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ACTA ARITHMETICA
XLIX (1988)

On a product of sines
by

G. FremaN (Tel Aviv) and H. Harperstam* (Urbana, 11)

1. Introduction. Let
N
Py(@) = [] lsinmka] and Py = max Py(x).
k=1 LES T

The object of this note is to prove the following
TreoREM. We have

(1.1) . lim (Py)*" = sin g
N—-m

where oo is the solution between 0 and 1 of the iranscendental equation

nx

jucotudu =0.
0

In fact, g = 0.7912265710... and sinmx, = 0.6098579. .,
Since Py(x) = Py(1—a), we see that Py = max Py(«). We note at the

0<ag1/2 .
outset the elementary duplication formula
gq—1
(1.2) sinngd = 2¢7 ! [] sinn(s/q+ D),
5=0
as well as its straightforward consequence
g -1 qs
(1__3) e s]Jl sm—q—.

We shall use both these relations below, the latter on a number of occasions.
It is easy to see that our result may be stated in the alternative form
. .

. NN oy
hlrlilgo(ll;fllil)f k];]I |1—2z¥) 2 sin mtg.
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Erdés and Szekeres ([1], p. 29) make the remark that “it is easy to show that
[this limit] exists and is between 1 and 2”. What we have done is to compute
the limit. Tn fact, this question arose a few years later in a paper of Sudler
[3], and was answered by E. M. Wright [4]; but perhaps our method is
sufficiently different from Wright’s as to merit description. This note may
serve also to draw attention to the general problem (cf. [1]) of studying

N
Mlay, ..., ay) = max [] 11—z
lgl=1k=1
for various natural sets of exponents (a,, ..., ay); for example, one might
begin with a, = p(k), where p(x) is a polynomial with real coefficients. In this
conpection we note also the result of Newman and Slater {2] that
N
H |sin 2k—- 1 Ot[ < (2—1 +1og3f}og4)N_
k=1
We begin with a sketch of our approach. Given o, there exists a rational
alg with 0< a<g, (a,9) =1, 1 <g <N, such that

a 1
g, a(N+1)

We divide our argument into three parts according to the location of a:
1L0<a<(N+1)7%; 1L o in an interval (14} with a = 1 and 2 < ¢ < N/1,000;
IIY. % in an interval (1.4) but with N/1,000 < g € N. We shall prove that the
maximum in Case I occurs at o = ap/N and that

(1.5) (sin )Y <€ Py (cto/N) € N{sinmog)®,

(14) <

whereas for o’s in Cases II and III
{1.6) Py{a) <(0.6)".

Our result follows at once from these estimates. The inequalities (1.5) could
be sharpened if necessary. Comstants implied by use of the <-notation are

absolute. N is a large positive integer; we shall assume at various stages of

the argument, without always saying so explicitly, that N is sufficiently
large.

2. Case 1. Here
N
Py(e) = [ sinmkee.
k=1

Since Py(0) =0 = Py(1/N) and Py(a} is positive on {0, 1/N), Py(x) has a
maximwmn on this interval. Write

2.3) Py(a) =exp(— 3, log(cosec nka)) = exp(— Sy (%))
k=1 :
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say, where

N
(2.2) Sn(@) = Y log{cosecmka), 0O <o <1/N.
k=1
The maximum of Py(x) occurs at the value of o where Sy(az) has its
minimum, i€, where Sy{x) =0. Now
N
k cot wka,
=1

@)= —m
K .
and if we write @ = x/N, so that 0 < x < 1, we are interested in the root x,
of the equaticn :
N
k
—cotn— = 0.
kgl N N
If 0 < x < 1/2, the expression on the left is positive, and therefore the root x,
of the equation lies in the interval (3, 1). Moreover, for N large this root is
close to the root o of the equation

X

(2.3) fucotudt = 0.

