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The symbol ¢ denotes here a defining function for D, ie. ge C*(R"),
D = {xeR" o(x) <0}, gradg # 0 on aD.

Remark 2. All results of the present paper, excluding part (b) of
Theorem 3, remain valid if the L7, Sobolev and Bloch spaces of harmonic
functions are replaced by the corresponding spaces of m-polyharmonic
functions, ie. functions u for which 4™u = 0. The details will be given in
a forthcoming paper On dudality and interpolation for spaces of polyharmonic
functions.

Added in proof (July 1987). Proposition 1 along with other results of this paper is valid
in the case where D is any smooth bounded domain. Details will be given in our next paper,
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Weighted weak type inequalities
for the ergodic maximal function
and the pointwise ergodic theorem
by
F. J. MARTIN-REYES and A. de la TORRE (M;ilaga)

Abstract. Let (X, &, u) be a o-finite measure space and let T: X — X denote an invertible
measure-preserving transformation. In this paper we characterize those pairs of positive
functions u, » for which the maximal operator

k
Mf(x) = sup(k+1)"* ¥ |f (T* )]
k20 i=0

is of weak type (1, 1) with respect to the measures v du and udu. We also get a pointwise

ergodic theorem for noninvertible T if u(X)<oco. More precisely, we prove that
k

(k+1)"1 Y f(T'x) converges ae, for every feL*(vdy) if and only if inf5o0(T?x) >0 ae.
i=0

1. Introduction. Let (X, &, y) be a o-finite measure space and let T: X
— X denote an invertible measure-preserving transformation. For each pair
of nonnegative integers, r and k, we consider the averages

k
Tuf () =(r+k+)7T Y F(TX)
where f is a measurable function. Associated to these averages we have the
following maximal operators:

f*=sup T, lfl, Mf=supTo,lfl.
rk>0 k>0

The maximal ergodic theorem asserts that f* and Mf satisfy weak type
inequalities

pfxeX: f*()>2}) <2)~'1}f{|f|d#,

p({xeX: Mf(x)>2}) <2t ;lﬂd#

A.M.S. Subject classification (1980): Primary 28D05, Secondary 47A35.
Key words and phrases: maximal functions, ergodic maximal function, weighted
inequalities, pointwise ergodic theorem.
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for all A >0 and every f. In [4] the following weighted version of the
inequality for f* was proved: “Let u and v be nonnegative functions. There
exists a constant C > 0 such that

udp < CA™* [|flvdp
X

eX: fHx)>2}

if and only if u*(x) < Cv(x) a.e.” (for a proof when T is ergodic, (X, #, y) a
nonatomic probability space and u = v, see [1]). The purpose of this paper is
to prove a similar result for Mf. We also get a characterization of those
positive functions v for which the averages T,,f converge ae. for every
feL'(vdy) if u(X) < oo and T is not necessarily invertible.

2. Weak type inequalities. Throughout this paper we shall consider two
sets or two functions- as equal if they agree up to a set of measure zero. As
usual, C will denote a positive constant not necessarily the same at each
occurrence. If ¢ and d are integers with ¢ < d we will write [c, d] for the set
of integers j such that ¢ <j<d, i.e, [c, d] is an interval in the integers.

To prove our main result (Theorem (2.4)) we shall need the following
definition and the following lemma.

(2.1) DerFNiTIoN. Let (X, &, p) be a o-finite measure space and let T be
a measurable transformation from X into itself. Suppose k is a nonnegative,
integer. A measurable set B < X is the base (with respect to T) of an ergodic
rectangle of length k+l f T7'BAT /B=0Q,i+#j, 0<i, j<k Insuch a
case, the set R = U T~'B will be called an ergodic rectangle with base B

i=0
and length k+1.

Remark. If T is invertible and 7~! is a measurable transformation
then it is clear that B is a base of a rectangle of length k+1 with respect to
“T if and only if B is a base of a rectangle of length k+ 1 with respect to T™1.
Thus, for T invertible with T~' measurable, Definition (2.1) is equivalent
to the definitions which appear in [17 and [4].

