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The Pélya characterization of a Gaussian measure on groups
by
G. M. FELDMAN (Kharkov)

Abstract. Let X be a locally compact Abelian group and ¢, &,, &5, & independent
identically distributed random variables with values in X and distribution 7. The paper deals
with a complete description of groups X on which the identical distribution of random variables
2, and ¢, +&,+ &3+ &, implies that the distribution y is invariant with respect to a compact
subgroup K < X such that 2K =K, and by means of the natural homomorphism X — X/K
induces a Gaussian measure on the factor group X/K.

A characterization theorem for Gaussian distributions on the real line
was proved by Polya in 1923 [8]. The theorem results in the following:

TueorEM A (Pdlya [8]). Let &, &,, &5, &, be independent identically
distributed random variables with distribution y. If 2¢; and &, +&,+ &3+ &, are
identically distributed, then y is a symmetric Gaussian distribution.

In terms of characteristic functions, the condition of 2%, and &, +&,+ &,
+¢, being identically distributed is evidently of the form

® @) =),

and Theorem A is equivalent to the statement that the only solutions of (1)
in the set of characteristic functions are $(y) = exp {—ay?}, a > 0.

The Pélya theorem was the first result in a series of investigations made
by J. Marcinkiewicz, Yu. V. Linnik, A. M. Kagan, S. R. Rao, A. A. Zinger and
others who studied identically distributed linear statistics of resampling (see
[5])- In the list of unsolved problems given in [5, Ch. 2] there is a problem
of constructing a theory of equidistribution of forms on algebraic structures.
The generalization of Theorem A to groups which is considered in the
present paper may be regarded as a step in that direction.

Let X be a locally compact separable Abelian metric group, let Y= X*
be its group of characters and (x, y) the value of the character ye Y on the
element xeX. The convolution of two distributions x and v, the
characteristic function of a distribution y and the distribution ji'are given by

(u*V)(E) = [p(E—x)dv(x), ﬁ(y)=£(x,)')d#(x), A(E) = p(—E).
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Let us denote the degenerate distribution concentrated at a point xe X
by E,. The convolution pu*E, will be called a shift of the distribution u. A
distribution p is said to be idempotent if p*? = p*E, for some xe X. As is
known, a distribution p is idempotent if and only if it is a shift of the Haar
distribution of a compact subgroup of X ([6]). A distribution u, is called
a factor of a distribution u if there exists a distribution u, such that
1= i % i4;. We denote the support of a distribution u by o(y), and the groups
of reals, integers and rotations of a circle by R, Z and T, respectively. In
solving the problem, standard facts will be used concerning the structure of
locally compact Abelian groups and the Pontryagin duality theory (see [2]).

DerFinmmioN 1 ([6]. A distribution y on X is called Gaussian if its
characteristic function admits the representation

) F(y) = (x, yexp {— ()},

where x is a fixed element of X and ¢(y) is a contlnuous nonnegative
function on Y which satisfies the equation

3 @(y1+y)+e(yi—y2) = 2[o(y)+e(y2)]

for any y,, yoeY.

A Gaussian distribution y will be called symmetric if x = 0 in (2). The set
of Gaussian distributions on X will be denoted by I'(X) and that of
symmetric Gaussian distributions by I'*(X). (It is evident that if ue I'*(X), then

= ji. Conversely, if 4 = [i, then clearly 2x = 0 in the representation (2).) As
was proved in [6], the support o(y) of a distribution yeI'(X) is a coset of
some connected subgroup of X.

DeriNtTiON 2. A distribution y on X is called Gaussian in Pélya sense if
there exist independent random variables &, &,, &5, &, with values in X and
with distribution y such that 2¢; and &;+&,+&5+¢, are identically
distributed.

