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(c} There exists a positive measurable function u on X such that for all m,
nz0, :

S Qhux)y Y Qe(x) <w(x) ae on X.
k=—m k=—m
(d) There exists a positive. measurable function u on X such that for all
A>0and 0< feL,(wdy)

udp <A™ [ fwdu
(1 M¥(f L)) > A)
where M*(f, €)(x) = $UDy, 520 R (f; €) ().
Sketch of proof. Since Q is an invertible positive isometry on Ly (u),
if feL;(u) then the limit R®(f, ¢)(x) exists a.e. on X and satisfies

R®(f, () = E {fle| (X, .7, )} () ae on X (cf. [6])

where the .right-hand side stands for the conditional expectation of Jle
(s Ly (1)) with respect to the o-field S = {Adec F: 4 = TA} and the measure
Y- By using this, the implication (a)=-(b) follows as in Theorem 1. The
proofs of the other implications are also similar to those of the
corresponding parts of Theorem 1. We omit the details.
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An inversion problem for singular
integral operators on homogeneous groups

by
PAWEL GLOWACKI (Wroclaw)

Abstract. We prove the following inversion theorem. If K is an invertible singular integral
operator on L*(N), where N is a homogeneous group, then the inverse K~! is also a singular
integral operator. Moreover, a family of “Riesz transforms” on an arbitrary homogeneous group
is constructed.

Introduction. Let N be a homogeneous group, and let

(%) Kf(x)=¢f (x)+1ilr;| IJ; Sy k(y)dy
=0 |y| 2e

be a singular integral operator on N with a homogeneous kernel
keC*®(N\{0}) of critical degree satisfying the usual mean value zero
condition. According to the Knapp-Stein theorem (cf. e.g. Folland-Stein [3]),
K is bounded on L*(N). If we assume, moreover, that K has a bounded
inverse K~' on L*(N), the question arises whether also K ™! can be realized
as a singular integral operator of the form (#). In the cdse of N = R" the
answer is positive and well known. In fact, this is an exercise in Fourier
transform.

Recently, M. Christ and D. Geller [1] have proved that it is still so fora
large class of homogeneous groups, namely, for graded homogeneous groups.
Their main idea was to look at the problem as a regularity problem, and
apply a technique of a priori estimates by introducing a scale of Sobolev
spaces agsociated to a Rockland operator on N. Recall that a left-invariant
differential operator on N is said to be Rockland if it is homogeneous and
hypoelliptic.

The aim of this note is to propose a generalization of the theorem of
Christ-Geller for arbitrary homogeneous groups. The idea is very much the
same, but the technique applied is rather different. As there are no Rockland
operators on nongraded groups, we use instead certain nondifferential
convolution operators which are homogeneous and hypoelliptic. Such
operators exist on any homogeneous group, as was shown in [5]. The
required a priori estimates for K are obtained in terms of Sobolev norms
defined by means of such a convolution operator. The technique of extending
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estimates by continuity (cf. Lemma (2.6) below) due to Helffer-Nourrigat [7],
which was an essential tool in [5], still plays a crucial role here.

In [1], Christ and Geller have also obtained, among other things, a
sufficient condition for a finite collection of singular integral operators to
characterize the Hardy space H'(N). A collection of singular integral
operators K, ..., K, is said to characterize H'(N) if for every feL'(N), f
belongs to H'(N) if and only if K;felI*(N), j=1, ..., m, and, moreover,

Wl ~ 11+ 3, 1K

Then, by using their inversion theorem, they were able to give an explicit
copstruction of singular integral operators that characterize H'(N) for N
being a stratified homogeneous group.

As an application of our main result we show that a similar
construction can be carried out on an arbitrary homogeneous group.

We wish to thank Professor Elias M. Stein for bringing the problem
considered here to our attention.

1. Preliminaries. A family of dilations on a nilpotent Lie algebra N is a
one-parameter group {3}, of automorphisms of N determined by
(1.1)
where e,, .
(1.2)

d; N
dej=tve, j=1,...,n,

-+» €, is a linear basis for N and

l=d <dy < ... <d,

are fixed exponents of homogeneity. If we regard N also as a Lie group with
the multiplication given by the Campbell-Hausdorff formula, then the
dilations 6, are automorphisms of the group structure of N, and the nilpotent
group N equipped with these dilations is said to be a homogeneous group. If
all the exponents d; are rational, N is said to be graded, and if the
eigenvectors e; such that d; = 1 generate N as an algebra, it is said to be
Stratified.

