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On a ratio ergodic theorem
by

RYOTARO SATO (Okayama)

Abstract. Let (X, #, u) be a o-finite measure space and Q the positive isometry on Ly ()
induced by a measurable transformation T and a positive function h; thus Of (x) = h(x) f (T).
Clearly Q acts on functions on X. In this paper the ratio ergodic theorem is discussed for Q but
the underlying space Ly (p) is replaced by L (wdy), where w is a positive function. The results
obtained generalize some recent ones due to Martin-Reyes and de la Torre; they considered the
case where T' is measure-preserving and h =1,

Introduction and results. Let T be a measurable transformation from X
into itself such that u(4) =0 if and only if (T~ ' 4) =0, and h a positive
measurable function on X such that [ hdu= u(4) for all Ae #. If we

-1
define A

Qf () = h(x) f(Tx)

for measurable functions f on X, then Q is positive and satisfies [|Qf],
=|fll; for all feL,(y4). (In view of the Banach-Lamperti work [3], Q
represents a wide class of positive L;-isometries.) It follows from the
Chacon-Ornstein ergodic theorem [2] that for all f and e in L, (y) with
e >0, the ratios

R ) = & 00/ 3 0%

k=0

o
converge almost everywhere on {x: ¥ Q*e(x) >0}. But if we replace the
0

measure u by a measure wdy, where w is a positive measurable function, and
if we assume that f and e are in L, (wdu), then the a.e. convergence of
R34 (f, e)(x) is unknown. (In case T is measure-preserving and h=1 on X,
this has recently been solved by Martin-Reyes and de la Torre [4], [5]) This
is the starting point for the study in this paper, For this purpose we may and
do fix an e with 0 < ee L, (u), as is easily seen from the Chacon identification
theorem [1]. We characterize the positive functions w with the property that
if feL,(wdy) then the ratios R}(f, e)(x) converge almost everywhere.
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TueoreM 1 (cf. [5]). Let Q, w and e be as above. Assume that Q is
0

conservative (i.e. 3. Q*e(x) = o0 a.e. on X). Then the following conditions are
0

equivalent:
(@) For any feLy(wdp), lim, Ry (f, e)(x) exists and is finite a.e. on X.
(b) inf,5 ow(T"x) >0 ae. on X.
. () There exists a positive measurable Sfunction u on X such that for
all n>0,

n

Y ¢l 3, 0el) <

w(T"x) ae on X.

(d) There exists a positive measurable function u on X such that for all
A>0and 0< feL,(wdy),

S udu <
e M(f,e)(x)>2}
where M (f, e)(x) = sup,so R} (f, €)(x).
Proof. (a)=(b). Let E = {x: inf,5 o w(T"x) = 0}. Then T~*E = E, and
thus if u(E) >0, we may and do assume without loss of generality that
E = X. Then, since the measure y, defined by

A fwdu

= [edp for Ae F
A
is finite and equivalent to g, there exist disjoint sets A4, A,, ... in & such
that
w<2"" on Am ﬂa(Dn) >(1—2ﬁn)ue(X)
where D, = U T7A,. Since T 'D,c=D, and Q is conservative,

wDN\T™ 1D,,) —0 and so we may assume without loss of generality that
T°'D,=D,.

Now let us fix an n> 1. Define

F={deF A<D, T ' A =4},
MANA)=p(4) for Andyes A4,

where S nd,={AnA,: Aes}. Since D, is the smallest invariant set
containing A, 4 is well dcﬁned and moreover equivalent to the restriction of
M to the o-field # N A,. Using the Radon-Nikodym theorem, let

g =did(u) FnA,).

icm°®

Ratio ergodic theorem 49

Clearly, 0 <gelL,(A4,, #FNA,, ) and for any Ae.#
§ gedu= [ gdp.=i(AnA)=yp,(4)=

AndAy And,

[edp.
4

(In particular, gee Ly (A4,, 1) and |jge||; <
Chacon identification theorem yields

llell;) Since Q is conservative, the

ae. on D,.