Let us denote by I'p(X) the set of distributions on X Gaussian in Pélya
sense. Then Theorem A implies that I'*(R) = I';(R). For an arbitrary group
X,-as in the case X = R, the condition yeI'x(X) is equivalent to (1). Note
that the inclusion

IY(X) = Ip(X)
follows from (1)-(3). Unlike the case X = R, however, in general there may
exist non-Gaussian distributions which belong to I's (X).

For K a subgroup of X, let K* = {ye¥: (x, y) = 1 for any xe K} be its
annihilator. If K is compact, the Haar distribution on K will be denoted by
my. From (1) it is easy to derive necessary and sufficient conditions which
must be satisfied by a compact subgroup K in order that myeI'x(X).

A group G is called a Corwin group if the mapping G — G given by
x—2x is an epimorphism, ie. 2G =G (see [4, Def. 5.3.6]).
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LemMa 1. Let G be a closed subgroup of X. Then the following
statements are equivalent:

1° 2G = G.

2 If 2yeG*, then yeG*.

Proof. 1°=2°. Let 2ye G+, ie. (x, 2y) = 1 for all xeG. Then (2x, y) =1
for all xeG. Since 2G = G, we have (x, y) =1 for all xeG, ie. yeG=-

2 =1°. Note that 2G is a closed subgroup of G and (2G)* > G*. Let
ye(%)*. Then (2x, y) = 1 for all xeG. Hence (x, 2y) =1 for all xegG, i.e.
2ye G Tt follows from 2° that ye G* ie. (2G)* = G*. Therefore (2G)* = G*
and 2G = G.

ProposiTioN 1. Let K be a compact subgroup of X. Then the following
statements are equivalent:

1. 2K =K.

2. If 2yeK*, then ye KL

3. mgelp(X).

Proof. The equivalence of 1 and 2 follows from Lemma 1 since
2K =2K.

2=3. Note that iz (y) =1 for ye K* and #ig(y) = 0 for y¢K*. Let us
now verify that the characteristic function ik (y) satisfies (1). If ye K+, then
2yeK* and 1 = g (y) = g (2y) and (1) is fulfilled. If y¢ K-, then it follows
from (2) that 2y ¢ K+. Therefore 0 = g (y) = riix (2y) and (1) is also fulfilled.

3= 2. Since mge I'p(X), the characteristic function i (y) satisfies (1).
If 2ye K, then riig(2y) = 1 and it follows from (1) that g (y) = 1, ie. yeK* |

Denote the set of idempotent distributions belonging to I';(X) by I (X).
It follows from (1) that I'p(X) is a semigroup with respect to convolution.
Hence we always have

L(X)*I*(X) < T5(X).
The main result obtained is a complete description of groups X for which
4 Ip (X)+I*(X) = I'p(X).

TuroreM 1. Equality (4) is equivalent to the following condition:

(@) For any compact Corwin subgroup K of X the factor group X/K
contains no subgroup isomorphic to T

It should be noted that equality (4) signifies that any distribution
ye I'p(X) is invariant with respect to some compact Corwin subgroup K and
induces a Gaussian distribution on the factor group X/K under the natural
homomorphism X — X/K.

A number of lemmas are required to prove Theorem 1.
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LEmMA 2. Let X be such that Y is a connected compact group. Then
y=Eo if yeI'p(X).

Proof. Let us consider two cases.

I. Y# T Since Y is a connected compact group not isomorphic to T
there exists a monomorphism p: R— Y with image dense in Y. Consider the
restriction of the characteristic function §(y) to p(R). It is evident that
7(p(1)), te R, is a characteristic function on R which satisfies (1). By Theprem
A, 7(p(t) =exp{—at?}, «=0. Let ¥ be a neighborhood of zero in Y.

Since p is 2 monomorphism and p(R) = ¥, we can choose a sequence ¢, —+ o¢
such that p(t,)e V for all n. If « >0, then 5(p(r,)) =exp{—w2} -0 as t,
—c0. But this contradicts the continuity of 7(y) since V is arbitrary.
So o =0. Hence 7(p(t)) =1, teR, and 7(y) =1, yeY, since p(R) is dense
in Y, ie. y = E,.