The homogeneous dimension of N is a number Q defined by
d(d,x) =t%dx, >0,
where dx is a left-invariant Haar measure on N. Obviously @ =d + ...
. +d,.
Let

(13) Xif (x) = djdtlof (x-te),  Yif (x) = dfdt],= of (te;"x),

1L.<j<n, be, respectively, left- and right-invariant basic vector fields. Let
also

(14) Dy, [ =X, (0) = ¥, (0),

™

I<jgn
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If I =(,..., i) is a multi-index, we set
(15) X'f =X X0, Y=Y,
(1.6) Ml =i+ ..o iy ] =iydi+ ... +i,d,.

A distribution T on N which is regular, i€, smooth away from the
origin and satisfies

(1.7 (L fod:> =1"(T,f5 [feC (N), t>0,

for some real r, will be called a kernel of order r.

For every unitary representation ¢ of N on a Hilbert space H and every
kernel T' of order r >0, the operator gr defined on the space C®(g) of
smooth vectors for ¢ by .

(1.8) (erfs 9) =T, 954>, [feC™(0), geH,

where ¢, (x) = (g.J, §), preserves C*(g) and is closable. Also if T is a
compactly supported distribution, then (1.8) defines a closable operator ¢y on

C™(g). The closure of gr in H will be denoted by or. )

Now, let T be a kernel of order 0, and let pe C*(N) be equal to 1 in
a neighbourhood of the origin. For meN set T,, =(@0dy,) I. Then, by
sense to a bounded operator which we shall denote by gr. Its restriction to
C®(p) will be denoted by gr. The definition of ¢, does not depend on the
choice of ¢. .

It can easily be shown that if T is a kernel of order _2 and feC®(g),
then for every 1 <j<n, ¢rf belongs to the domain of gp, and

19 E;_,Qrf= "Qyj'rf,
which shows that C*(g) is invariant under gr also for T of ‘order 0.

In particular, if = denotes the right-regular representanon.of N on
L2(N), then C*(m) coincides with the space S*(N) of all C°°—funct120ns fon
N such that f and all its left-invariant derivatives belong to L?(N). The
family of norms

(110) f= Y X, k=0,1,...,
=k

where ||+|| denotes, here and in the sequel, th§ Lz-r?orm, makes S™(N) into a
Fréchet space whose dual S®(N)* is conta_.med in the space of tempered
distributions on N. We endow S*(N)* with the *.weak topology. Note
that §*(N) is then dense in it. )

Let A be a continuous endomorphism of S®(N), and suppose that there
exists another continuous endomorphism A% of S®(N) such that

Af, 9> =<f, AT >
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for f, ge$®(N). Then 4 has a unique continuous extension mapping S (N)*
into itself. In fact, (A*)* extends A, and, since $*(N) is dense in S (N)*, the
extension is unique.

In particular, this is true for 4 = ny, where T is a kernel of order r > 0.
Therefore, for every kernel T like that, we shall consider 7, as being defined
on S*(N)*, by identifying it with its extension.

If M is a left-invariant bounded linear operator on L*(N), then there
exists a distribution F on N such that

(111) My =f+F
for feC®(N), where
Ffy=<F]>

and f(x)=f(x"%) for feC®(N) and xeN. A distribution F with the
property that (1.11) extends to a bounded operator on L? (N) will be called a
convolver, and the extension will be denoted by 7. It follows, by a standard
argument using a Sobolev inequality, that if F is a convolver, then F belongs
to S®(N)*.

A distribution P on N is dissipative if, by definition, it is real and

(1.12) (P.fy<0

for every real f in C®(N) such that f(x) < f(0) for xeN. P is dissipative if
and only if there exists a continuous semigroup of contractive positive
measures {,} for which P is the generating functional, i.e.,

1
P> =lim; (u=0,1

for feCZ(N), where § denotes the Dirac measure at the origin (cf. e.g. Duflo
[2))- A dissipative distribution P is a kernel of order r > 0 if and only if the
semigroup {4} is stable with exponent r, ie,

(1.13) s S = Sy, £06,.),

JeCP(N), t >0, and the Lévy measure of {m} is smooth (cf. e.g. [4], [5]).

