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1. Introduction. In the category of Sikorski's differential spaces [1] a
differentiable C*-manifold is considered as a differential space locally diffeo-
morphic to a Euclidean space. The Cartesian product of two differential
spaces is in general a differential space. If these differential spaces are
differentiable manifolds, so their Cartesian product is. There is a question
concerning the inverse statement. The main aim of the present paper is to
prove the following

THEOREM. If the Cartesian product of two differential spaces is a differen-
tiable manifold, then these differential spaces are also differentiable manifolds.

The following lemma plays the essential role in the proof of the
Theorem and it seems to be interesting independently of the theory of
Sikorski’s differential spaces.

LeEMMA. If M and N are subsets of an open set Q of points of R" such that
M x N is diffeomorphic to Q, then M and N are C®-submanifolds of R".

Here the mapping

where P < R™ and Q < R", is regarded as smooth if there exist an open subset
of R™ containing P and a C™-extension of f to this subset. The one-one
mapping being smooth together with its inverse mapping is meant as a
diffeomorphism of sets. The mapping (1.1) is smooth if and only if / maps
smoothly the differential subspace (P, Ep) of (R™, E) (see [1] and [3]) into
(Q, Ey), where E stands for the set of all real C*-functions on R™ The
subsequent two theorems (see [3]) will be useful in the proof of the Lemma.
To formulate them we recall the concept of tangent hyperplane M, to the set
M < R" at the point p which is defined as follows.
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We consider the identity mapping id,: (M, E,) — (R", E) and the in-
duced tangent mapping

(1.2) id,.: (M, Ey), — (R", E),.

If w in (R", E), is of the form w',,, where ¢;, denotes the partial derivative
with respect to the i-th variable in R" at the point p of the functions in E,

then
(1.3) wis(wl ., wh)

establishes the isomorphism between (R", E), and the vector space R". The
hyperplane M, derived from the tangent space (M, Ey), (see [2] and [3]) to
the differential space (M, E,,) at the point p by taking the mappings (1.2),
(1.3) and the translation u+ p+u is called (cf. [3]) the tangent hyperplane to
the set M at the point p.

THeoReM A. If for any pe M < R" dim M, > 1, then for any p there exists
a mapping f satisfying the following conditions:

(1) the domain of the mapping f is contained in M, and dense in itself;

(i1) there exists an r > O such that the set of all values of f coincides with
M N B(p, r), where B(p, r) denotes the ball in R" with centre p and radius r;

(ii1) for every x of the domain of f the orthogonal projection of f(x) onto
the tangent hyperplane M, coincides with x;

(iv) the mapping f has the derivatives of all orders at each point of its
domain with respect to any direction of the domain.

THEOREM B. For any subset M of R" the following conditions are
equivalent

(v) M is an m-dimensional C*-submanifold in R",

(vi) for any pe M the orthogonal projection n)' of M onto the tangent
hyperplane M, to M at p is a locally open mapping at the point p, i.e., for any
neighbourhood V of p open in M there exists a neighbourhood U of p, U c ¥,
such that the image nY[U] is open in M,; dimM, = m.

2. Proof of the Lemma. Let pe M and ge N, where M, N and Q satisfy
the hypothesis of the Lemma. Then there exists a difftfomorphism

(2.1) ¢: MxN—-Q.
Hence the vector space M, ® N, is isomorphic to Q,.,. Thus
dimM,+dim N, = dimQ,, 4 = n.

Consequently, we have two constant functions p+—dim M, and g+—dimN,.
Setting m = dim M,, we get dimN, = n—m. By Theorem A there exist a
mapping f fulfilling conditions (i}iv) and a mapping g with similar con-
ditions obtained from (i}{iv) by setting g, N and q instead of f, M and p,
respectively. We have then the domain D, of the function f in M, and,
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similarly, the domain D, of g in N,. From (ii) it follows that there exists
r > 0 such that the set f[D,] of all values of f coincides with M n B(p, r).
Similarly, there exists s > 0 such that g[D,] = N nB(q, s). Let us set

2.2 h(x,y)=o(f(x),g(y) for (x,y)eD;xD,
and
(23) Qo = ¢ [(M xN) A (B(p, ) xB(g, 9))].