2. Y = T It suffices to prove the lemma for Y = T. The elements of T can
be written as exp {it}, te [0, 2n[. Let |§(y)| <1 for some ye T It follows from
(1) that

7(249) = (G

Take a sequence k; — + oo so that ij—»yo. Then $(yo) =0, yo = exp {ito}
and by (1) we obtain §(exp {its/2*}) =0, k = 1, 2, ... But this contradicts the
continuity of $( y) since the sequence exp {ito/2*} converges to the zero of the
group T Hence |[9(y)| =1, ye T But then 7(y) is a character of the group T,
ie. 7(y) = exp {int}, y = exp {it}, for some fixed neZ. Then it follows from
(1) that n =0, ie. $(y) =1 and y=E,.

Lemma 3. Let yeI'v(X) and 5(y) =1 only for y = 0. If Y, is a subgroup in
Y on which |[§(y)| = 1, then either Y; = {0} or Y, = Z, (Z, being the group of
residue classes modulo 2).

Proof. Since [§(y) = 1 on Y;; 7(¥) =(x, y) on ¥; where xe Yi*. Substitu-
tion of this expression in (1) gives 2x = 0. Consider the homomorphism
p: Yy —Z, =T given by p(y)=(x, y). By assumption, p is a monomor-
phism. Thus ¥, is isomorphic to a subgroup of Z,, ie. either Y, = {0] or
Y,=Z,. .

By the structure theorem for locally compact Abelian groups, the group
X is isomorphic to a group of the type R"+G where n > 0 and the group G
‘contains a compact open subgroup K. The zero component of X will be
denoted by Cy.

ProrosiTioN 2. Let X = R"+G, where the group G contains a compact
open subgroup, andyeI'y(X). Then there exists an element xe X, 2x = 0, such
that ¢ (yxE;) = R'+K, where K is a compact Corwin group.

Proof. Let E= {yeY: §(y) = 1}. Then ¢(y) = E* and y can be consid-
ered as a distribution on’' E*; ie. one can assume that X itself is such that

- ©
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7(y) = 1for y = 0 only. It follows from the form of X that Y = R"+ H where
H ~ G*. Since, by Lemma 2, $(y) =1 on Cu, we have Cy = {0}, ie. H is
totally disconnected. We shall first prove that H is discrete, ie. G is compact.

Consider any compact open subgroup L of H. Let ¥ be a neighborhood
of zero in L such that |5(y)| > 0 for all yeV As is known (see [2, Th. (24.7)]),
for any neighborhood ¥ of zero in L there exists a compact subgroup
M <=V such that the factor group L/M =~ T'+F, where [>0 and F is
a finite group. Consider the restriction of 7(¥) to M. Suppose that there
exists an element yye M such that 0 < [§( o)l < 1. The sequence {2"y,} has
a limit point 2"y, — y, € M. Since it follows from (1) that

72"y) = (F()*,

we obtain §(y,) = 0, which is impossible since yieM < V. Hence |§(y) =1
on M. By Lemma 3, either M = {0} or M ~ Z,. Since H is totally discon-
nected, L is also totally disconnected, and therefore it follows from the
isomorphism L/M ~ T'+F that |=0. If we now take into account a
possible form of M, we can conclude that L is a discrete group. Hence H is
also discrete and so G is compact.

There are the following possibilities for the group H:

. H contains no elements of order two. In this case the annihilator
G*=R", G*< Y and satisfies condition 2° of Lemma 1. Hence 2G =G
and since G is compact, 2G = 2G = G, ie. G is a Corwin group.

2. H contains an element { of order two. In this case 7(0) = —1. Note that
if 2y = 0, then, as follows from (1), [§( )| = 1. Therefore, by Lemma 3, H can
contain only one element of order two.

We prove that { ¢2H. Indeed, if { = 2h, he H, then it follows from (1) that
[7(y) = 1 on the subgroup generated by h, which is impossible by Lemma 3.