Denote by ¥ the one-parameter central subgroup of N generated by X,
(cf. (1.3)) and choose a linear complement N to V invariant under the action
of dilations. Then the corresponding projections

(1.14) o: N-N, v:N-vV
commute with dilations, and N with the multiplication xoy = g(xy) is a

group isomorphic to N/V with ¢ being the canonical homomorphism. Of
course, N is a homogeneous group with the ‘dilations &, restricted to it.

icm°®
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For e V* we define a representation n¢ of N on L2 (Ny by

(1.15) mof (x) = DL £ (5 (xa)),
where fel?(N), xeN, aeN. We have

(1.16) Taf(b) = [ OO nf 18 (5 (b)) de

y*
for feCy'(N) and a, be N, where e C*(N) is defined by

(1.17) Séx) = [f(xz) et gy
14
for ¢eV*, xeN.
By X ; (resp. Y)) we denote the left-invariant (resp. right-invariant) basic,
vector fields corresponding to the basis e, ..., e 16N (cf. (1.4)).
By & we denote the right-regular representation of N on L2(N).
(1.18) Lemma. If' T is a kernel of order r>0 on N, then there exists

a kernel T on N of order r such that

(1.19) g f =n3 f
for feCZ(N).

Proof. If r > 0, we set
(1.20) (Tfy=(T foa)

for feCP(N), and it is checked directly that T is a kernel of order r such
that (1.19) holds.

If r = O, then 7[9« is a bounded left-invariant operator on L*(N), so there
exists a convolver T such that (1.19) holds. Since T clearly satisfies the
homogeneity condition (1.7), we have only to show that T is regular. But, by

(1.9) and (1.4),

(1.21) K=, 1<j<n-,

so that, by the above, ¥, T is a kernel or order d), and hence T is smooth
away from the origin. m .

(1.22) Lumma, Let K be a kernel of order O on N. Then for every
YeCP(N) with [y (x)dx =0 and_every feL*(N), the mapping

(1.23) V*2¢ ang () e L*(N)

is continuous,
Proof. By Goodman [6], for all y, f as above,

(1.24) lim n,, (% f) = nk (%, ),
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where
if I/m<x<m,

_ JK(x®)
Kon(x) = 0 otherwise.

It follows from (1.15) that if F is an integrable compactly supported
function on N, then

V*s¢ng fe L2(N)

is continuous in ¢ for every feL?(N). Therefore the mapping (1.23) is
continuous in ¢ if K is replaced by K,. But, by an adaptation of the
argument of Goodman [6], pp. 7, 8, the convergence in (1.24) is uniform in &
on compact sets, which proves the lemma.

(125) Remark. If dimN > 2, then the functions of the form m} f, where
YeC2(N) with [ =0 and feL*(N), are dense in L*(N).

2. The inversion theorem. The whole of our consideration here is based
on the following extension of Theorem (2.5) of [5]. But first a definition.

A kernel R of order r > 0 is said to be maximal if for every kernel T of
order 0 < s < r there exists a constant C > 0 such that

Iz £l < Clllme S+

21)
for feCZ(N).

(2.2) TueoREM. Let P be a dissipative symmetric kernel of order 0
<r<1, and let K be a kernel of order 0 such that there exists a convolver L
satisfying K«L = L«K = 3. Then for every meN, R = P"xK is a maximal
kernel of order mr.

Proof. We make an induction on the dimension of N. If N is abelian
(in particular, if dim N = 1), our assertion is obvious since then 7% and my
commute, 7y is an isomorphism of L?(N), and P™ is maximal, which can be
seen by using the Fourier transform. Therefore it suffices to show that our
theorem is true for a homogeneous group N provided it is true for N = N/V
as defined in Section 1.

