrow 1^{\circ}$. Note that $\overline{2G}$ is a closed subgroup of G and $(\overline{2G})^{\perp} \supset G^{\perp}$. Let $y \in (\overline{2G})^{\perp}$. Then (2x, y) = 1 for all $x \in G$. Hence (x, 2y) = 1 for all $x \in G$, i.e. $2y \in G^{\perp}$. It follows from 2° that $y \in G^{\perp}$, i.e. $(\overline{2G})^{\perp} \subset G^{\perp}$. Therefore $(\overline{2G})^{\perp} = G^{\perp}$ and $\overline{2G} = G$.

Proposition 1. Let K be a compact subgroup of X. Then the following statements are equivalent:

- 1. 2K = K.
- 2. If $2y \in K^{\perp}$, then $y \in K^{\perp}$.
- 3. $m_{\mathbf{K}} \in \Gamma_{\mathbf{P}}(X)$.

Proof. The equivalence of 1 and 2 follows from Lemma 1 since $\overline{2K} = 2K$.

 $2\Rightarrow 3$. Note that $\widehat{m}_K(y)=1$ for $y\in K^\perp$ and $\widehat{m}_K(y)=0$ for $y\notin K^\perp$. Let us now verify that the characteristic function $\widehat{m}_K(y)$ satisfies (1). If $y\in K^\perp$, then $2y\in K^\perp$ and $1=\widehat{m}_K(y)=\widehat{m}_K(2y)$ and (1) is fulfilled. If $y\notin K^\perp$, then it follows from (2) that $2y\notin K^\perp$. Therefore $0=\widehat{m}_K(y)=\widehat{m}_K(2y)$ and (1) is also fulfilled.

 $3 \Rightarrow 2$. Since $m_K \in \Gamma_P(X)$, the characteristic function $\hat{m}_K(y)$ satisfies (1). If $2y \in K^{\perp}$, then $\hat{m}_K(2y) = 1$ and it follows from (1) that $\hat{m}_K(y) = 1$, i.e. $y \in K^{\perp}$.

Denote the set of idempotent distributions belonging to $\Gamma_P(X)$ by $I_P(X)$. It follows from (1) that $\Gamma_P(X)$ is a semigroup with respect to convolution. Hence we always have

$$I_{\mathbf{P}}(X) * \Gamma^{\mathbf{s}}(X) \subset \Gamma_{\mathbf{P}}(X).$$

The main result obtained is a complete description of groups X for which

$$I_{\mathbf{p}}(X) * \Gamma^{\mathbf{s}}(X) = \Gamma_{\mathbf{p}}(X).$$

THEOREM 1. Equality (4) is equivalent to the following condition:

(α) For any compact Corwin subgroup K of X the factor group X/K contains no subgroup isomorphic to T.

It should be noted that equality (4) signifies that any distribution $\gamma \in \Gamma_p(X)$ is invariant with respect to some compact Corwin subgroup K and induces a Gaussian distribution on the factor group X/K under the natural homomorphism $X \to X/K$.

A number of lemmas are required to prove Theorem 1.

Lemma 2. Let X be such that Y is a connected compact group. Then $\gamma = E_0$ if $\gamma \in \Gamma_P(X)$.

Proof. Let us consider two cases.

I. $Y \not\approx T$ Since Y is a connected compact group not isomorphic to T, there exists a monomorphism $p\colon R\to Y$ with image dense in Y. Consider the restriction of the characteristic function $\hat{\gamma}(y)$ to p(R). It is evident that $\hat{\gamma}(p(t)), t\in R$, is a characteristic function on R which satisfies (1). By Theorem A, $\hat{\gamma}(p(t)) = \exp\{-\alpha t^2\}$, $\alpha \ge 0$. Let V be a neighborhood of zero in Y. Since p is a monomorphism and $\overline{p(R)} = Y$, we can choose a sequence $t_n \to \infty$ such that $p(t_n) \in V$ for all n. If $\alpha > 0$, then $\hat{\gamma}(p(t_n)) = \exp\{-\alpha t_n^2\} \to 0$ as $t_n \to \infty$. But this contradicts the continuity of $\hat{\gamma}(y)$ since V is arbitrary. So $\alpha = 0$. Hence $\hat{\gamma}(p(t)) \equiv 1$, $t \in R$, and $\hat{\gamma}(y) \equiv 1$, $y \in Y$, since p(R) is dense in Y, i.e. $\gamma = E_0$.