0

Since we are interested in the value of Sy{xo/N) we proceed more directly as
follows. Suppose that 1/2 < x < 0.9. For each x, 1/2 < x < 0.9, the summand
of Sy(x/N) decreases monotonically as k increases to Nf(2x), and then
increases. Hence the simplest form of Euler's summation formula is appli-
cable, and we have

N N )

Sy G:T—) = glog (coscc%)dt+log (cosec T;—:f—)——% i[(t-— [t cot%ﬁ dt
= N log(cosec )+nx}vtcot m t. dt rcx’}(t_[t]) Otn_xtdt
= Nlog )+ { N N cot—

after integration by parts. Hence

Xt
—dt

x N ™ foN
Sy (*N“)—uNlog(cosec nx) = poe cf) uCOtudu““ﬁ g(t“[ﬂ)COt N

and therefore

X N. i
Sw I — Nlog(cosec nx)«-a gucotudu

ox—1/2} 0.4n

tanvdv < [ tanvde = log(sec(04m) <1.175;
0
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also

nx

N
Sy (%)— Nlog (cosec ntx) - ‘J; ucotudu

#f2 Nu Nu N nx/N w2
_ _f (.H_M_[_ cotudu> ——— f ucotudy-— [ cot udu
Y X X : /N

= —-1-1 ( L PN 1 ( cn
> —1—log|cosec— j > —log .ecose 58 I

Altogether, then we have

1 nx
—~log(ecosecx) < Sy (%)—N{log(cosec nx)+;{; ] ucotudu} < 1.175.

0
Now

d ' 1= ' ™
.:i; {log(cosecnx)%—;[; gucotudu} =--3 g ucotudu =10

at x = oy, s0 that the expression in parentheses has a minimum at x = g«
and

—log (e COSEC 2N) < Sy (N) N log({cosec mog) < 1.175,

or

(24) e 73 (sinnog)Y < Py{og/N) < (sin mog)™ ecosec s

fnd N
2N € eN (sin mag)” .
This proves (1.5) in slightly more precise form.

3. Case II. We assume without loss of generality that >0 and
consider :

Py ] H Isin 7t (ar/q+ Br+ Baj);

0LjsNfg—1r=1

= 11

1<j<Njg

g—1

H H [sin m{ar/q + ﬁr+ﬁm)|

O<j<Njg—1r=

sin (nBgj)
0< B <1/(Ng).

We_ have fr < fg < 1/(N+1), and therefore do not expect to lose much by
omitting fr on the right. More precisely, we show that
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(3.1)

g
HN+U)

lss<g~1.

Blr+4q) <{r+ap/qN < 1/q.
Suppose that ar=smodg, 1 <s<g—1. Then

sinn(q+ﬁr+ﬁc1})| smn(ghﬁqj) if g2<s<qg-—1;

and if 1 €5 <g/2 so that g = 3, we have

sin T <£+ﬁr+ﬁqj)-sin 7 (ﬂ+ﬁqj)’
q q

28111% < mhr < mfig <

N+1

_m sinm{s/g+ fqj) g . _
TN+ Sinrt(s/q-{—ﬁqj)'g 2N 1) sinw(s/q + fj)-

Thus (3.1) is true in all cases. Hence
Pyl

g g~ 1)(Njg—1) H in(xBa)
<1+ sin{rfqj
( 2(N+1)) 1<j<Njg

g—1
. (ns
< e [ sm( )

n Slnﬁ( +ﬁcu)

OZjENg—1 s=

T sne(1100)

s=1 4 /15jsMq—15=0
— ez L S’“(ﬁﬁj"}
270 <iE Nt 24

= "% g (0.5)9 DN/ ]‘I

1Xj€N/g—1

sin (mey),
where 0 < o = Bg® < q/(V+1). The last product is covered by Case I: write
M =[N/q]-1, so that 0 € a < I/M. Then this product is at most of order

M (sin o)™ < —(0 6099)4, and altogether we arrive at

Py(o) < €% N (0.5~ DXMa=1) (0,6099)
< N(2e"92{05)% (1.2198)"4 < N (9.621)*(0.5)" (1.2198)"4
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and since 2 < g < N/1,000 we arrive at
(32)  Py(o) € N {(9.621)°°1(0.5)(1.10445)}" < N (0.554)F < (0.56)",