We first show that if kernels P, K on N satisfy the hypothesis of
Theorem (2.2), then so do the kernels P, € on N (cf. Lemma (1.18)). In fact,
by Lemma (1.18), P is a kernel of order r and K is a kernel of order 0. It is
also easy to check that P is symmetric and dissipative. It therefore remains
to prove that there exists a convolver L on N such that

(2.3) RxL=ILxK =34.
In fact, by hypothesis and (1.16), there exists a constant C > O such that

(24) Ink Sl = CIfll,  feL* (),
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for almost every {eV*. Lemma (1.22) and Remark (1.25) imply that (24)
holds, in fact, for all e V*. In particular, by Lemma (1.18),

(2.5 17 Sl = ll=&f1l = Clf

for fel*(N). Since also K* satisfies the hypothesis of Theorem (2.2), (2.5)
holds for K* as well, and thus (2.3) is proved.

Now, to follow the proof of Theorem (2.5) of [5], we need a result on
extending estimates by continuity. This is Theorem (3.19) of [5] (cf. also
Remark (3.24) there). For the sake of future reference (in Section 3) we give it
a slightly more general form. The proof is essentially the same.

(2.6) Lemma. Let T; (j =1, ..., k) be kernels of order r > 0 such that for
every kernel T of order 0 <s < r there exists a constant C > 0 such that

k
ln? f1l < C(; =2, SI+171). feCe (.

Then for every M >0 and every kernel T of order 0 <s <r there exists a
constant C > 0 such that for all |§) <M

. .
I S11 < C(Z:l lImd, fAI+IS1), - f eCEWN).

Now, our induction assumption implies that R = P"sK is a maximal
kernel of order mr on N. Therefore, by Lemma (2.6) with k = 1 and T, =R,
for every M > 0 and every kernel T of order 0 < s < 'mr on N there exists a
constant C > 0 such that for all |§] < M

llnf f1l < CAimi SI+IAD,  feCe @)

Once we prove that (2.7) holds for ae. £eV* with a constant C
independent of ¢, we are done. In fact, it is then sufficient to integrate both
sides of (2.7) over V* with f replaced by f* for fe CZ(N) and apply (1.16)
to obtain (2.1).

To prove that (2.7) is valid for a.e. e V¥, it is sufficient to show the
following:

(28)

@7

There exist convolvers S, U on N such that
S¥xR=86+U and . Lm |ngll,, =0,
18] o0

where ||-||,, denotes the operator norm on L2(N), and ¢ ranges over a
set whose complement in V* is of Lebesgue measure zero.

In fact, (2.8) implies
ANl < lin§ ik 11+l £
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for feC®(N) and ae. ¢ in V*. Consequently, we have
Il < Clig fll, feCE(N),

for ae. |¢| = M, M being sufficiently large. Therefore, by (2.7), there exists a
constant C > 0 such that

2.7y lim f1| < Cllnk Sl

for ae. M < |¢| <2M, where M is as above.

Since both the kernels R and T are homogeneous and the order of T is
smaller than that of R, it follows that (2.7) is valid for a.. |[& = M, which
together with (2.7) proves the desired estimate for almost all ¢e V*,

To prove that R satisfies (2.8), recall first that since P is regular and
homogeneous, the measures g in the serhigroup generated by P are
absolutely continuous with respect to the Haar measure on N (cf. [5],
Lemma (3.28)). Denote by h, the density of u, t >0, and let

F(x)=— (e " h(x)dt, xeN.
[}

Then Fe L' (N), and it is easily seen that there exists an F,,e L' (N) such that
F"%P"™ = §+F,,
where- P™ is the mth convelution power of F. Consequently,
(L*xF™%R =6+ LxF,xK,

and so R satisfies (2.8) by the following easy to prove lemma of Riemann—
Lebesgue type.

(29) Lemma. If FeL*(N), then
lim ||7l,, = 0.
18] o0

This completes the proof of Theorem (2.2). w

From now on let P be a fixed dissipative symmetric kernel of order 1.
We can take, for instance, P defined by

SX)-f(0)

"“-"}IQ.‘_I dx

®.fy=lm |

8~0 |x| 2z

for fe CE(N) (cf. [S], Section 2). By Theorem (2.2), P™ is maximal for every
me N.

The following proposition was proved in [5] (cf. [5], Proposition (4.13)
and Corollary (4.14)).

(2.10) ProposITION. mp considered as an unbounded operator on L*(N)
S%(N) for its domain is essentially selfadjoint, and the space of C*
vectors for mp coincides with S (N).

icm°®
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For a positive integer m we define a Soboley space S™(N) as the
completion of S(N) with respect to the norm

(2.11) 1 fomy = e S+ 1111.