2. $Y \approx T$. It suffices to prove the lemma for Y = T. The elements of T can be written as $\exp\{it\}$, $t \in [0, 2\pi[$. Let $|\hat{\gamma}(y)| < 1$ for some $y \in T$. It follows from (1) that

$$\widehat{\gamma}(2^k y) = (\widehat{\gamma}(y))^{4^k}.$$

Take a sequence $k_j \to +\infty$ so that $2^{k_j} \to y_0$. Then $\hat{\gamma}(y_0) = 0$, $y_0 = \exp\{it_0\}$ and by (1) we obtain $\hat{\gamma}(\exp\{it_0/2^k\}) = 0$, k = 1, 2, ... But this contradicts the continuity of $\hat{\gamma}(y)$ since the sequence $\exp\{it_0/2^k\}$ converges to the zero of the group T. Hence $|\hat{\gamma}(y)| \equiv 1$, $y \in T$. But then $\hat{\gamma}(y)$ is a character of the group T, i.e. $\hat{\gamma}(y) = \exp\{it\}$, for some fixed $n \in Z$. Then it follows from (1) that n = 0, i.e. $\hat{\gamma}(y) \equiv 1$ and $\gamma = E_0$.

Lemma 3. Let $\gamma \in \Gamma_P(X)$ and $\widehat{\gamma}(y) = 1$ only for y = 0. If Y_1 is a subgroup in Y on which $|\widehat{\gamma}(y)| \equiv 1$, then either $Y_1 = \{0\}$ or $Y_1 \approx \mathbb{Z}_2$ (\mathbb{Z}_2 being the group of residue classes modulo 2).

Proof. Since $|\hat{\gamma}(y)| \equiv 1$ on Y_1 , $\hat{\gamma}(y) = (x, y)$ on Y_1 where $x \in Y_1^*$. Substitution of this expression in (1) gives 2x = 0. Consider the homomorphism $p \colon Y_1 \to Z_2 \subset T$ given by p(y) = (x, y). By assumption, p is a monomorphism. Thus Y_1 is isomorphic to a subgroup of Z_2 , i.e. either $Y_1 = \{0\}$ or $Y_1 \approx Z_2$.

By the structure theorem for locally compact Abelian groups, the group X is isomorphic to a group of the type \mathbb{R}^n+G where $n\geq 0$ and the group G contains a compact open subgroup K. The zero component of X will be denoted by C_X .

PROPOSITION 2. Let $X = \mathbb{R}^n + G$, where the group G contains a compact open subgroup, and $\gamma \in \Gamma_p(X)$. Then there exists an element $x \in X$, 2x = 0, such that $\sigma(\gamma * E_x) \subset \mathbb{R}^n + K$, where K is a compact Corwin group.

Proof. Let $E = \{ y \in Y: \ \widehat{\gamma}(y) = 1 \}$. Then $\sigma(\gamma) \subset E^{\perp}$, and γ can be considered as a distribution on E^{\perp} , i.e. one can assume that X itself is such that

 $\hat{\gamma}(y) = 1$ for y = 0 only. It follows from the form of X that $Y = \mathbb{R}^n + H$ where $H \approx G^*$. Since, by Lemma 2, $\hat{\gamma}(y) = 1$ on C_H , we have $C_H = \{0\}$, i.e. H is totally disconnected. We shall first prove that H is discrete, i.e. G is compact.

Consider any compact open subgroup L of H. Let V be a neighborhood of zero in L such that $|\hat{\gamma}(y)| > 0$ for all $y \in V$. As is known (see [2, Th. (24.7)]), for any neighborhood V of zero in L there exists a compact subgroup $M \subset V$ such that the factor group $L/M \approx T^l + F$, where $l \ge 0$ and F is a finite group. Consider the restriction of $\hat{\gamma}(y)$ to M. Suppose that there exists an element $y_0 \in M$ such that $0 < |\hat{\gamma}(y_0)| < 1$. The sequence $\{2^n y_0\}$ has a limit point $2^{n_j} y_0 \to y_1 \in M$. Since it follows from (1) that

$$\widehat{\gamma}(2^n y) = (\widehat{\gamma}(y))^{4^n},$$

we obtain $\widehat{\gamma}(y_1) = 0$, which is impossible since $y_1 \in M \subset V$. Hence $|\widehat{\gamma}(y)| \equiv 1$ on M. By Lemma 3, either $M = \{0\}$ or $M \approx \mathbb{Z}_2$. Since H is totally disconnected, L is also totally disconnected, and therefore it follows from the isomorphism $L/M \approx T^l + F$ that l = 0. If we now take into account a possible form of M, we can conclude that L is a discrete group. Hence H is also discrete and so G is compact.

There are the following possibilities for the group H:

- 1. H contains no elements of order two. In this case the annihilator $G^{\perp} = \mathbb{R}^n$, $G^{\perp} \subset Y$ and satisfies condition 2° of Lemma 1. Hence $\overline{2G} = G$ and since G is compact, $\overline{2G} = 2G = G$, i.e. G is a Corwin group.
- 2. H contains an element ζ of order two. In this case $\hat{\gamma}(\zeta) = -1$. Note that if 2y = 0, then, as follows from (1), $|\hat{\gamma}(y)| = 1$. Therefore, by Lemma 3, H can contain only one element of order two.