2 <€ g < N/1,000,
for all large enough N. This settles Case II.
4. Case IIL. Here

(4.1) N/L,O0O < g < N.
Define
I N
(4.2) = []*lsin(mak/g) [] Isinmkal, O<I<N,
k=1 k=1+1

where the asterisk signifies that zero factors—that is, the terms with
k = Omod g—are omitted. Note that -

(4.3) Qo = Py().
We have (I+1< N)

0/01s = sinz(i+Da/sinn(a(l+1)/g), I+1%0modg,
17 A sinn (14 1)el < 1, I+1=0modg.
Consider this ratio when !+ 1 % Omod g. Here
I+1
sinr(l+ a—sinn 2D < rat 1B
)
so that the ratio in question is at most
n(I+1)|5! N (B
_ 1
‘Sinﬂ:ﬂ(l-l-l)*\ Sm(n/)\1+2ﬂquﬁl 1+§TE<€.
q

We can do better in a number of cases. Suppose a(l-+ 1)
- £ g—1. Then
a(l+1 . 2 . - : .
m ( )=SLn_E>-nun (Ei,n(q S))mzmin(s,qn—s).
\4q q q

q ™
Let D be a large number less than g, and suppose that min(s, g—s) >
Then the ratio under consideration is at most

N ||
2D/q 1+5§qu& < 1+5‘5

=smodg, 1<s

14t

iom

383

On a product of sines

To sum up,

1, I+1=0modg,
Q0+ < {l+n/(2D] a(l+1) =smod g, min(s, g—s) = D
e, otherwise.

In any complete set of residues we need to invoke the last, and worst, of

these inequalities at most 2D times. Hence, by (4.3),
N-1

Py(e) = (T] @/0:r) 0y < 0" (1+ ) Ox

2,0020+—N sTNLI2Z
e Wy <e O
on choosing D so that

4,004D* = N
In view of (4.1) this choice of D is admissible if N is large enough. Thus

(44) Py(@) < 7V 0y,

By (4.2), ‘

oy = ﬁ* sinﬂ:Eﬁ .
k=11 q

Let
4.5) N=gm+N,, 0<£N, <q.
If > N/2, m=1 necessarily and N, = N—gq < N/2. Hence
{4.6) N, <N/2

always. Consequently, by (1 3,

m N1
an: N1 nak ( q ) . mak
— = sin—-
4.7) 1’[: sin= ;;1:[ T k];Il
( of (")
- q
Suppose first of all that Ny < Cp, some absolute constant. Then
- - N
48  Ons< ) —(@imag T =21 g " (229 1)

<2 ( (2q)”“) 20 (0.55)",

say, by (4.1) (so that (29)"/7 < 1+ if N 2 No()). Hence we may suppose. that
N, is large, and now preceding arguments apply. To be precise, we suppose,
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as we may, that
@ a
g 4| q(Ny+1)

and consider the two possibilities that (i) 1 < g, < N/1,000 and (i) N,/1,000
<q; € N,. The latter case is the easier to dispose of: by (4.7),

q g\
v (55 ()"

where, as above, Ny =g, m; + N,, N, <N, <iN. Now
mg+m;qy = (N-N{)+(N;—Ny)=N—-N, > N-IN=3N,
and each of m and m, is at most 1,000. Hence

(2N 1,600
(4.9 Or < 3N

{a;. q) =1, 1<g, <Ny,

< (2N)H090(0.595)" < (0.598)¥

since N is large.

We come finally to (i) above. But here we are back in Case I or Case 11,
so that (2.4) or (3.2) applies and

Ox < (2" 2 gm(0.60)™

(zml,OOO

<R (061" = N0 2 M 1.2y

<(2N)" 000( 1222)

< (2N)1000( 553

< (0.56)"
for sufficiently large N. Combining this with (4.8) and (4.9) we obtain
On < (0.598)
in all cases and consequently, by (4.4), that
Py{o) <(0.6')N, N/1,000 <g < N.
This settles Case III, and our theorem is proved.
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