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1. Sequences of positive integers with the comsecutive integer property.
Consider a sequence of k positive integers {¢;} = a,, ..., a, with the following
properties:

(i} a, < k for all i,

(if} (the counsecutive integer property) There is an n such that g, is the
quotient when n+i is cleared of all its prime factors greater than k. Or, for each
prime p < k, the pattern of that prime and its powers in the ¢’s is the same as
the pattern of that prime and its powers in some sequence of k consecutive
integers.

Notice that the sequence 1, 4, 3, 2 satisfies the above properties since the
consecutive integers 19, 20, 21, 22 factor into 1-19, 4-5, 3-7 2-11. The
sequences 2, 3, 1 and 2, 3, 2 satisfy (i) but not (ii) since if n+1 is twice an odd
number, then 4 divides r+ 3. The sequence 1, 6, 1 satisfies (i) (with n+1 = 5)
but not (i).

Tueorem 1. If {a;}, 1 i<k, has properties (i) and (i} then {a;} is a
permutation of 1, ..., k. '

Proof. Our theorem is true for k = 1. Assume the theorem true for all
5 € k/2, That is, any sequence of § < k/2 positive integers with each of them less
than or equal to s which possesses the consecutive integer property is a
permutation of the first s positive integers.

Our plan is to show that each integer r, | < r < k, occurs exactly once as
one of the as. Then {a,} will be a permutation of 1,..., k.

Let S =n+1,..., n+k be a sequence where n+i = a;b;, a; <k, and all
prime factors of b, are greater than k. _

Consider first an integer r such that k/2 <r < k. In any sequence of %
consecutive integers, there are one or two multiples of r. Suppose there were
two such multiples of r in S. Then one of these would be divisible by 2r, so 2r
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would divide one of the a's, which is impossible since 2r > k. Thus exactly one
of the elements of S is a multiple of r. Let n+j = rq. Then r = a;, and g = b,.

In the general case, consider integers r and s such that &/(s+1) <r < I\/s
where s < k/2. In any sequence of k consecutive integers there are s or +1
congecutive multiples of ». Suppose there were s+ 1 such multiples in 5. Then
one of these and its corresponding a would be divisible by (54 1}r. But
(s+1)r > k so this @ would be greater than k which violates property (i). Thus
there are exactly s elements of S which are multiples of r.

Notice that the s quotients (n-+j)/r, ..., (n4j+(s—1)r)/r, are a sequence of
consecutive integers. Write these quotients as ¢, d;, 1 < i € s, where the primes
dividing ¢, are less than or equal to k, and the primes dividing 4, are greater
than k. It is clear that each re; is one of the &’s. Sinve r¢, £ &, ¢, € kfr < 51,
and ¢y, ..., ¢, has the consecutive integer property. Since s € &/2, our theorem
shows that the ¢’s are a permutation of the numbers 1 through s. Thus r occurs
exactly once as one of the a’s, for each r = 2. The remaining «; must be
equal to 1.

List of solutions {a;}, 1 <i<k, with properties (i) and (i). From our
theorem we know that {«;} is a permutation of 1, ..., k. However, very few of
the k! possible permutations have the consecutive integer property. We list
solutions below.

The identity permutation e = 1, ..., k is a solution, since there is always a

sequence of consecutive integers {n+i} when n =0 (mod [] p*®), and h(p) is
n¥Ek

the least integer such that p*# > k. For instance, il k =4, n = 0 (mod 23 3?),
and the consecutive integers 73, 74, 75, 76 factor into 1-73, 2-37, 3- 5%, 4-19,
Also n =48 works (and of course n = 0).

The p® swap, where p® swaps with p*~%, is a solutlon when p” <k
<,1s-“—|—p"‘l For example, 1, 4, 3, 2 is a 22 swap.

Remark 1. Any solution with p* €k < p"-+p°~' can be p* swapped.

Proof. Suppose q,,...,a, is a solution with p* <k < p*+p*~'. Let

a, = p*. Since p* > 2p°" ', there are other multiples of p*~'! in our sequence, In

fact, by Theorem 1, there are exactly p multiples of p*~': p*~!, 2-p¢~1, ...

o pp"T = p® Let a;=p* ! We can remove a factor p from poptTt=a,

aud place it on a; without dlsturbmg the consecutive integer property, for p"~ I

stifl dwldles or does not divide the appropriate ¢’s. Thus p* may be swapped
with p*

The t-shift. If k+1 is prime and a, = 1 then a,, a,, ..., a4, | is also a
solution for k > 2. (f k=1, t = e;if k = 2, t—Zl)korexctmple 2,3,4 lisa
t-shift.