We prove that $\zeta \notin 2H$. Indeed, if $\zeta = 2h$, $h \in H$, then it follows from (1) that $|\widehat{y}(y)| \equiv 1$ on the subgroup generated by h, which is impossible by Lemma 3.

There exists an element $\alpha \in (2H)^{\perp}$, $(2H)^{\perp} \subset G$, $(\alpha, \zeta) \neq 1$, i.e. $(\alpha, \zeta) = -1$. Note also that $2\alpha = 0$ since $\alpha \in (2H)^{\perp} \subset G$. Denote by S the subgroup of Y generated by ζ . It is easily seen that $S^{\perp} = \mathbb{R}^n + G_1$, where G_1 is a compact subgroup of G. Since $\zeta \notin 2H$, we have $\zeta \notin 2Y$. Since there is only one element of order two in H, there is only one element of order two in Y too. Thus the subgroup $S \subset Y$ satisfies condition S0 of Lemma 1. Hence S1 but in our case S2. So S3 is a compact Corwin group.

Consider now the distribution $\gamma_1 = \gamma * E_{\alpha} \in \Gamma_P(X)$. Since $\hat{\gamma}_1(y) = 1$ for y = 0 and $y = \zeta$, we have $\sigma(\gamma_1) \subset S^{\perp} = \mathbb{R}^n + G_1$.

LEMMA 4. Let $X = \mathbb{R}^n + G$, where G is a compact Corwin group. Then condition (α) is equivalent to 2Y = Y.

Proof. (a) $\Rightarrow 2Y = Y$. Let $H = G^*$. Since G is a compact Corwin group, the group H is discrete and, by Lemma 1, contains no elements of order two and hence of any even order. Any element of an odd order in H lies in 2H.

Let us verify that any element $h_0 \in H$ of infinite order lies in 2H. Assume the contrary and consider the subgroup $M = \{kh_0\}_{k=-\infty}^{\infty}$ generated by h_0 . It is obvious that $h \in M$ if $2h \in M$. Thus by Lemma 1, $\overline{2M^{\perp}} = M^{\perp}$. But $M^{\perp} = \mathbb{R}^n$ $+G_1$, where G_1 is a compact subgroup in G. Hence $\overline{2M^{\perp}}=2M^{\perp}$ and therefore M^{\perp} is a Corwin group and G_1 is a compact Corwin group. It is evident that $X/G_1 \approx \mathbb{R}^n + T$, which contradicts condition (a). Hence 2H = Hand 2Y = Y.

 $2Y = Y \Rightarrow (\alpha)$. We can prove even more: Let X be an arbitrary group. Then $\overline{2Y} = Y \Rightarrow (\alpha)$.

Assume the contrary, i.e. the factor group X/K where K is a compact Corwin group, contains a subgroup \tilde{T} isomorphic to T. Then the subgroup \tilde{T} is a direct summand in X/K, and hence the group $K^{\perp} \approx (X/K)^*$ contains, as a direct summand, a subgroup \tilde{Z} isomorphic to Z. Let us denote the elements of $K^{\perp} = H + \tilde{Z}$ by (h, n). If $2y \in K^{\perp}$, then, by Lemma 1, $y \in K^{\perp}$. Let 2y = (h, n). Then $y = (h_1, n/2)$. So if $n \notin 2\tilde{\mathbb{Z}}$, then $(h, n) \notin 2Y$. In particular, $(0, n) \notin 2Y$ and since the subgroup K^{\perp} is open, it is obvious that $(0, n) \notin \overline{2Y}$. So $\overline{2Y} \neq Y$, contrary to the assumption.

Remark 1. It follows from the proof of Lemma 4 that the condition $\overline{2Y}$ = Y is sufficient for (α) and hence, by Theorem 1, for equality (4).

Remark 2. If X and Y are Corwin groups, then the mappings $x \to 2x$ and $y \rightarrow 2y$ are isomorphisms. Hence both X and Y are groups with unique division by two.

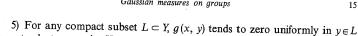
In subsequent considerations we need some results on infinitely divisible distributions on groups.

A distribution μ on X is said to be infinitely divisible if for any natural number n there exist an element $x_n \in X$ and a distribution v_n such that $\mu = v_n^{*n} * E_{x_n}$. As was proved in [6], [7], the characteristic function of an infinitely divisible distribution μ may be written in the form

(5)
$$\hat{\mu}(y) = (x_0, y) \hat{\lambda}(y) \exp \{ \iint_X [(x, y) - 1 - ig(x, y)] dF(x) - \varphi(y) \},$$

where $x_0 \in X$, λ is the Haar distribution of a compact subgroup of X and g(x, y) is a function on $X \times Y$ (independent of μ) with the following properties:

- 1) g(x, y) is continuous as a function of (x, y).
- 2) $\sup_{x \in X} \sup_{y \in L} |g(x, y)| < \infty$ for each compact subset $L \subset Y$.
- 3) $g(x, y_1 + y_2) = g(x, y_1) + g(x, y_2)$, g(-x, y) = -g(x, y) for all $x \in X$, $y_1, y_2 \in Y$.
- 4) For any compact subset $L \subset Y$ there exists a neighborhood U_L of zero in X such that $(x, y) = \exp\{ig(x, y)\}\$ for all $x \in U_L$, $y \in L$.