(22) Lemma. Let (X, &#, w) be a o-finite measure space and let T be a
measure-preserving transformation from X into itself. Let Y be a measurable
subset of X and let k be a nonnegative integer. Then there exists a countable
Jamily {B;}2, of sets of finite measure such that

Q) Y= igoBi.
(i) B.nB=0 ifi#].

(iii) For every i, B; is the base of an ergodic rectangle of length 1+s5(i)
with 0 < s(i) < k such that if s(i) <k then T~ 70 4 = A for every measurable
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set A < B;. Consequently, for every measurable set A < B;

(i)

k
2.3) Y Ap-ia SCO Y Ap-iy
i=0 j=0

k

= C(i)X.SS) rmis < 2j§0 Xr-ia
j=

where C(i) is the least integer not smaller than (k+1)(1+s())™*

This lemma is similar to Lemma (2.10) in [4] where T is an invertible
measure-preserving transformation. To prove Lemma (2.2), just look at the
proof of Lemma (2.10) in [4] and write it with T" instead of T™"

Now, we shall state and prove our theorem.

(24) Tueorem. Let (X, &, 1) be a o-finite measure space and let T: X
— X denote an invertible measure-preserving transformation. Suppose u and v
are nomnegative measurable functions on X. The following statements are
equivalent :

(a) There is a constant C >0 such that

udp< CA71 [flvdu

xeX: MSf(x)>2} weX: Mf(x) >2}

. for all A >0 and for every f.

(b) There is a constant C >0 such that

sup udp < CA71

k20 {xeX: 1T, S (=) >}
for all A >0 and for every f.
(c) There is a constant C >0 such that for every f

sup [T flud < C [If]vdu.

[fludp

{xeX: Mf{x)>2}

(d) There is a constant C > 0 such that Ty, u(x) < Co(T*x) for all k>0

‘and almost all xe X.
Proof. We begin by proving that (a), (b) and (d) are equivalent. It is
clear that (a) implies (b). Assume that (b) holds. Let us fix a nonnegative

integer k. Then X = U B; where the sets B; are generated by Lemma (2.2)

for X and k. Let B, be ﬁxed and let A be any measurable subset of B;. Let R
s(i)
denote the set |J T77 A. If x, is the characteristic function of 4 and yeR we
i=0
get

Tosiy X4 () = (s @+ 1)_ !
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Thus, by (b), we have

fudu< C(s(iy+1) [vdu.
R A
Since the sets 4, ..., T™"® A are pairwise disjoint, the last inequality is the
same as
s(i)
¥ [ wdi Clst+1)odu
J=0 =g

Then the properties of the sets B; give

Z [ oudp=lu ZxT LIS

Jj=0 7=J4

s()
(i)‘[u Z xT“‘fAd“

2C(k+1) [vdu

2.5)
< C(z)C(s(l)-i-l)jvdu
Thus, since T preserves the measure u, we have
E | u(T*Ix)dp < 2C(k+1) j v(T*x)dp.
j=0 7=kyq k4
Since T"* A is any subset of T kB, and X = U T~ B, this inequality shows

i=0
that (d) follows from (b).
Suppose now that (d) holds. In order to prove (a) we shall need the
following definition and the following lemmas.

(2.6) DermviTioN. If @ is a real-valued function on Z (the set of all
integers) we define the maximal function ma: Z— R by

: k
ma(j) = sug(k+1)’l Y la(i+i).
k> i=0

(277) Lemma. Let a(0), a(l), ...,
exist w(0), w(l), ..., w(k) such that

a(k) be nonnegative numbers. Then there

0 0<wO<wl)< ... <wk).

(i) w() < max{(r+1)~* jzoa(i—j): O<r<i} for every i with
0 <igk.