There exists an element we(2H)Y, RH)* =G, (@, ) # 1, ie. (@, )= —1.
Note also that 2a = 0 since ae(2H)* = G. Denote by S the subgroup of Y
generated by (. It is easily seen that §* = R"+G,, where G, is a compact
subgroup of G. Since { ¢2H, we have {¢2Y. Since there is only one element
of order two in H, there is only one element of order two in Y too. Thus the
subgroup S — Y satisfies condition 2° of Lemma 1. Hence 25T = S, but in
our case 2S* =2SL So G, is a compact Corwin group.

Consider now the distribution p, = yxE, eI, (X). Since F1(» =1 for
y=0and y={, we have o(y;) = S* = R"+G,.

Lemma 4. Let X = R"+G, where G is a compact Corwin group. Then
condition («) is equivalent to 2Y =Y,

Proof. (@)=>2Y =Y. Let H = G*. Since G is a compact Corwin group,
the group H is discrete and, by Lemma 1, contains no elements of order two
and hence of any even order. Any element of an odd order in H lies in 2H.
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Let us verify that any element hoe H of infinite order lies in 2H. Assumelth.e
contrary and consider the subgroup M = {kho}ix :E,__generaied by hoi t li
obvious that heM if 2he M. Thus by Lemma 1, oMt = AL;IBut M¢= R
+G,, where G, is a compact subgroup in G. Hence ZM =2M an.d
therefore M+ is a Corwin group and G, is a coml?apt Corwin group. It is
evident that X/G, ~ R*+ T, which contradicts condition (x). Hence 2H = H
andZi'};*Yi(a)‘ We can prove even more: Let X be an arbitrary group.
=Y =(x). )
Thezs:ﬁ:ne t}1,1e c(zzltrary, ie. the factor group .Xf/K where K is a compact
Corwin group, contains a subgroup T isomorphic to T.LThen the* subgl:c?up
T is a direct summand in X/K, and hence the group K+~ (X/K)* contains,
as a direct summand, a subgroup Z isomorphic to Z. Let us denote thf
elements of K*=H+Z by (h,n). If 2yeK", then, by Lemma 1, yeK"~.
Let 2y = (h, ). Then y = (hy, n/2). So if n¢2Z, then (h, r'1)$2Y. In particular,
(0, )¢2Y and since the subgroup K L is open, it is obvious that (0, n)¢2Y.
So 2Y # ¥, contrary to the assumption.

Remark 1. It follows from the proof of Lemma 4 that the_condition 2Y
= Y is sufficient for () and hence, by Theorem 1, for equality (4).

Remark 2. If X and Y are Corwin groups, then the mappin-gs x——'>2x
and y — 2y are isomorphisms. Hence both X and Y are groups with unique
division by two. . o o

In subsequent considerations we need some results on infinitely divisible
distributions on groups. o

A distribution u on X is said to be infinitely divisible if for any natural
number n there exist an element x,eX and a distrib.ut.lon Y guch that
p=vi"+E, . As was proved in [6], [7], the characteristic function of an

n

infinitely divisible distribution p may be written in the form

6)  AG) =(x0. NI()exp {’I( [x, »)—1ig(x, YIF ()= (1)},

where xoe X, A is the Haar distribution of a compact subgroup. of X and
g(x, y) is a function on X x Y (independent ‘of 4) with the following proper-
ties: - ‘ ‘

1) g(x, y) is continuous as a function of (x, y).

2) SUP,ex SUP,e [9(X, ¥)| < oo for each compact subset L < Y.

3) g(x, y1+y2) =g (x, y)+4(, ¥2), 9(—x,)) = —g(x, ) for all xeX,
V1, o€ ¥. ) i :

4) For any compact subset L < Y there exists a neighborhood Uy, of zero
i X such that (x, y) = exp lig (x, y)} for all xeU,, yeL.
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5) For any compact subset L < ¥, g(x, y) tends to zero uniformly in ye L
as x tends to zero in X.