Moreover, F is a Borel measure on X which is finite on the complement of each neighborhood of zero and satisfies, for all $y \in Y$,

$$\int_{X} [1 - \operatorname{Re}(x, y)] dF(x) < \infty,$$

and $\varphi(y)$ is a function as in (2).

as x tends to zero in X.

Lemma 5 (see [6], [9]). Let $\{\mu_{n_j}\}, j = 1, ..., j_n, n = 1, 2, ..., be a triangu$ lar sequence of infinitesimal distributions, i.e.

$$\lim_{n\to\infty} \max_{1\leqslant j\leqslant j_n} |\widehat{\mu}_{n_j}(y)-1|=0$$

for any compact $L \subset Y$. Let

$$\mu_n = * \atop j=1 \atop j=1 \atop m = 1 \atop m = 1$$

(in the weak topology). Then μ is an infinitely divisible distribution.

It was proved in [6], [9] that (1) if μ is an infinitely divisible distribution on X and $\hat{\mu}(y_0) = 0$ for some $y_0 \in Y$, then μ has an idempotent factor; (2) the set $\{y \in Y: \hat{\mu}(y) \neq 0\}$ is a subgroup of Y. We use the scheme of proof of these statements to prove Lemmas 6 and 7 below.

LEMMA 6. Let X and Y be Corwin groups and $\gamma \in \Gamma_{\mathbb{P}}(X)$. Then if $\hat{\gamma}(y_0) = 0$ for some $y_0 \in Y$, then the distribution γ has an idempotent factor.

Proof. By Remark 2, the continuous mapping $y \rightarrow 2y$ is an isomorphism of the group Y. Therefore for any natural n the function $\hat{y}(y/2^n)$ is defined, and by the Bochner-Khinchin theorem it is the characteristic function of a distribution v_n on X. It follows from (1) that

(6)
$$\widehat{\gamma}(y) = (\widehat{\gamma}(y/2^n))^{4^n}.$$

Hence $y = v^{*4^n}$.

As is known [6], any sequence of factors of a given distribution μ is shift-compact, i.e. it contains a subsequence which is convergent after suitable shifts. Since the v_n are factors of γ , let ν be any limit of shifts of v_n . It is evident that any power of v is again a factor of γ and hence the sequence $\{v^{*n}\}$ is also shift-compact and any limit of shifts of v^{*n} is the desired nontrivial idempotent factor λ .

LEMMA 7. Let X and Y be Corwin groups and $\gamma \in \Gamma_{P}(X)$. Then the set $E = \{ y \in Y : \widehat{y}(y) \neq 0 \}$ is an open subgroup of Y.

Proof. Denote by H the open subgroup in Y generated by E and consider the restriction of the function $\hat{y}(y)$ to H. This restriction is the characteristic function of a distribution $\gamma' \in \Gamma_{\mathbb{P}}(X/H^{\perp})$. Since 2Y = Y, we have 2H = H. Indeed, let $h \in H$. Then

16

$$h = k_1 y_1 + \ldots + k_n y_n, \quad k_i \in \mathbb{Z}, y_i \in \mathbb{E}.$$

Since 2Y = Y, $y_i = 2z_i$ and it follows from (1) that $z_i \in E$. Hence $h = 2(k_1 z_1)$ $+ \dots + k_n z_n \in 2H$. By construction, the distribution γ' has no idempotent factor, because if a distribution μ on X has an idempotent factor, then the character group Y cannot be generated by the set $\{y \in Y : \hat{\mu}(y) \neq 0\}$. Since the factor group X/H^{\perp} is a Corwin group and $(X/H^{\perp})^* \approx H$ is a Corwin group, it follows from Lemma 6 that $\widehat{\gamma}'(y) \neq 0$ for $y \in H$. But $\widehat{\gamma}(y) = \widehat{\gamma}'(y)$ on H, which proves the lemma.

LEMMA 8. Let X and Y be Corwin groups, $\gamma \in \Gamma_p(X)$ and $\hat{\gamma}(y) > 0$ for any $y \in Y$. Then γ is an infinitely divisible distribution.

