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ACTA ARITHMETICA
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On the number of integers n such that nd(n) < x
by
R, BarasusrAMANIAN (Madras) and K. RAMACHANDRA (Bombay)

1, introduction. In this paper, we investigate the asymptotic formula for
the number of integers n such that nd(n) € x. The problem was first
considered by Abbott and Subbarao [1] who proved that

| e
\/ log x
Our aim is to improve and generalize their result.
Let 23>0 and let g(n) be a multiplicative function such that (i) g(p)
= 1/4 for all primes p, (ii) g(n) >0 and (i) g(n) » n~118 Then we prove
Tueorem 1. The following asymptotic formula holds:
T 1~ ex{log x)*t!

ny(n & x

for a suitable ¢ > 0.
nd(n) & x

Sor a suitable constant ¢ > 0.

Remark 1. It is clear from the proof that we get an asymptotic
expansion with an error term

O (x exp(—c{log x'* (loglog x)~ %))
Remark 2. Theorem 1 gives an affirmative answer to the problem
raised by Professor Firdds, in one of his letters to the second author, whether
Y o1~2 ¥ 1 as

X - O
nd(n) € 2% ndin) &% '

Remark 3. The condition |g(n)| » n~ "¢ could be weakened to

lg(m) & n" 42" for some & > 0.
Remark 4. The method of proof will also apply to get an asymptotic
formula for ¥ 1/g(n). In fact,

néx

1

[E— ]

nﬁxg(")' ngin) & x
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2. Notation. Let f{s)= Y lf(ng(n)} in ¢ >2; v =[t|+30; s=0g+if;
n=1

A be a constant, as appearing in Lemma 1 below. x is sufficiently large;
B = exp(— A(log x)** (log log x)” ).

3. Analytic continuation of f(s). Let @(s
Here we take a suitable branch of ({(s))™*
it is positive for real values of s > 1.

LeMMA 1. There exists a constant A, 0 < A < 1/10000, such that
o= 1—1004(log 1)~ ** (loglog )~ '3,

ls—1] = 1072 is free of zeros of [ (s). Further in this region, log (L (s)(s—1)) can
be analytically continued such that it is real for real values of s > 1 and Sfurther
llog ({(s))] is <(log)**'° in that region.

Proof. The proof can be found in [3] or [4].

LemMa 2. The function f(s)= @ (s){{ L= (-1 ¥ can be ana-
Iytically continued in ¢ = 1—504(logT) "B (loglogt) Y3, |s—1 = 1073
—q <arg(s—1) <m so that f(s) is real for real values of s > 1 and fur ther
in this region f(s) = O(z'?).

Proof. We have

#9 =11 ((H(pgl(p))“ N gl(pz))s+ ) (1_§+%%;T1)— ))
= l_p[ (1_+ gl%), say.

Clearly ¢; =0 and

= FOEE) " in o> 1.
¥ = exp(—A*log {{s)) such that

s (— 1)
= r;:n(")m'

Since [g(pY » p~"'® and H( )l < (MH#I), we have

¥

A tr—1 =1\ _-ne
i< g (e § (s

r+i=n r r=0 ¥

< prfie i (3'+r“1)p—ra/16 .
r=0

r

<pna/16(1 —p 0116)-/1"<pne,‘16(1 2~ o*,'lé)-)."'

Hence (wath < constant depcndmg on A),in 340552
w Cy w pn_a-/ié B
Z _ns Z — & r 150,‘8‘
n= n=2 P

iom
. On integers n such that nd(n) < x
Hence the product [J(1+4) ¢,p™™) converges in ¢ =
i
analytic function there. From Lemma 1, we see that (C (s)(s—
note that, in this region, @(s) is bounded and

()] = lexp(A*log ()} < exp(2log £ (s)) =

by Lemma 1. Hence (since we may restrict to ¢ < 2),

F) =) = 0(*?).

O(Tlftl-}

4. The contour integration. For any ¢ > 0, we consider the following
contour c(g). Let a(f) = 1—104(log7) " *?(loglog7)~*. From t = — to
{ = —g, We traverse along the curve o = a(t) (denoted by L, (z)), we go along
the circle with centre s = 1, in the anticlockwise direction till we reach a(g)
+ig (denoted by C(e)) and continue along the curve o == o(f) till t = o
(denoted by L (¢)). The curves L;, C and L, are obtained by allowing & -+ 0.