Moreover, F is a Borel measure on X which is finite on the complement
of each neighborhood of zero and satisfies, for all ye Y,

1 —Re(x, y)]dF (x) < o0,
X

and ¢(y) is a function as in (2).

Lemma 5 (see [6], [9]). Let {,u,.j},j =1,...jun=1,2, ..., be a triangu-
lar sequence of infinitesimal distributions, i.e.
lim max |, (y)—1 =0
n~w 1€j<j, O

Jor any compact L<. Y. Let

jn
M= * o and  p,—p

i=1
(in the weak topology). Then u is an infinitely divisible distribution.

It was proved in [6], [9] that (1) if y is an infinitely divisible distribution
on X and ji(y,) =0 for some Yo€Y, then y has an idempotent factor; (2)
the set {ye¥: fi(y) # 0} is a subgroup of Y. We use the scheme of proof of
these statements to prove Lemmas 6 and 7 below.

Lemma 6. Let X and Y be Corwin groups and yeI'p(X). Then if $(yo) = 0
Jor some yoeY, then the distribution y has an idempotent factor.

Proof. By Remark 2, the continuous mapping y — 2y is an isomorphism
of the group Y. Therefore for any natural n the function 7(y/2" is defined,
and by the Bochner-Khinchin theorem it is the characteristic function of a
distribution v, on X. It follows from (1) that

(© : 700 = (F(y/2y*".
Hence y = y**",

As is known [6], any sequence of factors of a given distribution yu is
shift-compact, ie. it contains a subsequence which is convergent after
suitable shifts. Since the v, are factors of ¥, let v be any limit of shifts of Ve
It is evident that any power of v is again a factor of y and hence the
sequence {v*"} is also shift-compact and any limit of shifts of v*" is the
desired nontrivial idempotent factor A.

LemMma 7. Let X and Y be Corwin groups and ye I's(X). Then the set
E={yeY: 7(y)#0} is an open subgroup of Y.

Proof. Denote by H the open subgroup in Y generated by E and
consider the restriction of the function 7(y) to H, This restriction is the
characteristic function of a distribution y'e I'y (X/H 1. Since 2Y = ¥, we have
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2H = H. Indeed, let he H. Then
h=k,y,+ ... tkyy,, kicZ, yeE.

Since 2Y = Y] y, = 2z, and it follows from (1) that z;e E. Hence h =2(k; z,
+ ... +k,z,)e2H. By construction, the distribution y' has no idempotent
factor, because if a distribution p on X has an idempotent factor, then the
character group Y cannot be generated by the set {yeY: a(y) # 0}. Since
the factor group X/H* is a Corwin group and (X/H Y ~ H is a Corwin
group, it follows from Lemma 6 that 7 (y) # 0 for ye H. But §(y) = ¥'(y) on
H, which proves the lemma.

Lemma 8. Let X and Y be Corwin groups, ye I'y(X) and §(y) > 0 for any
yeY. Then y is an infinitely divisible distribution.

Proof. As in the proof of Lemma 6, consider the distribution v, with
characteristic function ¥,(y) = $(y/2". It follows from (6) that

P32 = GO
Hence it is obvious that the distributions {;z,,j}, Hny = Vas J = 1,...4 n

=1,2, ..., forming a triangular sequence, satisfy the conditions of Lemma 5.
So

= = %k
V== K
is an infinitely divisible distribution.

Lemma 9. Let X and Y be Corwin groups, ye I'n(X) and 7(y) = 0 for any
yeY. Then y is an infinitely divisible distribution.