Proof. As in the proof of Lemma 6, consider the distribution v, with characteristic function $\hat{v}_n(y) = \hat{\gamma}(y/2^n)$. It follows from (6) that

$$\widehat{\gamma}(y/2^n) = (\widehat{\gamma}(y))^{1/4^n}.$$

Hence it is obvious that the distributions $\{\mu_{n_j}\}$, $\mu_{n_j} = \nu_n$, $j = 1, ..., 4^n$, n= 1, 2, ..., forming a triangular sequence, satisfy the conditions of Lemma 5. So

$$\gamma = \mu_n = *_{j=1}^{4^n} \mu_{n_j}$$

is an infinitely divisible distribution.

LEMMA 9. Let X and Y be Corwin groups, $y \in \Gamma_{P}(X)$ and $\hat{y}(y) \ge 0$ for any $y \in Y$. Then y is an infinitely divisible distribution.

Proof. Consider the set $H = \{ y \in Y : \widehat{y}(y) > 0 \}$. By Lemma 7, H is an open subgroup of Y. Hence $K = H^{\perp}$ is a compact group. It follows from (1) that if $2y \in H$, then $y \in H$. Therefore K is a compact Corwin group by Lemma 1. Note also that 2H = H. The restriction of the function $\hat{\gamma}(y)$ to H is the characteristic function of a distribution $\gamma' \in \Gamma_{\mathbb{P}}(X/H^{\perp})$. Since X/H^{\perp} is a Corwin group and so is its character group $(X/H^{\perp})^* \approx H$, it follows from Lemma 8 that y' is an infinitely divisible distribution. Therefore for any natural n

$$\widehat{y}(y) = (f_n(y))^n (x_n, y), \quad y \in H, x_n \in X,$$

where $f_n(y)$ is a characteristic function (when writing the character on H in the form (x_n, y) , $x_n \in X$, we have used the possibility of extending any character on H to a character on Y, and the Pontryagin duality theorem).

$$\widehat{\gamma}_n(y) = \begin{cases} f_n(y), & y \in H, \\ 0, & y \notin H. \end{cases}$$

The function $\hat{\gamma}_n(y)$ is continuous on Y, since the subgroup H is open, and positive-definite (see [3, (32.43)]). By the Bochner-Khinchin theorem, $\hat{y}_{n}(y)$ is the characteristic function of a distribution γ_n on X with $\gamma = \gamma_n^{*n} * E_{x_n}$. Hence y is an infinitely divisible distribution.

Gaussian measures on groups

LEMMA 10. Let v be an infinitely divisible distribution on X with characteristic function $\hat{v}(y) \neq 0$ for all $y \in Y$, and let $\mu = v * \overline{v}$. Then

$$\widehat{\mu}(2y) \geqslant (\widehat{\mu}(y))^4$$

and equality occurs only for Gaussian distributions μ .

Proof. Since $\hat{v}(y) \neq 0$ for all $y \in Y$, the distribution y has no idempotent factors. The representation (5) for $\hat{v}(y)$ is then of the form

$$\widehat{v}(y) = (x_0, y) \exp \left\{ \iint_X \left[(x, y) - 1 - ig(x, y) \right] dF(x) - \varphi(y) \right\}.$$

According to property 3) of the function g(x, y), we obtain for $\hat{\mu}(y) = \hat{v}(y)\hat{v}(-y)$ the expression

$$\widehat{\mu}(y) = \exp \left\{ \int_{X} \left[2\operatorname{Re}(x, y) - 2 - 2ig(x, 0) \right] dF(x) - 2\varphi(y) \right\}.$$

From properties 1), 4) and 5) of g(x, y) it follows that g(x, 0) = 0 in a neighborhood of zero $U \subset X$. If we take into account that the measure F is finite on the complement of U and the function q(x, 0) is bounded according to property 2), we obtain

$$\exp\left\{-i\int_{\mathbf{x}}2g(\mathbf{x},\,0)\,dF(\mathbf{x})\right\}=C.$$

Since $\hat{\mu}(0) = 1$, we have C = 1. Therefore we may assume that

$$\widehat{\mu}(y) = \exp \left\{ \iint_{Y} \left[\operatorname{Re}(x, y) - 1 \right] dF(x) - \varphi(y) \right\}.$$

Consider the trivial inequality

(8)
$$\operatorname{Re}(x, 2y) - 1 \ge 4(\operatorname{Re}(x, y) - 1).$$

Note that equality occurs if and only if (x, y) = 1. It follows from (8) that

Since $\varphi(2y) = 4\varphi(y)$, inequality (7) follows from (9). Equality in (7) for any $y \in Y$ means that the measure F is concentrated on a set where Re(x, 2y) - 1=4(Re(x, y)-1) for all $y \in Y$, i.e. where (x, y)=1 for all $y \in Y$. So F is degenerate at zero, which proves the lemma.