@) % at)< L w0

(2.8) Lemma. Let 0<w(0) <w(l) < < w(k). Suppose that a(0),

a(l), ..., a(k) are nonnegative numbers such that

. k
0<A<k—~i+1)"*Y a())
i=i
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for every i with 0 <i<k. Then

k k

2 wD<AT Y a()w()).

j=0 i=0
(2.9) Lemma. If u and v are nonnegative functions on X and satisfy (d)
then there is a constant C >0 such that

u(Tix) < CA~1! >

eZ: ma(j)> A}

la(j)lo(T x)
{ieZ: ma(j)>a}
Jor every real-valued function a on Z, all A >0 and almost all x in X.

Remark. Lemma (29) is the implication (d)=>(a) in the case of the
integers and it will follow from Lemma (2.8). Observe that (2.8) is nearly a
particular case of (2.9).

Proof of Lemma 27). f 0<i<
a@)=max {r+1)"' Y ali—j): 0<r<i}
j=0
and w(i) = min {7(j): i <j<k}. Then it is clear that w satisfies (i} and (ii).
Now we shall see that (iii) holds. Observe that, by the definition of w, it is
possible to select intervals J; =[0,i;], J,=1[ij+1,i], ..., Jy= [in-1
+1,i,], i, = k, such that

w(j) = w(iy) = @G,

Therefore, if #J, stands for the number of elements of J,, we have

k we define

for every jeJ,, h=1,2,..,n

k n n
Ya=13 Y a)< Y #J,a()
j=0 h=1jely h=1
n k
=3 Ywii =Y w(j.
h=1jely j=0

This finishes the proof of Lemma (2.7).
Proof of Lemma (2.8). It is clear that

k k
A'Zow(i) = /1_)_:0 (i) + a (k) w (k) — a (k) w (k)

=ikfW(i)+a(k)w(k)+w(k)(x—a(k)).
i=0

Since A—a(k) <0 and w(k—1) < w(k) we have
k

AY wi <
i=0

k-1

LY wi+wlk—1)(A-a®)+a® wk).

i=0
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Now, the right-hand side of the last inequality is equal to
k-2
AT wi+wk-1)(2A—ak) —ak—1)+alk~D)wk~1)+a(k) wk).
i=0

Since 24 < a(k)+a(k—1) and wk—2) <w(k—1) we get

A Zk: w(i) < AE:Zw(i)+w(k—2)(2l——a(k)—a(k—1))+

i=0 i=0 i

a(i) wi).

1

k
=k~
If we continue this process we have

k . k !
25 wii) < Aw(0)+w(0) (kA— f a@)+ Y a@wi)
i=0 i=1 i=1

k k
=wO(k+DA— Y a@d)+ Y a@w(.
i=0 i=0
Now, the lemma follows from this inequality since w(0) >0 and (k+1)4
k
i=0
Proof of Lemma (2.9). Let

E={xeX: Ty, u(T"x) < Co(T*""x) for every k >0 and any integer n},

where C is the constant of statement (d) in Theorem (2.4). Then p(X —E) =0,
Let xeE. For N a positive integer, we consider b =ay._yN Wwhere
X-n,n denotes the characteristic function of [—N, N]. Let O,y=
{jeZ: mb(j) > A} and let {I,} be the family of maximal intervals included
in O,y Let I ={s, ..., s+k} be any of the intervals I,. Since s+k~+1¢0, y
it is clear that

k .
Atk—i+1) < Y |b(s+j) for every i with 0<i<k.

j=i

(2.10)
On the other hand, by Lemma (2.7), there exist numbers w(s),...
..., W(s+k) such that ‘

0 Osw()<wis+D) < ... Swis+k),

(@ weE+)<max{r+1)71 Y w(T" "/ x): 0<r <i} for every i with
j=0
0<i<k.
k K
(@) Yu(Tx)=3 u(TH9< Y wis+) =Y w()).
Jjel Jj=0 Jj=0 Jel

