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ON MOMENTS FOR BRANCHING PROCESSES

L. Introduction. Let {Z(t), 1 > 0} be a stochastic process defined on the
Probability space (2, #, P). The problem is to state the conditions under
Which E®(Z (1)) is finite (¢ > 0) for.a wide class of functions & and for
Various types of stochastic processes.

For a point process {Z(t),t >0} and a convex non-negatlve functlon
®(x), x > 0, Fleger [5] gave ‘a necessary condition for the. existence of
Eo(z (), 1

For a one-dlmensmna] continuous-time Markov branchmg process Har-
ri [6] showed that E {Z"(r)! is finite for every positive integer r and every
>0, provided (d"f (s)/ds")|s=4 is finite, where f (s) is the offspring probability
gﬁnerating function associated with this process. This result was improved by

vast’janov [9] who for a wide class of measurable functions .# found the
Sufficient condition for the finiteness of E®(Z (r)) t>0 Pc .. Let us define
the class .#.

Definition. A measurable function @: R, = [0, :0) — R, belongs to
the class .4 if there exist constants ¢ >0.and K >0 such that

(1) @ is convex on [c, ),

(i) d(xy) < K®(x)P(y) for every x, y in [e, x),

(iii) @ is bounded on [0,c]. .

We assume throughout the paper that rDc .

. For the Bellman-Harris age-dependent branching process Athreya [1]
8ave the necessary and sufficient condition for_ the finiteness of E®(Z(t)),
£>0. For some class of branching processes with immigration an analogue
of Athreya’s result was proved by Kaplan [7].

A simple method of proof using renewal theory was obtained by
Ath“‘ya [1]. This is the method which is used here to establish further
Tesults for more general branching processes.

The paper is arranged as follows: In Section 2 for the Sevast’janov
?focess we establish a sufficient condition for the finiteness of E®(Z(r)),
d>0 Next, in Section 3, we formulate and solve this problem for age-
“Pendent branching processes with generation dependence. Section 4.
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concentrates on the study of finiteness of E®(Z(t)), ¢ > 0, for inhomogeneous
Markov branching processes. Finally, in Section 5, a certain result for
branching processes with immigration is stated.

2. Sevast’janov processes. Consider the population of particles with the
following mechanism of reproduction. Let {p,, n>0!, p,: R, —[0, 1], be a
sequence of measurable functions and assume that if the particle lifelength L
is equal to u, then p,(u) is the probability that at the momient of its death (or
split) the particle creates (splits into) n new particles. The joint probability of
the number,.of -new, particles -¢-and- the; particle lifelength L: is-given by the
formula

P(C =n, LeB) = | p,(w)dG(u),
B

where the set:B-belongs te the o-field of Borel subsets of R, and G-is the
hifetime - distribution . function of -a -particle, i.e, G(u) = P(L <wu). Othet
assumptions are the same as those in:the' Bellman—Harris - branching
Processes..

If the probabilities:{p,, n = 0} :do not depend on the particle lifelength;
then we have an ordinary Bellman-Harris process. Such processes were
introduced and:studied in their own right by Sevast’janov (cf. [9], p. 282).
Note that. his definition was more general than ours, namely more -than oné
type of. particles, was_considered. For fixed @ let

a(u) = Z @ (n) p,(u),

n=0Q

For the Sevastjanov process we prove an analogue of Athreya's theorem (cf-
[2], Theorem 4, p. 153).

THEOREM 1. Let |Z (1), t=.0). be a Sevast’janov branching process. If
E®(&) <oc and G(O+) =0, then E®(Z(1) < « fort>0.

Proof. By Theorem 1:{[9], p. 265) we know ‘that the number of split
times in any finite interval is finite with probability one, and hence those
times can be ordered. (If it is possible for more thain- ‘one particle to die'at a
given' time with ‘ positive. ‘probability, we give any hxed order to such
partlcles) Let t;-be a moment of the n-th spht and set 7, = oo for n > N;
where N is the total number of-splits in- [0, o). Define

V\Z@) ift,>r,
Y,(t) =" "
() {0 if 1, <1,
It is clear that
() L <T+ ) ¢,

j=1
where:¢; (f = 1,2, .. ) are the numbers of particles produced in the j-th Slﬂ't
Let m, (1) = Eo(Y, (r)) From (1) and the properties of ® we infer. that m, (1) i
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finite for every integer n > 1 and every t > 0. Now we prove that for every n
21 and constants ¢, and ¢, the following inequality holds:

@ Mas1 (0 < €4 (L= G (0)+ ¢, | alu)my(t—u)dG (),
0
Where 0 < ¢,, ¢, <.oc. We have
B E®(Y () = E[®(Yu (0): 7y > ] +E[@ (Y, (0); 7, <1].
By the definition of Y,+1(t) we can write
4) E[®(Y,11 (1) Ty > 1] = d(1)(1—G{1).