LemMa 3. We have

Y log

ngln) € x ng () 27“2

x 1 Z+im

[ 105

Proof. Since
1 2+iow ys logv y = 1
i '—‘d = Ky ]

R L {o, b<y<1 M

the result follows.
LemMma 4. On L, and L,,

1
)= Z,,:_(ng ol

S

X

| = 0GB

8
and consequently | f(s) 3:2 = 0 (xB°).
Ly

Proof. Il logt = 244 (log x)¥/* (loglog x)~ 1/, then

||
<7 1/4

57

and hence the estimate. If logt < 244 (logx)** (loglog x)™ %, then

5
& x7 == ) g (-

Ty

3/4 and thus defines an

! : 4 1))* can be
analytically continued in ¢ 2 1-504(logz)™ % (loglogt)™*?; and further we



316 R. Balasubramanian and K. Ramachandra

and hence the estimate. Now

7 705 ds <max o gy
Ly 5 seLll | |

and since f(s)= O(s|'/?), the integral is convergent. Thus the required

estimate follows, and similarly we argue for |.
Ly
Thus we have
TueorReM 2. There holds the asymptotic formula

T log gx(n) 5 | IOk " ds+0(xBY).

ng(n) € x

Proofl From Lemma 3 we have

2-'Hnn x5
)y iogu—(5= ! { f(s)?ds.
ng{n)€x

2mi 2-im
Moving the line of integration, we have

T log = (I ¢ n(“s is)

ng(mSx Ly

and the result follows from Lemma 4.

5. Expansion of f(s). :
Lemma 5. On the contour C, the following expansions hold for suitable
b,, Cm> & and ey,

@ 29 = 3 bals—1)"

(b) (L) s— 1) = L el

(¢) For every integer n,

1;_j's—1 n o i _
( 51 ) %mleodm(H) ;= dn(n)
{d) (S‘—I)Z“isﬂ E e,,l,,,(S-—l)'"(lOg(Sw—l))"_
m,n, _
Further N

. A”H" .
by=0("; ¢u=008"; dn=0@"H) and en,=0{——8")

Here
—/13—1
s—1

H =. max
ls—11€1/2
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Proof. Since ®(s) is regular in {s— 1

_ _ < 1/8, the power series expansion
in (a) is valid. Further,

1 P(s)

2751 [s—1[=1/8 (s—1ym+t

Similarly we can prove (b) and (c). Now

ds = 0(8".

(s—1)*"% = exp((2— A7) log (s~ D)= f log s-1))’
x ) —p NG
Y o~ ( )(s—l}’(ln:)g(s—l))J
j=oJ!

and (d) follows using ().

Lemma 6. On the contour C, for suitable coefficients Uy, With
(@] € e*F 10", we have

JO—0'= ¥ ap.ls—1)"(log(s~1))".

OsnEm

Proof. Since f{s)(s—1)* = S()(Z{s) (s— 1)
from Lemma 5.

s— 1Y%, the result follows

6. More on the main term. Now we get an asymptotic formula for the
main term appearing on the right side of Theorem 2.
Lemmas 7, § and 9 are probably well known.

Lemma 7. For an integer m =0 and real a = (O,

l L *nia
J (S“l)a(log(s*l))mxs"ldsz(;lia) (e r (a-+.”).

{logx a+1

w0
urg(s—1)= &

Proof. We consider the case arg(s—1) = r, the other case being similar.
In the special case m =0, the substitution s = 1+re™ makes the integral

W a‘nar a+1 ) ]

e [r x""dr which is —u-»c—)-éa%—). The general case is obtained by differen-
tlatmg m times with respect to a.