Since u and v satisfy (d), property (ii) implies that w(j) < Cv(TVx) for every
Jjel. Then Lemma (2.8) applied to w(s), ..., w(s+k) and [b(s)), ..., [b(s+K)|
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(remember that (2.10) holds) gives
SuTx) < T wi) <A™ L Ib(Iw()
i i e
SCAT Y M o(Tx) < CA Y la(f)v(T! ).
et jer
Since I is any of the intervals of the family {I,} it follows that
Y u(Tx)<Ci™t Y Ja(jlo(TVx).
jeOy N jeOs N
Letting N go to co we have the inequality of Lemma (2.9) for every x in E.
Since u(X —E) =0 this finishes the proof of Lemma (2.9).
Once Lemma (29) has been proved, we will prove the implication
(d) =>(a) using transference methods.
Let f be a measurable function from X into R and consider the
truncated maximal operator
My f = sup To, |f]
k<L

where L > 0. Fix 1> 0 and denote by O, the set {xeX: M, f(x) > i}.
Then since T preserves the measure i we have
k

(2.11) { udp=(k+1)"1 Y )
O4L j=0r1-Jo, |

If f*(j)=f(T’x) the right—han_d side of (2.11) is bounded by
fk+1)" 1Y u(T x)du
X

where the sum is extended over the integers j such that m(f™ yio 4 +1) () > 4.
Now Lemma (2.9) implies that the integrand is bounded by
Clk+1)"1a™t ¥ If (7Y x)|v(T %)

i: 0Sj<k+Lm(7*x0,k+LPU) >4}

<Ck+1)*271
{i: 0K jsk+Lm(f¥() >}
If we put these inequalities in (2.11) we have
[ udu<CA U (k+ L+ 1) (k+ 171
O4L
Letting k and then L go to oo we get condition (a) in Theorem (2.4).
We have already shown that (a), (b) and (d) are equivalent. Thus to

finish the proof of Theorem (2.4) it suffices to prove (c)=>(b) and (d)=(c).
The first implication is well known. On the other hand,

(212 jl%,kfludus)f(%,klfludu
X

u(T’ x)dp.

If (7 )] (T ).

[ Iflvdu.

x: Mf(x)>21}

= )f{lfl Toudy = ilfl () Toau(T *x)dp.c


GUEST


iom®

40 F.J.Martin-Reyes and A. de la Torre

If we assume (d) then Ty, u(T~*x) < Cv(x) a.e. and therefore (c) follows from
this inequality and (2.12).
Remarks.

(2.13) From the proof of Theorem (2.4) it can be seen that the theorem
remains valid if 77! # = & (up to sets of measure zero) even if T is not
invertible. We shall now give an example which shows that (a) does not
imply (d) when T is not one-to-one and T ' & s &. Let

X={nmeZxZ:n>0,m<0luinmeZxZ: n=1,mz0},

Let # be the power set of X, u the measure determined by
‘ p{n, m=2"" if m<o,
w{t,m} =1 if m>0,
and ! X — X the transformation given by
T(n,m=mm+1) if m# -1,
T(n, —1)=(1, 0).

It is clear that T is not one-to-one, T '% # & and T preserves the
measure y. Let us consider the function u = v defined by

um,my=0 ifm< -1,
u(n, —1)=n,
u(,m=1 if m>0.
Condition (d) does not hold in this case since Toyu(n, —1) =4(u(n, —1)
+u(1, 0)) = 3(n+1) and there is no constant C such that 4(n+ 1) < Cu(1, 0)

= C for every n. We will now see that (a) in Theorem (2.4) holds. Let f be a

function from X into R. It is clear that [ udu = A+B where
0;

0,={X: Mf(x) >}, 4= ¥ =" B=#{mz0: (1, me0,}.
fn: (m—1)e0,}
If B=0 we have (1, 0)¢0; and thus |f(n, —1)] > A for every n such that
(n, —1)e 0,. Then

fudp=A<i! Y If(n, =)In27"= A" [ |fludp.
0, n: (m—1)e0,} 0,

If B#0 we have

o0
A< Y m2""<CB.
n=1
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Then
Judp<(C+DBS(C+DAT T |f(Lm) <C+DA™ [ [fludp
0, m=0: (1,me0;} . 0Oy )

where the second inequality follows from the maximal ergodic theorem
(classical case). ;

(2.14) In any case (for T invertible or not), assertions (b) and (c) in
Theorem (2.4) are equivalent, and each one is equivalent to

x
@) sup(k+1)"' Y | udp<Cfvdp
k>0 4

J=0r=jg
for any measurable subset A4.