Since on the set {1, <1! the inequality

. : e
Yo (0 Y Y (1—1y)
j=1
holds, where Y9 u), j=1,2,..., are independent copies of Y,(u) and the

Sum is taken to be zero when & =0, we obtain
By E[@(Y,, (0): 1, 1] < [ [po() DO+K Y py(u) (k) m,(r —u)] dG (u).
0 [

By (5) and the assumption of the theorem, there exists a constant ¢, (0 < ¢,
< %) such that
1

(6) E{o(Y,. () 1, <1] .s cy [ al)m,(t—u)dG (u).
0 .

Now 2) follows from (3), (4), and (6). The rest of the proof is quite similar to
the proof of Athreya's theorem and will be only sketched.
Under the assumption of Theorem 1 the integral equation

m(r) = ¢ (1 ;G(r))+ ¢y | a(uym(t —u)dG (u)
0

has 5 unique non-negative solution m bounded on finite intervals.

It is easy to prove that there exist constants ¢, and ¢, such that m
Satisfies the inequality m,(t) < m(t) for every integer n=1 and for r > 0.
Therefore

sup E®(Y,(n) < %
nef
(hZ+ — positive integers). Now, by the monotone convergence theorem, we
ave
lim E®(Y,(1) = E®(Z(1),

Which completes the proof.



184 J. Holzheimer

3. Age-dependent branching processes. with generation  dependence.
Consider another extension of Bellman-Harris age-dependent branching
process with generation dependence (cf. [4]). If the process starts with one
particle in the n-th generation, then this particle lives for a random length of
time T, with distribution function G (it is assumed throughout that G (0+)
= 0) and then splits into a random number {,, of particles in the (n+ 1)-st
generation. These particles live random lengths . of time T,.q,4, -, J},H Cnd®
respectively, in the (n+2)-nd generation. The process continues; Z,(t) is the
number of particles alive at time t-having started with one particle in the
n-th generation. It is assumed that the random variables T,,; and {,,, where
m neZ% (Z9 - non-negative integers) and j, keZ,, are mutually
independent, that the random variables T,, for ne Z% and keZ, have the
same distribution, and that for each fixed ne Z% the random variables -
keZ,, have a probability distribution on Z% depending only on n.

Let 1, =inf{x: G(x+) > 0}. For this process we prove the following
extension of Athreya’s theorem (cf. [2]):

THeorem 2. Let {Z,(1),t =0}, n=>0, be. a sequence of a Je-dependenl
branching processes with generation dependence. If E®((,,) < x, neZ%.
then E®(Z (t)) are uniformly bounded on finite intervals. Further, if

E®(Z,(1) < « for every 1 >t and neZS, then E®(, ) < % for every
integer. neZ_°

Proof. From [1] and [4] we know that the number of split- times in
any finite interval is finite with probability one, and hence these times can be
ordered. Let 7; be the moment of the i-th split and set 7, = oc for i > N,
where N is the total number of splits in [0, o). Define

Z, if >t

Z"-"(‘)':{o if ¢, <.

The same method as in Theorem 1 may be used to derive the inequality

Myivy (1) < € (1=G (D) 4y | Mysq(t—1)dG(w),
0

where m,;(1) = E®(Z,;(z)) and ¢, and ¢, are some positive constants.
Further we need the following fact. Let {Y,(t), n> 0, r >0} be a sequence Of
functions uniformly bounded on finite intervals and let G be a distribution
function on [0, o) such that (Y, +G)(t) exists for all t > 0 and every integer
n 2 0. According to Fearn [4], if G(0+) =0 and the m, are a umtormly
bounded sequence of real numbers, then the system of renewal equations

X, () =Y.t +m,(X,.,*G)(), n=0,1,....t=0,

has a unique non-negative solution {X,(r), n>0! uniformly bounded oD
finite intervals. Consequently, there exists a sequence of functions 7
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uniformly bounded on finite intervals which is the solution of the following
‘€quation:

(1) = ¢; (1-G(1)+ ¢, ‘jni,,ﬂ(r—u)dG(u).
0

Now there exist positive constants ¢, and c, (cf. Theorem 1) such that
My (f) < 1, (t) for every t > 0 and every integer i, n > 0, which proves the
first part of the theorem.

The proof of the second part .of Theorem. 2 is omitted. It can be easily
Obtained by modifying the argument used in the proof of Athreya's theorem

(cf. [17).

4. Inhomogeneous Markov branching processes. Consider a branching
Process defined by Cohn and Hering [3]. Let k(f) be a non-negative and
Mmeasurable function on non-negative reals and let {p,(n), n =0, > 0} be a
et of probability distributions on non-negative integers: with p, (n)
Measurable as a function of t. Let us define

0.