Lemma 8. Let % (e) be any curve starting from —~o0—ie and ending at
—co e traversing in the anticlockwise direction such thar the point 5 =1 is
inside the region enclosed by % (g). Let % be the curve obtained by allowing
e—0 in C‘/’{:;). Then

aN' [/ Ia+1) si
j"x‘ (s~ 1) (log (s— 1))" ds—( ) (aaé‘f;c—-%i‘l?f)

Proof. As in Lemma 7, it suffices to con31der m =0, In this case, since
both sides are analytic functions of the complex variable g, it suffices to
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prove the lemma for real a=1. In this case, the curve & (g) could be
transformed to the curve @*(¢) defined as follows. From —oo —ig to 1-—-£—ie
by a straight line, from 1—¢—ie to 1—g+ic by a circle around s =1 and
from 1 —e-+is to —oo-+ie by a straight line. The curve &* is obtained as
limm %*{e). Then

e—+0
1 1
_ x"l(s—l)“ds-r»——. j‘xs—l(s_l)ads‘
2mi g 2mi e

Now as &~ 0, the integral on the circular part of Z*(e) tends to zero, Hence

1 ]

1
¥ Hs—1)"ds = +
2ni 5 (s=1) _jm f
argls—1)=—n arg{s=1)=r

and now the result follows from Lemma 7.

LemMa 9. For integer m=0 and real a <{logx)*°, we have (if |a|
+m < (log x)*%)

| a gl [(4Y (sin ma) I' (a -+ 1)
—ﬁgx (s—1)(log{s—1))" ds = (da) (M—_mm—n(logx)“”

)+ O (xB%).

Proof. Consider the curve @(e) defined as follows. From -oc—ieg 0
o(e)—ie by a straight line, from a(g)—iz to a(g)+ie along a circle with centre
s=1 (that is along the curve C(¢) and from afe)+ic to —co+ie by a
straight line. Then the curve @ (g) satisfies the conditions of Lemma 8. Hence,
from Lemma 8,

1 o . mo (Y (Tat+]) sin. ma
ﬁéx Hs—1) (log(s——l)) ds = (da) (~—————(10gx)a+l ‘J'C )

Hence, defining o = «(0),

1 & -® m
5 ([  +{+ | M e—1r(logls—1) ds)
arg(s:ld)jw B arg(s—ml)mn

(4 "'(F(a+1}sinna
" \da n(logxy*t J°
Hence

N G m
' %(j;x‘ 1(s-—l)“(log(,s—_l)) ds -

{4y I'(a+1)sin®a | ¢
*(da) (n(logx)““ )+O( .[

—
arg(s—~ 1}= +n

x*~1(1—0)*|log(s— )™ do)

and this proves the resu_]t.'

icm
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Lemma 10. For integer m=0 and real o= mf2
= = . Such thar
= (log x)*5, we have / at m-+a

1 o
oo C[x H(s—1)* (log (s 1))"ds = O (xB* (1 ~)2),

where o = a(0}.

Proof. We note that the contour C(e) could be transformed into the
contoulr defined as follows. From o (¢)—ie to 1 —&—ig by a straight line, from
1-g—ie to 1—g+izc by a circle around s = 1 and from 1—g+ie to a(g)+ie

by a straight line, Since a is large enough, the contribution of the circular
part tends to zero as & -0, Hence

| nt
Eix‘“ Ts—11(log(s—1)"ds
1 5
=5 | " s—1)*(log(s~1))" ds
;u'g(s“ai}2 -1
1 X
P

1
arpfs—1)=n

" (s—1)*(log(s—~1))" ds

1
=o( |
[:3
wrg{s=—1)= &=n
and now trivial estimate gives the result.
f(s) %

h)

X771 —g|*|log (s—1)|" do)

TueoreMm 3. The integral | ds can be expressed as
c

x(log x)*~! 5
némé(lngx}‘”s
where the coefficients A, , are bounded by O (100™m™ (logm)™). A similar result
R
polds for [ L0 ag
¢S

Proof. By Lemma 6, f(s)(s—1)* can be written as

Y apls—1)"(logds— 1))

QEn®m

Ao log x)" ™ (log log x)"+ O (xB?)

Hence

S = ¥ ayls—=1)"*(log(s~1)"

OLagm

Now the result follows from Lemmas § and 10.
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7. Final result. We define

Sw= 3 1, M=/ e,
ng(m) S x c 5
S(u) x

= log——— -

H( ) j ny(nz)rsx Ogng(n)’

let & be a real number with é = o(x).
Lemma 11. We have

H{x+38)—H(x) = 38 (x)}f{x+4).
Proof.
x+4d x+é
R j 2%,

LemMma 12. We have
4 2 9 2410
H(x+5)~H(x)€;M(x)+0{xB)+0 }—(logx) .