It is clear that (c) implies (b). On the other hand, statement (c) with f = y, is
statement (d'). Thus if we assume (d') then (c¢) holds for characteristic
functions, hence for simple functions and finally for every measurable
function. In order to see that (b) implies (d') we follow the proof of (b)=-(d)
to get (2.5). Then (d) follows from this and Lemma (2.2).

Assume now u = v and set v = udu. Then condition (d) can be written
in the following way:

k
“sup(k+1)"* ¥ v(T™JA)< Cv(4) for any measurable subset 4.”

k20 j=0

This condition can be found in a paper of N. Dunford and D. S. Miller [2]
in which they characterize the finite measures v such that {T;, f} converges
in L!(dv) for every feL'(dv) (T is not necessarily one-to-one and does not
preserve the measure v). Besides it is shown that mean convergence is
equivalent to uniform boundedness of the averages (our condition (c) with
u =) and it implies a.e. convergence.

It is clear by what we have already shown that (a) implies (d) for T
“invertible or not. However, we do not know whether (d’) implies (a) (observe
that conditions (d) and (d) are not equivalent as the example in Remark
(2.13) shows). Of course, assertions (d) and (d') are equivalent in the invertible
case or if T~ & = #. Thus it seems reasonable to conjecture that (d’) is the
condjtion which characterizes weak type (1,1) of the ergodic maximal
operator associated to a general transformation T.

(2.15) It is clear that, for a general transformation (invertible or not),
condition (d) implies (d'). On the other hand, the proof of the implication
(d) = (a) of Theorem (2.4) works for a genera] transformation. Thus we have
the following theorem. :

(2.16) TreoreM. Let (X, &, ) be a o-finite measure space and let T: X
— X denote a measure-preserving transformation. Suppose u and v are
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nonnegative measurable functions on X. If Ty, u(x) < Co(T*x) for all k>0
and almost all xe X then there exists a constant C > 0 such that

sup [|Tox fludu < C'f|flvdp  and
k=0 ¥ ¥

wdp<CiTt [ |flvd
Pt MJ(x) >4} x: MS(x) >4}
Jor every A >0 and any f.
(217) Theorem (24) remains valid if we set X instead of

{x: Mf(x) > A} on the right-hand side of the inequalities of (a) and (b).
(2.18) Once Theorem (2.4) has been proved the result of [4] mentioned
in the introduction follows easily as a corollary of (24).

3. The ae. convergence. We will now characterize, for a general
transformation (invertible or not), those positive functions v for which the
averages Tp, f converge ae. for every feL'(vdy) assuming u(X) < co.

(3.1) Tueorem. Let (X, #, u) be a finite measure space and let T: X
— X denote a measure-preserving transformation. Suppose v is a positive
measurable function on X. The following statements are equivalent:

(a) The averages Ty, f converge ae. for every felLl(vdp).

(b) Mf(x) <o ae. for every feL(vdy).

(c) There exist a positive measurable function u and a constant C > 0 such
that for every f and 1 >0

] udp < CA71 f|flvdp.
x: Mf(x)>A} X

(d) There exist a positive measurable function u on X and a constant
C > 0 such that for all k>0 and almost all xeX, To . u(x) < Co(T*x).

(6) 0 <inf,ov(T'x) ae.

Proof. It is clear that (a) implies (b) and (c) implies (b). On the other
hand, (d) implies (c) by Theorem (2.16) and (d) follows from (e) by taking
u(x) =inf5ov(T'x). Thus it remains to prove (b)=>(e) and (e) = (a).