In view of Proposition (2.10), S"(N) is equal to the domain of 7. The dual
space S"(N)* is contained in S®(N)* and will be denoted by S™™(N). By
SO(N) we shall denote L*(N).

The following propositions are easy consequences of the above definition
and the properties of P.

(212) ProrositioN. Let meN. If fe L*(N) and Tpm S L*(N) in the weak
sense (see Section 1), then feS™(N). .

(2.13) Proposrmion. For every me Z, S*(N) is dense in S™(N). Moreover,

() S™(N) = §*(N), UZS'"(N) =S5*(N)*.

meZ
(2.14) Prorosition. If K is a kernel of order O, then for every integer m,
ng IS continuous as a mapping from S™(N) to itself.
As an immediate corollary from Theorem (2.2) we get

(2.15) CoroLLARY. Let K be a kernel of order O such that 7y IS an

isomorphism of L*(N). Then for every me N there exists a constant C > 0 such
that

“f”(m) < Clinig fllom
for feS®(N).
To prove that my is, in fact, an isomorphism of S™(N), we need some
more preparation. For ¢pe CP(N) and keN, let ‘
= max [|[ X7 |-
Nl iy ”I”QH Ol

(2.16) LeMMA. Let T be a kernel of order r+ 1, where re N. Then there
exists a constant C > 0 such that for every peCZ(N) and every feS=®(N),

(2.17) LM, 7zl SIl < Cll@llgrs 2 1L Nl -

Proof. This is, essentially, Proposition (3.2) of [5] (see also the remarks
following its proof). The dependence of the right-hand side of (2.17) on ¢
follows from the proof. m

(2.18) CoroLLARY. For every meZ, there exists a constant C > 0 such
that

“Mqv f“(m) s C“(/’”cmﬂ(m Ilf“(m)
Jor-all feS*(N) and all peC®(N).
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Proof. By duality, we can assume that m > 0. Then, by Lemma (2.16),

1M, Sl = 1 om (@Dl S ]
< @7y 11+ NRF 11 C 1Pl s 1y 1S Mom= 1y
< C”(p”cm-!-l(N) 1l =
(2.19) Prorosirion. Let K be a kernel of order 0. Then for every meZ
there exists a constant C > 0 such that for all peCY(N) and all feS™(N)
ks M) S sy € C”(P”Cm Z(N)”.f”(m)'
Proof. By duality, we can assume that m 3> 0. Then for feS*(N) and
pe CP(N)
17 g+ 1 ks M S11 S Nt 1,500 M1 SN+ I pms Md 70 S5
whence, by Lemma (2.16) and Proposition (2.14),

17 1 s Mpd SIS C @l 2y 1 om + 191 o 1.y 172 M)

< Cll@ll o+ 29 1 Tl
which, by (2.11), completes the proof. m

Let U be an open subset of N. We say that a distribution F on N
belongs to S™(N) locally on U if for every peCZ(U), pF ¢S™(N). Then we
write FeSp, (U).

Let us fix a cut-off function ¢ in CP(N) such that ¢ =1 in a
neighbourhood of the origin, and let

@'(x) = @ (6, %)
for xe N and t > 0.
(2.20) LemmA. Let meN, and let FeSp,(N). If

sup ”(p‘F”(m) < 0,
o<i<1

then FeS™(N).
Proof. For m=0, the lemma follows immediately from the Lebesgue
dominated convergence theorem, since

lime'(x) =1, xeN.

~+0
Assume, by induction, -that it is true for some me N, and

22y Sup [|¢" Fllgn+ gy = Cpsy < 00.
o<t<1

Since ||l <l *llm+ 1y, (2.21) implies, by the induction hypothesis, that
FeS™(N). But then, for every 0 <t <1,

@' Toms 1 F = Tom+1 (ptF—[an‘Flﬂ M,,JF,

e ©
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whence, by Lemma (2.16), ¢4, FeL*(N), and

o' s FIl <110 Fllims 1y +C Ml -+ 2, 11l
< Cm+1+C||(f)“(~m+2(N)“F“(m)'

Thus, by the Lebesgue theorem, m,,., FeL*(N), and consequently, by
Proposition (2.12), F belongs to §"**(N). m

(2.22) ProvosiioN. Let K be a kernel of order O such that mg is an
isomorphism of L*(N). Then for every me Z, ny is an isomorphism of S™(N).