lim Z 0 (ge)( x)/Z OFe(x) =1

m k=0

On the other hand,
(e Ly (A,, ) satisfies

{ fiwdi = n | gewdp <n2™" [ gedu <
A"

Ap An

since w<27" on A,, the function f, = nge
n27"lefly.

o0
Consequently, if we put f = 3 f,, then feL,(wdy), but

n=1

m Y Q"f(x)/Z Qe = ae.
m k=0
on liminf,D, = X (mod 0), a contradiction. ) N
(b) =(c). (b) implies that the function v(x) = inf,; , w(T"x) is positive a.e.
on X. Since v(Tx) = v(x), the function u = ev satisfies, for all n > 0 and xe X,

S 0tulx) ¥ Q*e()o(T*x)
£z0 =kt <o(T"x) < w(T"X).
Toew Y0l

To prove (c)=>(d), we need a lemma.
Lemma (cf. [5]). Let {e(n)},,-o, {u(n)} %0 and {w(n)}i, be positive
sequences such that
i

(1) y u(k)/z ey <w(i) forall izj>0.
k=) k=
Then for any nonnegative sequence {f (W}o and any A >0 we have
um <A™t Y fw),
fn: Mf(n)>;.1 n: M[f(n)>2)
where Mf (n) = sup Z I k)/z e(k) for n= 0.
Si<ok=n k=n

Proof. An approximation argument shows that to prove the lemma it
suffices to consider the case where f(n) =0 for all sufﬁleentl_y large n. Then
the set {n: Mf(n) > A} is finite. Let [m, n] be a maximal interval (in the

4 ~ Studia Mathomatica t. 87 2. 1
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nonnegative integers) contained in {n: Mf(n) > 1}.
=min{w(): j<i<gn} for m<j<n we have from (1)

n n

@ Y ul< Y e(ok).

k=m k=m

On the other hand, since Mf(n+1) < 4, it follows that

Y f(kY/Y e(k) >4 for all j with m<j<n
k=i

Therefore, using the fact that 0 <v(m) < ... < v(n), we obtain

"

n n—1 n
L eWr®=vim 3 e@+ 3 [0G+0=20) % (k]

k=m

n=1

si"v(m)éf 4271 Y [pU+D—0() Y S K]

j=m k=j+1

A Z S (kyw k),

k=m

—A Y T0e09 <
k=m
and by (2),

S u <A Y FRw.
k=m

k=m
This completes the proof.
(©)=(d). Let us fix an N> 1, and put for 0< feL; (wdy)

My(f, e)(x) = max Z Q*f (xy/ Z Q*e(x).

0<nEN k=
Let A(i, N) =
on Ll (/l),

)]

{x: My(f, &) () > A} for A > 0. Since Q is a positive isometry

f Z o (ulA(}_ mdu

ACL,N) n+1
1
nrid; f Z Q1 () Lya,m (T %) dp.

Now, (c) implies that for ae xeX and all i > ji=0

M T

I O 0 (X 0T
= k=0

T oW (309w

-~
i

w(T' x).

k~~O

- =
(s

Letting  v(j),

icm
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Hence by the preceding lemma, for ae. xe X,

ZQ“

n+N

) Laca, N)(Tk x) <A™t Z Qkf(x)W(Tk x) IA().)(Tkx)

where 4(1) = f, €)(x) > A}, and the last member of (3) is less than or
equal to

11 N In+N+1

1;14-’;:?'[ Z Q leA(A))d# l"“;l“_‘}_‘l—‘AEL)deH;

letting n and then N tend to infinity, (d) follows.

(d)=>(a). Since the ratio ergodic theorem holds on L,(u) by the
Chacon-Qrnstein theorem and Ly (u) is dense in L,(wdy), a standard
approximation argument together with (d) implies (a). We omit the details.

ExampLE. We give an example which shows that if Q is not conservative
then (a) does not necessarily imply (b).

Let X ={m,n: mnx1}, & the subsets of X, u
determined by u{(m, n)} =1 if n>2
transformation given by

Tm,n)=m,n—1) ifnx2,
T(m, 1) =(m+1, 1),
and w the positive function defined by w(m, n) = 1/m.