Proof. Consider the set H={yeY: §(y) > 0}. By Lemma 7, H is an
open subgroup of Y. Hence K = H' is a compact group. It follows from (1)
that if 2ye H, then ye H. Therefore K is a compact Corwin group by Lemma
1. Note also that 2H = H. The restriction of the function §(y) to H is the
characteristic function of a distribution y eI's(X/HY. Since X/H* is a
Corwin group and so is its character group (X/HY)* ~ H, it follows from
Lemma 8 that y is an infinitely divisible distribution. Therefore for any
natural n

’

73) = (L' (X, ¥),

where f,(y) is a characteristic function (when writing the character on H in
the form (x,,y), x,€X, we have used the possibility of extending any
character on H to a character on Y, and the Pontryagin duality theorem).
We put

yeH, x,e X,

oo Jh(), yeH,

e ©
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The function 4,(y) is continuous on Y, since the subgroup H is open, and
positive-definite (see [3, (32.43)]). By the Bochner-K hinchin theorem, ,(y) is
the characteristic function of a distribution y, on X with y = 7}"+E, . Hence

y is an infinitely divisible distribution.

Lemma 10. Let v be an infinitely divisible distribution on X with
‘characteristic function ¥(y) # 0 for all yeY, and let p=v*V. Then
M 22y = (@)
and equality occurs only for Gaussian distributions p.

Proof. Since ¥(y) # 0 for all ye Y, the distribution v has no idempotent
factors. The representation (5) for ¥(y) is then of the form

T(y) = (x0, y) exp {J [(x, Y —1—ig(x, Y] dF (x)~ ¢ (3)}.
X

According to property 3) of the function g(x, y),
A(y)=7(y)¥(—y) the expression

E(y) = exp {}J;[me(x, »)—2-2ig(x, O] dF () -2 (y)}-

we obtain for

From properties 1), 4) and 5) of g(x, y) it follows that g(x, 0)=0 in a
neighborhood of zero U = X. If we take into account that the measure F is
finite on the complement of U and the function g(x, 0) is bounded according
to property 2), we obtain

exp {—i[2(x, 0)dF(x)} = C.
X
Since ji(0) =1, we have C = 1. Therefore we may assume that
A(y) = exp {| [Re(x, »)—11dF ()~ ())}-
X

Consider the trivial inequality

® Re(x, 2y)—1 > 4(Re(x, y)—1).

Note that equality occurs if and only if (x, y) = 1. It follows from (8) that
(&) f [Re(x, 2y)—1]dF (x) > 4 [ [Re(x, y)~ 1] dF (x).
X X

Since @ (2y) = 4¢(y), inequality (7) follows from (9). Equality in (7) for any
ye Y means that the measure F is concentrated on a set where Re(x, 2y)—1
= 4(Re(x, y)—1) for all ye¥, ie. where (x,y)=1 for all ye¥. So F is
degenerate at zero, which proves the lemma.

Remark 3. Let X =R and yelp(R). It can easily be seen that
7(y)#0 for all yeR* ® R. Let v=19*yelp(R). By Lemma 8, v is an
infinitely divisible distribution and byAlemma 10, u=v+VeI'(R). By the

2 — Studia Mathematica t. 87 z. 1
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Cramér theorem on tﬂe decomposition of a Gaussian distribution, ye I'(R),
and hence yel*(R). Thus we have proved the equality I'(R) = I'p(R)
(Theorem A) which was used in the proof of Lemma 2.

LemMma 11 ([1]). Let X contain no subgroup isomorphic to T, let ye I'(X)
and let yy be a factor of y. Then y,e ' (X). ’

Proof of Theorem 1. Sufficiency. Let X satisfy condition (x) and
yelp(X). It follows from Proposition 2 that the distribution y may, if
necessary, be replaced by its shift 7" =1y*E, , 2x, =0, so that a(y) =G,
where the group G is isomorphic to R"+K, K being a compact Corwin
group. It is obvious that 9'el'p(G). Consider the distribution v
= y'*¥ e I'p(G). Since condition («) is fulfilled for any subgroup of X, it is, in
particular, fulfilled for G. Let H = G*. By Lemma 4, 2H = H. By Lemma 7,
the set E = {he H: #(h) # 0} is then an open subgroup of H. Therefore the
subgroup E* < G is compact. Notice that if 2he E, then, as follows from (1),
heE. So, by Lemma 1, E* is a Corwin group.