Proof. First, by duality, we can assume that m >0. Then, by
Proposition (2.14) and Corollary (2.15), it is sufficient to show that mx maps
S™(N) onto S™(N).

Let FeS™(N). Since my is an isomorphism of L?(N), there exists an
feL*(N) such that ny f = F. Our proposition will be proved once we show
that f belongs to S"(N).

Let us consider first the case when f is compactly supported. Suppose
peCP(N) with ¢ =1, and let

o (x)=t"%0(5,-1%)
for xe N and ¢ > 0. Since f is compactly supported,
e feCT(N) =5(N)
so that, by Corollary (2.15),
llpokf= @S llom < Cllmg (@exf— QoM = Cll@exF — @ % Fllomy

for all ¢, s > 0. But since FeS™(N), ¢, *F tends to F in S™(N) as t — 0, which
shows that the sequence ¢,+f is fundamental in S™(N), and, being
convergent in L?(N) to f, must converge in S™(N) to the same limit. Hence
feS™(N), and

(2.23) 1/ llemy < Cllex flloms

where the constant C depends neither on f nor on its support.

Now, let f be an arbitrary function in L*(N), and let ¢ be a cut-off
function as in Lemma (2.20). We shall proceed by induction on m. If m =0,
the assertion is trivial, Assume, therefore, that it is true for some m > 0. Since
Sm*+1(N)  §"(N), by induction hypothesis, feS™(N). Moreover, by (2.23),
for every 0 <t <1,

' fllomes 1y € € limg @' fllms 1y < C(llg* T fllons 1y + ks M S lhom+ 1))
so that, by Proposition (2.19),
' M lm+ 1y < CUFlgm+ 1y +1Lf Tom)
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where the constant C does not depend on t, and Lemma (2.20) shows that f
belongs to S™(N). =

Now we are in a position to prove our main result. We begin with two
simple lemmas.

(2.24) LemMma. Let F be a distribution on N such that for every pair of

multi-indices I, JeN", X' Y/ F is a convolver. Then my is smoothing, ie, it
extends to a continuous mapping from S®(N)* to §*(N).

Proof. This is a direct consequence of the definitions of the spaces
S®(N) and S®(N)*. m

(2.25) LeMMa. Let K be a kernel of order 0, and let I‘eS”(N)* Then
ng F is smooth on the complement of the support of F.

Proof. Let U be an open set such that U nsuppF = . Then there
exists a @& CP(N) equal to 1 in a neighbourhood of the origin and such that
(2.26) (g F,fy = <Pk, f)
for feCP(U), where k(x)=(1—@(x)K(x).
= FxkeS®(N), so ng F is smooth on U. m

(2.27) Prorosition. Let K be a kernel of order 0 on N such that g is an
isomorphism of L?(N). Then for every distribution F of finite order, F is smooth
wherever ng F is.

Proof. Suppose that my F is smooth on an open subset U of N. We
show that for every me Z, FeST.(U), since this, by Proposition (2.13), implies
FeC®(U). By the same proposition, there exists an myeZ such that

By Lemma (2.25), mF

FeS§"(N). Therefore it is sufficient to show that for every integer m
(2.28) Fe8P (U) implies FeSP 1 (U).

loc

Assume FeSh, (U). We have to show that for every ¢@eCg(U),
@FeS™"1(N). According to Proposition (2.22), this will follow as soon as
we show that mg(@F)eS™+(N).

Let Yy e C2(U) be equal to 1 in a neighbourhood of supp ¢. Then
ng (oF) = onyg (YF)+[ng, M1 (Y F).

By hypothesis and Proposition (2.19), [7x, M,](¥F)e S"*'(N). On the other
hand, it follows easily from Lemma (2.25) that ng (Y F)—mng F is smooth in a
neighbourhood of supp ¢, which, by hypothesis, implies @ny (Y F)e 5™ (N).
This proves (2.28), and thus completes the proof of the proposition. w

Now the inversion theorem follows as a corollary.