(b)=>(e). Let E = {x: inf5,v(T"x) = 0}. Suppose u(E)> 0. For m >n
we denote by ¥, , the set {x: 27" < v(x) <27, It is clear that

oo o0
E= nLJZE ) [ryo T, ].

Given (1—2"1)u(E) there exists m(1) > 2 such that

u(E n[lgo T Wpys]) > (1=271) u(E).

Now, observe that

e

@
En Ty, .
n=m(1)+1 [i.—ul n,m(l)]

icm°®
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Given (1—2"2)u(E) we choose m(2) > m(1)+1 such that
EALY T Vo m]) > (=272 (8.

In this way we choose measurable sets E; = V)1, E; = Vagymqy> - > Ens1
..., such that »(x) <27" on E, and

m(n+1),m(n) »

(32) RENA)> (=27 pu(E)  where An=_§0T‘iEn_

Since T™! 4, = A,, we may assume clearly that A4, is invariant under T, ie.,

T 'A4,=A,. Let # be the o-field of all measurable subsets of 4, that are

invariant under 7T, and define y on E,n S = {E,nA: Ae S} by
YWE,nA)=u(4d) for Aes.

We shall now see that y is well defined. Let 4 and B be sets of the o-
field .# such that E,n A = E, N B. 1t is clear that E, « AU (4,—B) < 4, and
AuU(A,—B) is an invariant set. Since A, is the smallest invariant set
containing E, we get AU (A,—B) = A4,. Then u(4,) < H(A)'f' ‘u(A,,).— A(B). In
the same way u(4,) < u(B)+p(d,)—p(A). Both inequalities give p(A4,)
= p(A)+u(4,)—u(B). Thus p(4)= p(B) and y is well defined. '

On the other hand, y and u restricted to E,n . are equivalent
measures. Thus, by the Radon-Nikodym theorem, if we put f = dy/d (ulg, )
then 0 <feL'(E,, E,n 4, 1) and ||f]l; = u(4,) < pu(X). Write

F(x) = lim To,f ().
k—w
Then, by the ergodic theorem, for all Ae.#,
[Tap=[fdp= | fdu=y(E,n4) =p4
A A E,nA

and this implies /' = 1 ae. on 4,. Let f,(x) = nf (x) if xeE, and f,(x) = 0 if
x¢E,. Then f,e L*(E,) and, since v <27" on E,,

[ fuvdp<n2™ [ fdu<n27" p(X).
Ey E,

Thus the function g =2, f, is in L'(vdy), and for almost all xed, we
have Mg(x) > Mf,(x) > n. This inequality together with (3.2) proves that
Mg(x) = o ae. on E, a contradiction to (b).

(e)=(a). Let

A, = {x: info(T'%) <277} =

i20

Observe that A4, and therefore X—4,, is invariant under T and since

G T {{x: v(x) <27"}).
=0
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v(x) = 27" on X—A, we have L' (X —A,, vdy) < L* (X —A,, du). Then the
ergodic theorem shows that Tp,f converge ae. on X—4A, for all fel!
(X —A,, vdw). Since lim u(4,) = 0 it is clear that (a) follows from this.

The implications (¢)=>(d) and (d)=-(c) do not use the fact that the
measure is finite. On the other hand, the convergence of the averages follows
from (c), the density of L' (vdu) ~ I (du) in I (vdy) and the Banach principle
even if the measure is not finite. Therefore the following theorem holds.

(3.3) THEOREM. Let (X, #, 1) be a o-finite measure space and let
T: X — X denote a measure-preserving transformation. Suppose v is a positive
measurable function on X. If infy,o0(T"x) > 0 ae. then Ty, f converges a.e.
Jor every fe L!(vdy).

The converse of Theorem (3.3) does not hold (in the case u(X) = o) as
the following example shows.

(34) ExampLE. Let X be the set of all integers with the counting.

measure 4. Let T be the shift transformation Tx = x+1 and v the function
defined by

v(x) =1
v(2") =1/n.