Since ¥(h) = 0, it follows from Lemma 6 that v is an infinitely divisible
distribution. Let p=y*Vel'y(G) and consider the restriction f (k) of the
characteristic function fi(h) to E. It follows from Lemma 10 that f (k) is the
characteristic function of a Gaussian distribution on the factor group G/E*
Since (G/EY)* ~ E and 2E = E, the factor group G/E* contains no subgroup
isomorphic to T. Thus, by Lemma 11, any factor of a Gaussian distribution
on G/E* is a Gaussian distribution. Therefore the restriction of the
characteristic function 7(h) to E is the characteristic function of a Gaussian
distribution. If we again apply Lemma 11 to the restriction of the
characteristic function ¥(h) to'E, we conclude that

7(W) =(lg], Hexp{—po(h)}, heE,
where [g]eG/E*, and ¢, (k) is a continuous function which is nonnegative
on E and satisfies (3). Notice now that the function ([¢], k) satisfies (1). This
results from the fact that 7 (k) satisfies (1) and @, (h) satisfies (3). Thus 2 [g]
= 0. But since G/E* and E are Corwin groups, the group G/E* contains no

elements of order two. So [g] =0. Therefore we obtain the following
representation of the characteristic function 7 (h) on H:

o _ GXP{'(PO(}‘)}~ hEE,
= {O, h¢E.

The function ¢q(h) can be extended from the subgroup E onto the whole

group H, its properties being preserved (see, for instance, [4, Lemma 5.2.57).
Let the extended function be also denoted by g, (k). Let Yo be the Gaussian
distribution on G with characteristic function 7, (h) = exp {— o (h)}. The
foregoing implies that )

v =myxEqy¥yo€ I (X)«I*(X).
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Necessity. Let us first construct. a distribution yp,eI'p(T) such that
y0¢ ' (T) and §4(n) # 0 for all neZ. To this end, we define the function

42q, |n =272+ 1),
Yo(n) = {O, n=0,

on Z, where the numbers @, are to be chosen so that

oo o

Y T exp{-47a} <}

I=0p=0
and Y,(n) does not satisfy (3). By construction, exp{—y,(n} is the
characteristic function of a distribution y, on T with density

ey= ¥ exp{—int—y,(n)} >0.
n= - o0
It is evident that yoeI'p(T), yo¢I'(T) and $,(n) # O for all neZ.

Suppose now that condition (@) is not fulfilled for X. Thus for some
compact Corwin subgroup K the factor group X/K c~ontains a subgroup T
isomorphic to T By using the isomorphism T = T, the distribution y,
constructed above can be transferred to X/K, the distribution on X/K being
also denoted by p,. Then 7y,elp(X/K) and y,¢I'(X/K). Consider the

function

fo(y), yeK*h
f(y)—{o’ VKL '
on Y. The function f(y) is continuous since the subgroup K is open, and
positive-definite [3, (32.43)]. By the Bochner—Khinchin theorem, there exists
a distribution A on X with characteristic function A(y) =f(y).

We first check that f(y) satisfies (1), i.e. Ae Ip(X). If ye K*, then 2yeK*
and (1) is fulfilled since the function 7,(y) satisfies (1). If y¢ K+, then by
Lemma 1, 2y¢ K", and hence 0 =f(2y) =f(y) and (1) is also fulfilled.

Let us now verify that A¢I,(X)=I"(X). Assume to the contrary that there
exist a compact Corwin subgroup K; < X and yeI'(X) such that

(11) A= my *y.
Since () 5 0 for all ye Y, it follows from (11) that Ki = {ye ¥: 1(y) # 0.
On the other hand, since §o(y) #0 for ye K, it follows from (10) that
K+={yeY; A(y) #0}. Hence Ki = K" and therefore K, = K. Then it follows
from (11) that the restriction of Z(y) to K* is the characteristic function of a
distribution y, e I'(X/K), which is impossible because then y, = y, e I'(X/K).
The proof of Theorem 1 is complete.