(2.29) TreoreM. Let K be a kernel of order O such that mg is an
isomorphism of L*(N). Then there exists a kernel L of order O such that
(2.30) nf=ng'f

- for feL*(N).
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Proof. Since ng' is a bounded left-invariant mapping of L2(N), there
exists a convolver L such that (2.30) holds true. Note also that L belongs to
S®(N)*. Since my commutes with dilations, so does m;. Consequently, L
satisfies (1.7) with r =0, and it remains to show that L is regular. But (2.30)
implies

ngL =46

so that, by Proposition (2.27), L, and hence L, is smooth away from the
origin. This completes the proof. m

3. A characterization of H'(N) in terms of singular integral operators.
The Hardy space H'(N) on a homogeneous group N is defined by Folland-
Stein [3] by means of the grand maximal function

M (x) = \S}?l My f (%),

where |-| is a sufficiently strong seminorm in the Schwartz space & (N), and
My [ (x) = sup | fx, (%))
t>0

for pe S (N), fe #*(N), and xe N. A function fe L* (N) belongs to H' (N) if
and only if .4/l (N), and the norm in H*(N) is defined by

”f”,,x(,v, I ’”f“ﬂ(m

The following theorem was proved by Christ-Geller [1] in the case
when the homogeneous group N is graded (cf. Section 1 for the definition of
a graded homogeneous group). Their proof uses the inversion theorem for
singular integrals (cf. Introduction) which they were able to prove for graded
groups only. However, once Theorem (2.29) is known to be true in the
general case, the proof of Christ-Geller is valid for an arbitrary
homogeneous group.

(3.1) TreoreM. Let K; (j=1, ..., m) be odd kernels of order 0. If there
exists a constant C > 0 such that ‘

(32 Ifl<C Z flmg 11
Jor fECE(N), then the singular mtegral operators T, characterize H'(N) (cf.
Introduction). R

Our aim in this section is to construct, on an arbitrary homogeneous
group, a family of odd kernels satisfying (3.2), and thus, by Theorem (3.1),
characterizing H*(N).

Let P be a fixed symmetric kernel of order 1 such that —P is
dissipative. Recall from [5] that the measures y, in the semigroup generated
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by —P have densities h e C*(N) which satisfy the estimates
(33) X7 1y () < Crt(e+]xye 1M

for all IeN", xeN, and t> 0 ([5], Theorem (2.3)). Recall also that =, is
an unbpunded closable operator on the Hilbert space L*(N) with S®(N) for
its invariant domain. By Proposition (2.10), mp is essentially selfadjoint,
and S (N) is equal to the space of C* vectors for its closure 7p. It follows
easily from (1.12) that 7, is positive. We' denote by E(dA) the spectral
resolution for 7p.

(3.4) ProrosiTiON. Let a > 0. Then for feS™(N),
(3.5) T f =[P,

where P* is a kernel of order a.
Proof. It is sufficient to consider 0 <o <1 only. We have

' 1
3.6 A-—u - 1+a *}.ldt
69 (a)!
for all A,a >0, and
o 1 1—af,~1A__
(3.7 A% = =) | jt (e 1)dt

for A>0, 0<a<l1. Consequently, by the spectral representation,

(3.8) =

j"t e (f—fxh)dt = fxP*

r ( )5
for feS*®(N), where

P =

1 T ~1=-a —
=% lj;t O—h,fodt

is a kernel of order a, which is readily checked by using (3.3). m
For 0 <a < Q let

(3.9)

P fy= «-th‘“' Cho Sy,

@ ' feCE(N).
Since h,eL'(N) nL*(N), it can easily be seen that P~*eL!(N)+L*(N),
Moreover, (3.3) implies that P™* is regular. As P~* obviously satisfies (1.7)
with r = —a, we conclude that P~ is a kernel of order —o.

(3.11) LemMMA. For every a > 0, the space of vectors of the form 7},
where feS®(N), is dense in L*(N).

Ifroof. Since, by Proposition (2.10), $*(N) is a core for &3 and 7, is
. selfadjoint, it is sufficient to show that 7, is injective.

(3.10)
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Let mp f = 0 for some f in the domain of 7p. Then fxpy, = f for every
t > 0, whence

(3.12) [7%f (%) e (dx) = || f12

for t > 0. But since f*f vanishes at infinity,
lim § ff (x)  (dx) = Tim [ £ (8, %) g (dx) = 0,
=00 =00

which, by (3.12), implies f = 0.