The set (M xN)n(B(p, r) xB(q, s)) is open in M xN. Thus the set Q, is
open in @, so in R". By (2.1)(2.3) we have the continuous mapping

(24) h: D; xD, — Qo.

It is easy to check that the mapping (2.4) is onto. Taking any ze€Q,, xe D,
and yeD, such that h(x, y) =z we get in turn '

(S, g =02, fX)=prio (2, gy =pre '),

where pr;: R"xR"— R", pr;(u,, u;) =u; for (uy, u)eR"xR", i=1, 2. Ap-
plying the orthogonal projections n, and =, of R" onto the hyperplanes M,
and N,, respectively, we obtain

m(pri ¢ ' (@) =7,(f(x) =x and  m(pr, @ ' (2) = m(9(y) = y.

This yields that the mapping h™': Q, — D, x D, inverse to (2.4) is given by
the formula

h™'(z) = (n,(pr; @ ' (2), m(pro @~ '(2))) for zeQ,.

Hence the mapping (2.4) is a homeomorphism.

Let us remark that D, x D, is contained in the vector space M,® N, of
dimension n. From the fact that Q, is open in R" and that (24) is a
homeomorphism, by the Brouwer Theorem on openness of mappings, it
follows that D, x D, is open in M, ® N,. Therefore, D, and D, are open in
M, and N,, respectively.

To prove that M is an m-dimensional C*-submanifold of R" we shall
apply Theorem B. Let us take any ¢ > 0. We may assume that ¢ < min {r, s}.
Setting G = f ' [M n B(p, ¢)] we have the set G open in D,. Thus G is open
in M,. Taking any u in M nB(p, ¢) we have ue M nB(p, r). Then there
exists xe D, such that u = f(x). This yields =n,(u) = n,(f(x)) = xe G. Now,
let xeG and u=f(x). Then =n,(u)=x and f(x)eM nB(p,¢). Thus
xen,[MnB(p, ¢)]. Hence

G=mn,[MnB(p,e¢)].

Therefore the mapping n,: M — M, is open at the point p. Condition (vi) is
then fulfilled, which completes the proof.
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3. Proof of the Theorem. Let (M, C) and (N, D) be differential spaces
such that the Cartesian product (M, C) x(N, D) (see [2] and [4]) is a C*-
differentiable n-dimensional manifold. Take any pe M and any oe N. Then
po =(p, 0)e M x N. There exists a chart x of the manifold (M, C)x(N, D)
around the point p,. We may assume that the domain of x is of the shape
U x V, where U and V are open in (M, C) and (N, D), respectively. Setting
Q = x[U x V] we have the diffeomorphism

(3.1) x: (U, Cy) x(V, Dy) = (Q, Eg).
Consider the diffeomorphisms

(3.2) a: (U, Cy) = (U x {0}, (C x D)y xqp)
and

(3.3) b: (V, Dy) = (4p} x V. (C x D)y «v)s

where a(t) =(t, 0) for teU and b(t) =(p, t) for teV, and the mapping
(3.4) Xo: UgxVo—Q
defined by the formula

Xo(u, v) = x(a " (x (), b~ (x ' (v)) for (u, v)eUqyxV,,

where U, = x[U x{o}] and V, = x[ip! x V). It is easy to check that (3.4) is
one-one, and

(3.5) x5 ' (1) = (x(a(pry x ' (@), x(b(prax~1 (1) for teQ,

where pr, and pr, are the canonical projections from (U x V, (C xD)y ,y)
onto (U, Cy) and (V, Dy), respectively. Formula (3.5), by diffeomorphisms
(3.1)-(3.3) and the smooth mappings pr, and pr,, yields that we have the
diffeomorphism

xO: (Uo, EUO) X(Vo, EVO) —’(Q, EQ).

From the Lemma it follows that (U,, Ey,) is a differentiable C*-manifold.

Taking the difftomorphisms (3.1) and (3.2) we get the diffeomorphism of
(U, Cy) onto (U,, Ey,) Then (U, Cy) is a differentiable C*-manifold, which

completes the proof.
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