CoroLLARY 1.
(12) (X)) = Ix(X)

if and only if the group X contains no nontrivial compact Corwin subgroups.

(10)
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Proof. The necessity is evident. We prove the sufficiency. By
assumption, the only compact Corwin subgroup in X is K = {0}. Therefore
no factor group X/K, where K is a compact Corwin group (in our case the
factor group is umique and isomorphic to X), contains a subgroup
isomorphic to T since T is a compact Corwin group. Therefore condition (x)
is fulfilled. Thus, by Theorem 1, equality (4) and hence (12) are true.

Remark 4. In order that any distribution ye I',(X) be symmetric, ie.
y =7, it is necessary and sufficient that the group X satisfies condition ().

Proof. The sufficiency follows directly from Theorem 1 because, as can
easily be seen, distributions which belong to I,(X)+I*(X) are symmetric. Let
us verify the necessity. If we apply the scheme of the proof of necessity in
Theorem 1, it is obvious that it suffices to construct a nonsymmetric
distribution ye I'x (7).

Let o (n) be the characteristic function of the distribution y, constructed
in the proof of Theorem 1. Consider the function

?0("): fn! 76 la
t(n) =< ipe(1), n=1,
”1)70(1), n= _‘15

on Z. It is evident that t(n) is the characteristic function of a distribution
yelp(T) and since the characteristic function () is nonreal, Y # 7.

Remark 5. Condition (o) is also necessary and sufficient for the set
E={yeY: §(y)# 0} to be a subgroup in Y for any distribution ye I'p(X).

The sufficiency follows immediately from Theorem 1. To prove the
necessity, consider the function

S(n)={cxp{—n2}, ol %27, p=0,1, ...,
0: |n|=2”,p=0,1,,_.’

on Z. It is evidept that S(n) is the characteristic function of a distribution
y1€I'p(T) for which the set {neZ: 7, (n) # 0} is not a subgroup in Z. If we
apply t'he scl}eme of the proof of necessity in Theorem 1, we can construct
the_ desired distribution by using the distribution 1 on an arbitrary group X
which does not satisfy condition (a).

We can now complement the characterization theorem.

ProrosiTion 3. Let yeI'p(X) be an infinitely divisible distribution. Then
yelp(X)* I (X).
' Proof. .The representation (5) of the characteristic function of an
infinitely divisible distribution implies that E = 1yeY: 7(y) # 0} is an open
subgr.oup in Y. Therefore the group K = E* is compact. It follows from (1)
that if EyeE ther} yeE. By Lemma 1, K is a compact Corwin group. Let
L= yw»‘_and“:@ons?lder the restriction of the characteristic function ji(y) to E.

icm°®
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By Lemma 10, this restriction is the characteristic function of a Gaussian
measure on the factor group X/K. Since in the class of infinitely divisible
distributions a Gaussian measure has only Gaussian factors, the restriction
of the characteristic function () to E is also the characteristic function of a
Gaussian measure. So 7{y) can be written as follows:

< {([x1, yexp{—o ()}, yeE,
y(y)—{o’ V¢E.

where [x]e X/K, 2[x] = 0, and the function ¢(y) is as in (2). Let us extend
the character ([x], y) from E to Y. The extended character will be denoted by
(x, y). The function @(y) can also be extended from E to Y ([4]), its
properties being preserved. We keep the notation ¢ ( y) for that extension. Let
us now denote by y, the Gaussian measure on X with characteristic function
Fo(y) =exp{—@(y)}. Then it can easily be seen that

Y =mg*E kg = Axpg

where A =myg*E, el (X) and y,e I'’(X).
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