We now present the promised construction of kernels characterizing the
Hardy space H'(N).
(3.13) TueoreM. Let — P be a symmetric dissipative kernel of order 1,
and let

-d
Ky=Y,P ™
for j=1, ..., n Then K;s are kernels of order 0, and there exists a constant
C > 0 such that
(.14 Il <€ 3 limk, £l
i=1

Jor feCE(N).

Proof. We make an induction on the dimension n of N. When n=1,
K, is a nonzero multiple of the kernel corresponding to the Hilbert
transform so that (3.14) holds true. Thus it is sufficient to show that our
assertion holds true for N provided it holds for any symmetric dissipative
kernel of order 1 on N = N/ V, where N, V are defined in Section 1. But first
—~two lemmas.

(3.15) Lemma. Let 1 <j<n If a >d;, then

nKj"Paf = nyjpa—djf

Jor feCg(N).

Proof. This is an exercise in convolving distributions.

(3.16) Lemma. — P is a dissipative symmetric kernel of order 1 on N.
Moreover, for every o« >0, (P~ = F".

Proof. By Lemma (1.18), P is a symmetric kernel of order 1, and it
follows immediately from (1.12) and (1.20) that — P is dissipative.

Since for all kernels T;, T; of order greater than 0, (Ti»T;)~ = T Ty, it
is sufficient to consider the case when 0 <a <1,

By Duflo [2], {r},} is a strongly continuous semigroup of contractions
on L*(N) whose infinitesimal generator is

(3.17) —~np = —&p.
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Since
1 o0
ef = ——— [t717%(f—70 f)dt
(mp)"f F(_a)vbft (f== 1)

for jeC”"(N) (cf. Yosida [8], Chap. IX, Sec. 11), it follows, by (3.9), that
(xd = n . This, by (3.5) and (3.17), implies the assertion of the lemma. m
We return to the proof of Theorem (3.13). By our inductive hypothesis
and Lemma (3.16), there exists a constant C > 0 such that
n-1

<€ Z 17k, S

for fe CZ(N), where K, = ;= P, (Actually, K= K ; but we need not this.)
Letting f—ﬂpd,,g, where geC°°( N), we get, by Lemma (3.15),

n—1

||77Fd,lgH s 5j=Zl ”ﬁyjﬁd"—djg”a
and so, by Lemma (3.16), Lemma (1.18), and (1.20),

(3.18)

n—1
0
||752d,,9!| <Cy ||7T},jpa,,—djg“
for ge CE(N).
Let us remark that ™" is a maximal kernel of order d, (cf. Section 2 for
the definition). In fact, since — P is dissipative (Lemma (3. 16)), it follows from

(3.9) that so is — P for every 0 <a < 1. But, by Proposition (3.4),

ﬁd" - ( ﬁa)k
for some 0 <a <1, ke N, and hence, by Theorem (2.2), P is maximal.

This, together with (3.18) and Lemma (1.18), implies that the kernels T,
= Yde"“"f satisfy the hypothesis of Lemma (2.6), and so there exists a

constant C > 0 such that

(3.19) lIma,gll < (; HTEY a9+ llgll)

for ge C¥(N) and [¢| < 1. By the equality
It gl = ¢4-22 g1

valid for any kernel T of order s> 0 and any {e V¥, ¢ >0, and geC2(N),
where § is the homogeneous dimension of N and g = god,, we obtain from
(3.19) the estimate

n~1
759l < C T 175 ay-ay 9l +C L™l
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for all geC*(N), e V*. But, obviously,
€™ lgll = Il g1
for geCi‘)(N) and £eV* so that

(3.20) 124, 41l <

c Z H7r
for g and ¢ as above, where Y,P° =D, (cf (1.4)).

Fmally, by integration of both sides of (3.20) over V* with g replaced by
/% where feCZ(N), and applying (1.16) and Lemma (3.15), we come to

~dng

I 0,1 < C,;l e, 7 g,

for feC(N). Since the vectors of the form 7y f, where f ranges over

CZ(N), are dense in L?(N) (Lemma (3.11)), this ends the proof. =
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