It is clear that inf,,o0(T°x) =0 for every x. Now, let f be a positive
function in L' (vdp). We will prove that Ty f (x) converges for every x. To
prove this we consider f;(x) = f(x) if x=2" for some n and fi(x)=0
otherwise. Let f, = f—f,. The function f2 is in L'(dy) and thus To . fo(x)
converges for every x. To finish the proof, we will see that

if x # 2" for every positive integer n,

klim Torfi(x) =0 for every x.

It will suffice to get
lim Ty 2nf1 (%) = 0.
n—o0

Let n be a positive integer such that x < 2" Then

k1

0< ’1:),2"11(") <"+ ”.fl“l,vdu Z k
k=1

and since

n+1

Y k=0

lim (2"+ 1)~
L k=1

icm°®
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we have lim, ., To,zn f1(x) = 0. Therefore Ty, f(x) converges for every x and
feL!(vdy) even though infysq0(T x) = 0.

(3.5) Remark. Suppose that Mf(x) < oo ae. for every feL'(vdy). By
Nikishin’s theorem [3] there exists a positive function u such that

udu <A™ f|flvdp
e MJ() > X

for every A > 0 and any f. Therefore Theorem (3.1) says that, in the case of
finite measure, the Nikishin function is u(x) = inf;5,v(T"x) (see (e) =>(d) in
Theorem (3.1)).

4. On the ergodic Hilbert transform. Suppose that T is an invertible
measure-preserving transformation. Then the proof of (¢)=(a) in Theorem
(3.1) can be applied to the ergodic Hilbert transform H(T)f,

k i —i
. (T'x)—f(T™"x)
H(T)f(9) = lim ;————l-————
Thus the following theorem holds.

(4.1) THEOREM. Let (X, &, 1) be a finite measure space and let T: X
— X denote an invertible measure-preserving transformation. Let v be a p(lismve
measurable function. If inf;5 o v(T" x) > 0 a.e. then for a.e. x and any f € L’ (vdp)

the limit

im ) =H(T)f(x)

k=00 i=1

o S(T0-1(T7'%)
i

exists.
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On a ratio ergodic theorem
by

RYOTARO SATO (Okayama)

Abstract. Let (X, #, u) be a o-finite measure space and Q the positive isometry on Ly ()
induced by a measurable transformation T and a positive function h; thus Of (x) = h(x) f (T).
Clearly Q acts on functions on X. In this paper the ratio ergodic theorem is discussed for Q but
the underlying space Ly (p) is replaced by L (wdy), where w is a positive function. The results
obtained generalize some recent ones due to Martin-Reyes and de la Torre; they considered the
case where T' is measure-preserving and h =1,

Introduction and results. Let T be a measurable transformation from X
into itself such that u(4) =0 if and only if (T~ ' 4) =0, and h a positive
measurable function on X such that [ hdu= u(4) for all Ae #. If we

-1
define A

Qf () = h(x) f(Tx)

for measurable functions f on X, then Q is positive and satisfies [|Qf],
=|fll; for all feL,(y4). (In view of the Banach-Lamperti work [3], Q
represents a wide class of positive L;-isometries.) It follows from the
Chacon-Ornstein ergodic theorem [2] that for all f and e in L, (y) with
e >0, the ratios

R ) = & 00/ 3 0%

k=0

o
converge almost everywhere on {x: ¥ Q*e(x) >0}. But if we replace the
0

measure u by a measure wdy, where w is a positive measurable function, and
if we assume that f and e are in L, (wdu), then the a.e. convergence of
R34 (f, e)(x) is unknown. (In case T is measure-preserving and h=1 on X,
this has recently been solved by Martin-Reyes and de la Torre [4], [5]) This
is the starting point for the study in this paper, For this purpose we may and
do fix an e with 0 < ee L, (u), as is easily seen from the Chacon identification
theorem [1]. We characterize the positive functions w with the property that
if feL,(wdy) then the ratios R}(f, e)(x) converge almost everywhere.
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