Then T is measure-preserving and lim, ., w(T*(m, n)) = 0 for all (m, n),
but, as is easily seen, for any 0< feL;(wdy) and all (m, n)e X we have

S £(T*(m, n)) <,
k=0

whence (a) holds with Of (x) = f(TX).
Although the assumption of Qs being conservative is not omitted in
Theorem 1, if T is invertible and the ratios

RA(L 0= 3 Q0 Y 0e®

k= ~-m k=—m
are considered, this assumption is not necessary. (Recall that if T is invertible
then Q is uniquely determined, and T-1 determines Q')
Tueorem 2 (cf. [4]). Let Q, w and e be as in Theorem 1. Assume that the
transformation T is invertible. Then the following conditions are equivalent:
(4) For any feLi(wdy), the limit

R®,(f, )(x) = lim RL,(f, e)(x)

exists and is finite a.e. on X.
(b) inf. o <p<coW(T"X) >0 ae on X.

the measure
and pi{m,1)}=m T the

with m,n>0
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(c} There exists a positive measurable function u on X such that for all m,
nz0, :

S Qhux)y Y Qe(x) <w(x) ae on X.
k=—m k=—m
(d) There exists a positive. measurable function u on X such that for all
A>0and 0< feL,(wdy)

udp <A™ [ fwdu
(1 M¥(f L)) > A)
where M*(f, €)(x) = $UDy, 520 R (f; €) ().
Sketch of proof. Since Q is an invertible positive isometry on Ly (u),
if feL;(u) then the limit R®(f, ¢)(x) exists a.e. on X and satisfies

R®(f, () = E {fle| (X, .7, )} () ae on X (cf. [6])

where the .right-hand side stands for the conditional expectation of Jle
(s Ly (1)) with respect to the o-field S = {Adec F: 4 = TA} and the measure
Y- By using this, the implication (a)=-(b) follows as in Theorem 1. The
proofs of the other implications are also similar to those of the
corresponding parts of Theorem 1. We omit the details.
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An inversion problem for singular
integral operators on homogeneous groups

by
PAWEL GLOWACKI (Wroclaw)

Abstract. We prove the following inversion theorem. If K is an invertible singular integral
operator on L*(N), where N is a homogeneous group, then the inverse K~! is also a singular
integral operator. Moreover, a family of “Riesz transforms” on an arbitrary homogeneous group
is constructed.

Introduction. Let N be a homogeneous group, and let

(%) Kf(x)=¢f (x)+1ilr;| IJ; Sy k(y)dy
=0 |y| 2e

be a singular integral operator on N with a homogeneous kernel
keC*®(N\{0}) of critical degree satisfying the usual mean value zero
condition. According to the Knapp-Stein theorem (cf. e.g. Folland-Stein [3]),
K is bounded on L*(N). If we assume, moreover, that K has a bounded
inverse K~' on L*(N), the question arises whether also K ™! can be realized
as a singular integral operator of the form (#). In the cdse of N = R" the
answer is positive and well known. In fact, this is an exercise in Fourier
transform.

Recently, M. Christ and D. Geller [1] have proved that it is still so fora
large class of homogeneous groups, namely, for graded homogeneous groups.
Their main idea was to look at the problem as a regularity problem, and
apply a technique of a priori estimates by introducing a scale of Sobolev
spaces agsociated to a Rockland operator on N. Recall that a left-invariant
differential operator on N is said to be Rockland if it is homogeneous and
hypoelliptic.

The aim of this note is to propose a generalization of the theorem of
Christ-Geller for arbitrary homogeneous groups. The idea is very much the
same, but the technique applied is rather different. As there are no Rockland
operators on nongraded groups, we use instead certain nondifferential
convolution operators which are homogeneous and hypoelliptic. Such
operators exist on any homogeneous group, as was shown in [5]. The
required a priori estimates for K are obtained in terms of Sobolev norms
defined by means of such a convolution operator. The technique of extending
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