Remark 3. Let $X = \mathbf{R}$ and $\gamma \in \Gamma_{\mathbf{P}}(\mathbf{R})$. It can easily be seen that $\hat{\gamma}(\nu) \neq 0$ for all $\nu \in \mathbb{R}^* \approx \mathbb{R}$. Let $\nu = \gamma * \bar{\gamma} \in \Gamma_{\mathbb{P}}(\mathbb{R})$. By Lemma 8, ν is an infinitely divisible distribution and by Alemma 10, $\mu = v * \bar{v} \in \Gamma(R)$. By the Cramér theorem on the decomposition of a Gaussian distribution, $\gamma \in \Gamma(R)$. and hence $\gamma \in \Gamma^{s}(\mathbf{R})$. Thus we have proved the equality $\Gamma^{s}(\mathbf{R}) = \Gamma_{p}(\mathbf{R})$ (Theorem A) which was used in the proof of Lemma 2.

LEMMA 11 ([1]). Let X contain no subgroup isomorphic to T, let $\gamma \in \Gamma(X)$ and let γ_1 be a factor of γ . Then $\gamma_1 \in \Gamma(X)$.

Proof of Theorem 1. Sufficiency, Let X satisfy condition (α) and $\gamma \in \Gamma_{P}(X)$. It follows from Proposition 2 that the distribution γ may, if necessary, be replaced by its shift $\gamma' = \gamma * E_{x_0}$, $2x_0 = 0$, so that $\sigma(\gamma') \subset G$, where the group G is isomorphic to $\mathbb{R}^n + K$, K being a compact Corwin group. It is obvious that $\gamma' \in \Gamma_{\mathcal{P}}(G)$. Consider the distribution γ $= \gamma' * \overline{\gamma'} \in \Gamma_{\mathbb{P}}(G)$. Since condition (a) is fulfilled for any subgroup of X, it is, in particular, fulfilled for G. Let $H = G^*$. By Lemma 4, 2H = H. By Lemma 7. the set $E = \{h \in H: \hat{v}(h) \neq 0\}$ is then an open subgroup of H. Therefore the subgroup $E^{\perp} \subseteq G$ is compact. Notice that if $2h \in E$, then, as follows from (1) $h \in E$. So, by Lemma 1, E^{\perp} is a Corwin group.

Since $\hat{v}(h) \ge 0$, it follows from Lemma 6 that v is an infinitely divisible distribution. Let $\mu = v * \overline{v} \in \Gamma_{p}(G)$ and consider the restriction f(h) of the characteristic function $\hat{\mu}(h)$ to E. It follows from Lemma 10 that f(h) is the characteristic function of a Gaussian distribution on the factor group G/E^{\perp} . Since $(G/E^{\perp})^* \approx E$ and 2E = E, the factor group G/E^{\perp} contains no subgroup isomorphic to T. Thus, by Lemma 11, any factor of a Gaussian distribution on G/E^{\perp} is a Gaussian distribution. Therefore the restriction of the characteristic function $\hat{v}(h)$ to E is the characteristic function of a Gaussian distribution. If we again apply Lemma 11 to the restriction of the characteristic function $\hat{v}(h)$ to E, we conclude that

$$\hat{\gamma}'(h) = ([g], h) \exp\{-\varphi_0(h)\}, \quad h \in E,$$

where $[g] \in G/E^{\perp}$, and $\varphi_0(h)$ is a continuous function which is nonnegative on E and satisfies (3). Notice now that the function ($\lceil g \rceil$, h) satisfies (1). This results from the fact that $\hat{\gamma}'(h)$ satisfies (1) and $\varphi_0(h)$ satisfies (3). Thus 2[g]= 0. But since G/E^{\perp} and E are Corwin groups, the group G/E^{\perp} contains no elements of order two. So $\lceil q \rceil = 0$. Therefore we obtain the following representation of the characteristic function $\hat{\gamma}'(h)$ on H:

$$\widehat{\gamma}'(h) = \begin{cases} \exp\{-\varphi_0(h)\}, & h \in E, \\ 0, & h \notin E. \end{cases}$$

The function $\varphi_0(h)$ can be extended from the subgroup E onto the whole group H, its properties being preserved (see, for instance, [4, Lemma 5.2.5]). Let the extended function be also denoted by $\varphi_0(h)$. Let γ_0 be the Gaussian distribution on G with characteristic function $\hat{\gamma}_0(h) = \exp\{-\varphi_0(h)\}$. The foregoing implies that

$$\gamma = m_{\mathbf{E}^{\perp}} * E_{\mathbf{x_0}} * \gamma_0 \in I_{\mathbf{P}}(X) * \Gamma^{\mathbf{s}}(X).$$

