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Dedicated to Pdl Erdds on the occasion of his 75th birthday

In this note we answer in the affirmative a question raised by Erdés.
TueoremM. Let .« be a set of positive integers,

A(x) =card {ae o a < x},
and suppose that

(1) A(x) ~xflogx a5 x— 0.

Put
£y =¥ Yn—a).

a<n
ae.o

Then the number 1 is a limit point of the sequence {f(n)}.

Under the stated hypotheses it is easy to see that f {n) has mean value 1,
since

N N~a
(2) Sim=3% ) Um= ¥ log(N—a}+0(A(N)) ~ N.
n=1 a<Nm=1 a<N

Proof. We argue by contradiction. Suppose that there is a & > 0 such that

3) If(m—1=5 for all large n.

First we show that there exists an arbitrarily large ng such that
(4 fng) 1=

and

3) fimz1+6 for ne—nf?<n<ny
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To see this, let f{n,wy= > 1/(n—a). Then
a:;;fu
N -
S oy = ) Y n—a).
n=1 p<N— N2 ns N
ae e/ a w2y

The root of the equation x—x”? = a lies in the interval (a+a®? a+a®+1).
Hence by the integral test the inner sum above 15

N}a(l/u)d”JrO(a—M) =log(N—a)—31dloga+0(a 3.

2812

Then by partial summation and (1) we deduce that
N
Y [, ) ~(1-8/)N as N-—ow®.
=1

Thus there exist arbitrarily Jarge values of » for which f(n, n”*) > 1 -4, say
fny. nf% > 1=8. I ny—nf? < n<n then

fo= %

a<ng = Ay
acdd

in—a) =f(ng, n? > 1-6.

Hence by (3) we see that /(1) > 1+8 when n; —nf* < n< . Now let ng be
the least n > ny such that f(ny) < 1. Such an n, must exist, in view of (2) and
(3). Then f(ng)<1—9, and f(m) =1+ for n ~n}? < n <n,. Hence we
have (4) and (5).

We now show that if f(n) <
—x, and if x = 4/8, then

(6) Alng—x)— A (ng—4x/0) = 6x/(4log x).

To derive this, we first note that if n<ng, u >0, and ¢ <n—u then

16, if f(n=1+8 for ng—2x<n=<mny

1 ng—n+u 1
< .

< .
n--a u Ho— i
On summing this over a < n—u, ac.«, we deduce that
Hg—hn+u
fin,u) < Tf(no,_ ny—n+u).

But f(ng, 1) < f{(n,) for any v =0, so by (4) the above is
sw(l_cs)_
u
If we take u ={ny—mn)/d then this is

1+8)(1—8&=1-82 <1,
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so that if f(n) = 1+6 then

) 1fn—a) = 4.

n-{np—w/d<a<a
ag .o

We sum this over all ne(ny—2x, n;—x) to see that

1 1
(x—1)8 < Y r =3y
ng— 2xSn<npg-x nw(no—njé{5$0<nnWG gesd ¢ B0
acd

where the outer sum, over 4, is subject to the constraint ny—2(1+ 1/}x<a
<ng—x, and the inner sum, over n, is subject to the two constrainis a
<n < (Ba+ng)(1+3), ng—2x < n < ny—x, If we drop the latter of these two
constraints then the inner sum is made larger (or at least not decreased). By

appeal to the inequality ) 1/k < I+logv, which holds for all v 2 1, we
k<

conclude that the inner sum above is

no““"“a

£ 1+log 13

< 1 +log(2x/3).
Thus the double sum is
< (A (ng—x)— A (no —4x/8)) log (2ex/5),
which gives (6).
We now use (5) and (6} to derive a lower bound for f(ng). Let K
=[(3log no)/(4log(4/8))]. The intervals I, = (no—(4/8)c*, e —(4/8)],

ISk <K, are disjoint and lie in-the range [n,—nd?, ny). Also, if ael, then
1/(ng - a) 248/4y* !, Hence

f‘(”o)az Z 1fng—a)

k=1 aelkr\_;r(
K
2 Z (5/4)k+1(A (?10%(4/5)'&)_A(no__(4/5)k+ 1))
k=1
From (5) and (6} we see that this is

- 62 X L §? o (Mogno
/16]og(4/5)k§1k/1610g(4/6) E\dToe /) )

That is, f(no) »,loglogny for large no. This contradicts {4), so the proof is
complete. '

From the hypothesis (1} alone it is not possible to derive a quantitative
upper bound for the rate at which the limit point 1 is approached. For as
was observed by Erdds, if a, = [(1 —&,) nlogn] and ¢, — 0 very slowly, then
the limit point 1 is also approached very slowly. Also, from {1) it does not
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follow that

(7 Y S ~x as  x-co.

On the other hand, it is not hard to show that if there is an h = h(x) such
that logh = o((logx)"/*) and

() .Z‘(A (“"Fh)—/i(fi)—@) du = o(h* x(log x)™?),

then both (1) and (7) hold. From (1) and (7) we see that
©) T (f ) —1)" = o(x),

n€x
from which it follows that f(n) is near 1 for almost all a. _ .
If we take < to be the set of prime numbers then we have (1), since this
is the prime number theorem. If the Riemann Hypothesis is assumed, then (8}
holds for prime numbers with h = exp((logx)'”?), for example. (See [1].)

1 am hzippy to thank Professor Pdl Erd8s for his comments, and a.lso
Professor Carl Pomerance, who pointed out an error in and a simplification
.of my original argument.
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On an additive property of squares and primes
by

IMre Z. Ruzsa (Budapest)

Ty Uncle Paul, ‘with epsilonial love

1. Intreduction. The additive property in the title is that of being an
essential component. Essential components are traditionally defined via the
Schnirelmann density. The Schnirelmann density o (A) of a set A of integers is
defined by the formula

a(A) = inf A (n)/n,

where n runs over the natural numbers and we use A(n) to denote the
counting function of our set A, that is, the number of its elements between 1
and n (the nonpositive elements are not taken into account).

This concept of density was introduced by and named after L. G.
Schnirelmann [10], who proved the inequality

(1.1) o(A+B) 2 0(A)+0(B)—o(A)s(B)

and used it to show that every set of positive density is a basis, and that the
set P of primes is an asymptotic basis (that is, the sumset P+ ... + P with a
sufficiently large number of summands contains all large integers), which was .
the first unconditional result -concerning the Goldbach conjecture.

A set H is called a (Schnirelmann) essential component if e{A+ H)
> a(4) whenever 0 <a(d4) <1. By (1.1), sets of positive density always
have this property. The first essential component of density 0 was discovered
by Khintchine [4]; it was the set Q of squares. A few years later Erdgs [1]

found that every basis is an essential component; he proved this in the
effective form

(1.2) o (A+H) 2 0(A)+0(4) (1o (A))(2h),

if His a basis of order h. A much str.onger version of {1.2) was found by
Piiinnecke [8]; he proved o

(1.3) o(A+H) 2 o4V,

which is, in this generality, the best possible order of magnitude.