Proof, In x € u < x40,

M) =M(x)+0(6M' (&) for some &, x < & < x+8.

From the method of proof of Theorem 3, M'(£) = O ({log x)*"*°). Hence
M () = M (x}+0(8 (log x)** 1),
By Theorem 2,

H(x}=ff(s)§ds+0(xB") j () du+0(xB°),
c 0

o x#d (u) ‘ x+d
H(x+8&)—H(x) = j———-du—t—O(xBﬁ)s»; | M @w)du+0(xB%

x+ &

— | (M(x))du-l—O(%(]og x)“1°)+0(xBG)

and this proves the result.
LemMMmA 13. We have

2 BS
B )+O(5 (log x)**19),

S(x) < M(x)+0(

Proof. This follows from Lemmas 11 and 12.
Simila_rly-, by considering the interval (x—4, x), we can deduce

icm
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Lemma 14, We have

2 pb6

S(x) > M(x)+o(f 6B

)—J—O (6 (log x)*+19),
From Lemmas 13 and 14, we deduce, by the proper choice of &
TrHEOREM 4, We have
S(x) = M(x)+0(xexp(— A(log x)¥* (loglog x)™ *%)).
Now Theorem 1 follows from Theorems 3 and 4.

8. Some related questions. In this section, we discuss some related

problems. Mainly we are interested in relaxing the condition g(p) = 1/1. For
example, one can assume that
L 1
a(p) =;1-+0(6Xp(mc(logp) ) for some ¢ > 0,0 < a < 2/3

and conclude that

Yol= j'j'(s)igids-{-o(xex?("'

ngln £ C

Alog x)*° (log log x)™ /%))

for some A >0,
I, on the other hand, one assumes thai

1

g(p) = 1-+0(8Xp(—~c(logp]1"")) for some ¢>0,2/3<ax< 1,
then, defining as above ®(s) =({(s)}"* f(s) we may not be able to prove
that [®(s)j = O((|tl +3)*/?). But we can choose, as has been done in Bateman
o(n loglogt

2 a1
n logt
line of integration to ¢ = a(¢) with a detour at the point s = 1. This proves
that

Y 1= ‘ J (6)
ngln) € x

Acknowledgement, The authors are thankful to the referee for some

helpful comments.

and move the

[2], for the particular case g(n) =

.s+0(xexp( A(logxloglogx)*1))  for some A > 0.
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The growth rate of the Dedekind Zeta-function on the
critical line

by
D. R. Hearo-Brown (Oxford)

For Paul Erdos
on his 73th birthday

1. Introduction. Let K be an algebraic number field of degree n, and let
tx(s) be ils Dedekind Zeta-function. Thus

(=Y. (NA™*  (Re(s) > 1),

A
where A4 runs over the non-zero integral ideals of K, and NA is the absolute
norm of A. The question considered in this paper is the order of magnitude
of ¢x(s) on the critical line, The trivial bound is

Cefh+in) €™ (tz 1),

where the notation <, indicates that the implied constant may depend on
K. This follows from our Lemma 2, for example.'When K = Q, the Dede-
kind Zeta-function reduces to the Riemann Zeta-function {(s), and one has
the estimate ((3+it) €¥°** (r = 1) for any fixed &> 0. Indeed, the
exponent  can be slightly reduced. When the field K is Abelian, {x(s)
factorizes ns a product of ({{s) and n—1 Dirichlet L-functions L{s, x).
For these one can prove an estimate

(L1 Lk, ) <€, 0704 (¢ 2 1)

(Here also it is possible to improve the exponent 1/6 in the same way as for
{{s)} It follows that

(12) Lx(h+i) <™ (12 1)

if K is Abelian. It would be of interest to make the dependence on K explicit.
However, it is difficult to get a satisfactory uniform estimate even in the case
of (1.1), and so we concentrate on the t-dependence in this paper. Our goal is
to prove the bound (1.2) for all K, whether Abelian or not.