Necessity. Let us first construct a distribution $\gamma_0 \in \Gamma_{\mathbb{P}}(T)$ such that $y_0 \notin \Gamma(T)$ and $\hat{y}_0(n) \neq 0$ for all $n \in \mathbb{Z}$. To this end, we define the function

$$\psi_0(n) = \begin{cases} 4^p a_l, & |n| = 2^p (2l+1), \\ 0, & n = 0, \end{cases}$$

on Z, where the numbers a_1 are to be chosen so that

$$\sum_{l=0}^{\infty}\sum_{p=0}^{\infty}\exp\left\{-4^{p}a_{l}\right\}<\frac{1}{2}$$

and $\psi_0(n)$ does not satisfy (3). By construction, $\exp\{-\psi_0(n)\}$ is the characteristic function of a distribution γ_0 on T with density

$$\varrho(t) = \sum_{n=-\infty}^{\infty} \exp\left\{-int - \psi_0(n)\right\} > 0.$$

It is evident that $\gamma_0 \in \Gamma_{\mathbb{P}}(T)$, $\gamma_0 \notin \Gamma(T)$ and $\widehat{\gamma}_0(n) \neq 0$ for all $n \in \mathbb{Z}$.

Suppose now that condition (α) is not fulfilled for X. Thus for some compact Corwin subgroup K the factor group X/K contains a subgroup Tisomorphic to T By using the isomorphism $T \approx \tilde{T}$, the distribution v_0 constructed above can be transferred to X/K, the distribution on X/K being also denoted by γ_0 . Then $\gamma_0 \in \Gamma_{\mathbb{P}}(X/K)$ and $\gamma_0 \notin \Gamma(X/K)$. Consider the function

(10)
$$f(y) = \begin{cases} \hat{\gamma}_0(y), & y \in K^{\perp}, \\ 0, & y \notin K^{\perp}, \end{cases}$$

on Y. The function f(y) is continuous since the subgroup K is open, and positive-definite [3, (32.43)]. By the Bochner-Khinchin theorem, there exists a distribution λ on X with characteristic function $\bar{\lambda}(y) = f(y)$.

We first check that f(y) satisfies (1), i.e. $\lambda \in \Gamma_{\mathbb{P}}(X)$. If $y \in K^{\perp}$, then $2y \in K^{\perp}$ and (1) is fulfilled since the function $\hat{\gamma}_0(y)$ satisfies (1). If $y \notin K^{\perp}$, then by Lemma 1. $2v \notin K^{\perp}$, and hence 0 = f(2v) = f(v) and (1) is also fulfilled.

Let us now verify that $\lambda \notin I_{\mathbb{P}}(X) * \Gamma(X)$. Assume to the contrary that there exist a compact Corwin subgroup $K_1 \subset X$ and $\gamma \in \Gamma(X)$ such that

$$\lambda = m_{K_1} * \gamma.$$

Since $\hat{y}(y) \neq 0$ for all $y \in Y$, it follows from (11) that $K_1^{\perp} = \{ y \in Y : \hat{\lambda}(y) \neq 0 \}$. On the other hand, since $\hat{\gamma}_0(y) \neq 0$ for $y \in K^{\perp}$, it follows from (10) that $K^{\perp} = \{ v \in Y; \hat{\lambda}(v) \neq 0 \}$. Hence $K_1^{\perp} = K^{\perp}$ and therefore $K_1 = K$. Then it follows from (11) that the restriction of $\hat{\lambda}(v)$ to K^{\perp} is the characteristic function of a distribution $\gamma_1 \in \Gamma(X/K)$, which is impossible because then $\gamma_0 = \gamma_1 \in \Gamma(X/K)$. The proof of Theorem 1 is complete.

COROLLARY 1.

(12)
$$\Gamma^{s}(X) = \Gamma_{P}(X)$$

if and only if the group X contains no nontrivial compact Corwin subgroups.

(2085)

Proof. The necessity is evident. We prove the sufficiency. By assumption, the only compact Corwin subgroup in X is $K = \{0\}$. Therefore no factor group X/K, where K is a compact Corwin group (in our case the factor group is unique and isomorphic to X), contains a subgroup isomorphic to T since T is a compact Corwin group. Therefore condition (α) is fulfilled. Thus, by Theorem 1, equality (4) and hence (12) are true.

Remark 4. In order that any distribution $\gamma \in \Gamma_p(X)$ be symmetric, i.e. $\gamma = \overline{\gamma}$, it is necessary and sufficient that the group X satisfies condition (α) .

Proof. The sufficiency follows directly from Theorem 1 because, as can easily be seen, distributions which belong to $I_P(X)*\Gamma^s(X)$ are symmetric. Let us verify the necessity. If we apply the scheme of the proof of necessity in Theorem 1, it is obvious that it suffices to construct a nonsymmetric distribution $\gamma \in \Gamma_P(T)$.

Let $\hat{\gamma}_0(n)$ be the characteristic function of the distribution γ_0 constructed in the proof of Theorem 1. Consider the function

$$t(n) = \begin{cases} \hat{\gamma}_0(n), & |n| \neq 1, \\ i\hat{\gamma}_0(1), & n = 1, \\ -i\hat{\gamma}_0(1), & n = -1, \end{cases}$$

on Z. It is evident that t(n) is the characteristic function of a distribution $\gamma \in \Gamma_P(T)$ and since the characteristic function $\widehat{\gamma}(n)$ is nonreal, $\gamma \neq \overline{\gamma}$.