=Y x'pm, X<,

n=0

and

AxG

m=f(1=)= Y npn).

n=1
Assume that

sup k(s)+supmy, <oc, teR,.

s€r sSt

Then (k(1), p;(n)} determines uniquely a continuous-time Markov branching
Process constructed according to the following intuitive rules: All particles
behave independently, the probability that a particle undergoes branching in
the time interval [t, r+4] is k(t)4+o0(4), and the probability that it is

-;S"?laced by exactly n new particles, given that it undergoes branching at 1, is
e (n),

For fixed &, let

&, =) Pmp(n), teR,.
n=0
THEOREM 3. Let 1Zo,, t 20} be an inhomogeneous Markov “branching
Process with Zy 5= 1. If

sup®, <o for every t >0,

ust

then-Ed(z, ) < for every t > 0.
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Proof. We prove first the following fact:
For every pair of positive constants ¢, and c, there exists a unique non-
negative solution of the integral equation

1
7 Xoy=c¢1Toste; [ Tk d, X, du  (t >0),
0
where
t
T,=exp{—{kdu), t>s.

Indeed, it is sufficient to check that

‘
Xop=crexp {[ k(w(c; ,~D)du), t>s,
is the solution of (7) (cf. [1]).
Let us define

Zin Zy, 1,>1t,
% =0 if 7, <t,

where 7, is the moment of the n-th split. Clearly, E®(Z¥)) < oo for every
t >0 and every integer n > 1. It is.easy to show that

!
MV <o) Ty, +K | Touk(u) D, M) du,
0

where M{)) = E®(Z"), 0 < u <. By the above considerations the integral
equation

t
XO.t =y TO,: + C2 ‘ 73.;. k (u) Qia Xn,t du
0

has a unique non-negative solution. There exist positive constants ¢, and ¢z
such that M{) < X, for every r > 0 and every integer n > 1. This implies

My, =E®(Z,,) = lim M{, < X,, < 0,

n—+ao

which completes the proof.of Theorem 3.

5. Branching processes with immigration. Consider a population which
reproduces according to a Sevast’janov process (Y (f), t > 0). Let G,(-) b¢
the common distribution function of the random lifelength of an object. T?e
objects are assumed to develop independently of each other. Moreover, it 1
assumed that the population is being augmented by an independest
immigration process defined below, where each immigrant generates 2
Sevast’janov process independently of others. The immigration _process ;
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€pochs occur in times according to a renewal process with distribution of
interimmigration times given by Gq(*). Also, at the i-th immigration epoch
W (no=0), § (i=0,1,..) immigrants enter the population. These
Immigrant numbers are mdependent of each other and of everything else. It
is assumed that G, (0+) = G,(0+) = 0. Let X (1) denote the population size
at time r. It is easy to see that

ny Vi
X(n=73 Y Yt—n),
i=1 j=1
Where n(r) =sup!n>1: n,,st‘ and {Y;(t)}, 1<j<9, i=1, are

independent copies of 'Y(), t =0},

If {Y(1), t >0} is the Bellman—Harris age-dependent branching process,
then the process {X (), t 2 0} as defined above is called a Bellman-Harris
Process with immigration. We assume that X (0) = _

Let to =inf{x: Go(x+) >0} and ¢, =inf{x: G,(x+) > 0}. Now we
brove the following theorem similar to Kaplan's result (cf. [7]).

THEOREM 4. Let | X (1), t = 0} be a branching process with immigration for
Which {Y(t), t = 0! is a branching process with the function m(t) = E®(Y (1)
bounded on finite intervals. Then E®(X (1)) < o for any t > to+1t, if and only
if Ed(9,) < .

Remark. Under the assumption

E®() = | a(wdG,(u) <

R,

Sevast“janov processes satisfy the conditions of Theorem 4.
Proof. For fixed t > t,+t, we have

<
-

n(t)
X(t)=3 Y, where Y=Y Y;(t—n).
i=1

From the assumptions of the theorem it follows easily that
®) sup E®(Y) < .

ie/ +
Now we use the following fact. Let {X;, i > 1} be a sequence of independent
nd non-negative random variables, let N > 0 be an integer-valued random
Variable independent of the X/s, and put S, =0, S,=8S,_,+X,, n> 1. If
E®(N) <o and sup E®(X;) < oo,

iFZ+

then E®(Sy) < oc. This fact and (8) imply that E®(X (1)) < «, which proves
sufficiency. For the necessity, let t >to+¢, and assume that E®(X (1))
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< oo: Then on the set {n, <t} we have

n(t) 8.
o >ESX®)> | (Y Y Y;(t—n)dPZR.

st i=1.j=1

Now, by the monotonicity of the function &, (cf. [1]) we obtain

! 8
R= [E®() Yy;(t—u)dGy(u).
0 Jj=1

From the last inequality we infer that there exists uy > to+1, such that

.8y

E®(Y Yy;(uo) < 0.

i=1

Now the: leunnas of Athreya (cf. [2], Lemmas 4 and'5, p. 156-157) give
E®(9;) < oo, which completes the proof of Theorem 4.

Note that if [Y(r), r > 0} is an ordinary Bellman-Harris process, then

Theorems 2 and 4 yield the result-of Kaplan [7].
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