Remark 5. Condition (α) is also necessary and sufficient for the set $E = \{ y \in Y : \hat{\gamma}(y) \neq 0 \}$ to be a subgroup in Y for any distribution $\gamma \in \Gamma_{\mathbb{P}}(X)$.

The sufficiency follows immediately from Theorem 1. To prove the necessity, consider the function

$$S(n) = \begin{cases} \exp\{-n^2\}, & |n| \neq 2^p, \ p = 0, 1, \dots, \\ 0, & |n| = 2^p, \ p = 0, 1, \dots \end{cases}$$

on Z. It is evident that S(n) is the characteristic function of a distribution $\gamma_1 \in \Gamma_P(T)$ for which the set $\{n \in Z : \widehat{\gamma}_1(n) \neq 0\}$ is not a subgroup in Z. If we apply the scheme of the proof of necessity in Theorem 1, we can construct the desired distribution by using the distribution γ_1 on an arbitrary group X which does not satisfy condition (α) .

We can now complement the characterization theorem.

Proposition 3. Let $\gamma \in \Gamma_p(X)$ be an infinitely divisible distribution. Then $\gamma \in I_p(X) * \Gamma^s(X)$.

Proof. The representation (5) of the characteristic function of an infinitely divisible distribution implies that $E = \{ y \in Y : \widehat{\gamma}(y) \neq 0 \}$ is an open subgroup in Y. Therefore the group $K = E^{\perp}$ is compact. It follows from (1) that if $2y \in E$ then $y \in E$. By Lemma 1, K is a compact Corwin group. Let $\mu = \gamma * \widehat{\gamma}$ and consider the restriction of the characteristic function $\widehat{\mu}(\gamma)$ to E.

By Lemma 10, this restriction is the characteristic function of a Gaussian measure on the factor group X/K. Since in the class of infinitely divisible distributions a Gaussian measure has only Gaussian factors, the restriction of the characteristic function $\hat{\gamma}(y)$ to E is also the characteristic function of a Gaussian measure. So $\hat{\gamma}(y)$ can be written as follows:

$$\widehat{\gamma}(y) = \begin{cases} ([x], y) \exp\{-\varphi(y)\}, & y \in E, \\ 0, & y \notin E, \end{cases}$$

where $[x] \in X/K$, 2[x] = 0, and the function $\varphi(y)$ is as in (2). Let us extend the character ([x], y) from E to Y. The extended character will be denoted by (x, y). The function $\varphi(y)$ can also be extended from E to Y ([4]), its properties being preserved. We keep the notation $\varphi(y)$ for that extension. Let us now denote by γ_0 the Gaussian measure on X with characteristic function $\hat{\gamma}_0(y) = \exp\{-\varphi(y)\}$. Then it can easily be seen that

$$\gamma = m_K * E_x * \gamma_0 = \lambda * \gamma_0$$

where $\lambda = m_K * E_x \in I_P(X)$ and $\gamma_0 \in \Gamma^s(X)$.

References

- G. M. Fel'dman, On a decomposition of a Gaussian distribution on groups, Teor. Veroyatnost. i Primenen. 22 (1977), 136-143 (in Russian).
- [2] E. Hewitt and K. Ross, Abstract Harmonic Analysis, vol. 1, Springer, 1963.
- [3] -, -, Abstract Harmonic Analysis, vol. 2, Springer, 1970.
- [4] H. Heyer, Probability Measures on Locally Compact Groups, Springer, 1977.
- [5] A. M. Kagan, Yu. V. Linnik and S. R. Rao, Characterization Problems in Mathematical Statistics. Nauka. Moscow 1972 (in Russian).
- [6] K. R. Parthasarathy, R. Ranga Rao and S. R. S. Varadhan, Probability distributions on locally compact abelian groups, Illinois J. Math. 7 (1963), 337-369.
- [7] K. R. Parthasarathy and V. V. Sazonov, On the representation of infinitely divisible distributions on a locally compact abelian group, Teor. Veroyatnost. i Primenen. 9 (1964), 118-121 (in Russian).
- [8] G. Pólya, Herleitung des Gauss'schen Fehlergesetzes aus einer Funktionalgleichung, Math. Z. 18 (1923), 96-108.
- [9] V. V. Sazonov and V. N. Tutubalin, Probability distributions on topological groups, Teor. Veroyatnost. i Primenen. 11 (1966), 3-55 (in Russian).

PHYSICO-TECHNICAL INSTITUTE OF LOW TEMPERATURES ACADEMY OF SCIENCES OF THE UKRAINIAN SSR Lenin's prosp. 47, Kharkoy 86, USSR

Received August 22, 1985 Translated version April 7, 1986