Remark 2. When k+1 is prime the fact that any solution can be

i-shifted or is the t-shift of a solution is a corollary of the completeness of our
list.
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The symmetric flip s, where g, swaps with a,, -, is another solution when
k=5 (Mk=1ls=eilk=25=t=2"ik=3 g=3ifk=4s=122%1if
k =5, 5= 2%-5%) With n divisible by p"® as above, the sequence of consecutive
integers associated with the symmetric flip of the identity is n—k, n—k+1, ...
....n—1. Thus for k = 4, the sequence of consecutive integers 68, 69, 70, 71
factors into 4-17, 3-23, 2-(5-7), 1-71. Also 20, 21, 22, 23 works.

Remark 3. The symmetric flip of any solution is a solution.

The ru, j) permutation, where 6ut 1 and 12u—1 are primes, k = 12u—3,
and u> 1, is a family of 27 solutions. Here @, = 1, ay—1 = 2, dgu_; = 6u—1,
ey -3 = 6u-1, and for all other a;, a; ==i-+2. Also there are j additional
optional twin prime swaps, one for each pair of twin primes 6r+ 1, u < r < 2u,
in positions 6r~3 and 6r—1. (Il k=9, u = 1 and r(1, 0) = 5-2° 3% We could
deseribe S, 4, 3, 2, 1 as a degenerate r-type permutation of 1, 2, 3, 4, 5 with
u=2/3)

The p-+2 twin prime double swap swaps p with p+2 and 2 with 2p when
k=2p or 2p+1, p and p+2 are twin primes, p> 5 (f k=6, 3+2 =35-1;
if k=7 34+2=57 if k=10, 54+2=5-¢2"3% f k=11, 5+2 =527
32110

Remark 4. The ¢-shift and the p+2 twin prime double swap commute.

Congider a solution {a,}, witha, = L, g, =ifori=2,p,p+2and 2p; k+1
prime; and k/2 = p and kf242 = p+ 2 twin primes. Then ¢ followed by p+2 or
p+2 followed by ¢ gives 2p, ay, ..., @1, P+2, Gpi1s P, Gpaar-ioy G2p—1, 2, Lo
The general case presents no added difficulty.

This completes our list of solutions. Table 1 provides an easy reference for
conditions under which a particular value of k can have a given solution.

Table 1. Types of solnticns

Name of solutions Conditions
identity e all k
pu SWH.P pn pa S_ k< pu+pu-—i
t-shift ¢ . k+1 prime; k> 2
symmetric fip s k=5

k=12u—3; 6u-1 and [2u—1 primes; k> 9
k=2por 2p+1; p and p+2 primes; k> U

riu, j) permutation r(u, f)
p2 twin prime double swap p+2

Definitions, remarks and strategy. For many months we were unable to
prove that our list of solutions was complete, We wrote a program to check
that the above list was complete for fixed &, and ran the program for all
k < 5000. The definitions, remarks and strategies that follow, developed while
writing and using the program, together with the suggestion of W. H. Mills that
we use induction, led to the proof that our list was complete (the main
theorem).
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We say that a prime power p® is in position if p|a, exactly when p*|d; p” is
placed in or forced into position if any other placement of p* would force a; > k
for some j < n. A number n is said to be in position if each of the prime powers
dividing » is in position.

Remark 5. When k-1 is prime, for each solution a,, @y, ..., dy, sy
there is another solution a1 1, a,, ..., 4, 4; and two corresponding sequences
1, ass, ..., a, and a,, ..., 4, 1 which are solutions for k (k> 1).

Proof. Any prime p which divides @, or ay.; will also divide [k/p] other
a's. So p will divide 14[k/p] a’s. On the other hand, if p divided more than
[(k+1)/p] as one of them would be larger than k-1, But 1-+[k/p]
= [(k+1)/p] only if pik+1. Since k+ 1 is a prime, p = k-+1. Thus ¢;.., = k+1
and a, = 1 or vice versa. For each such solution having | on one end and k-1
on the other, we can do a p* swap, so solutions come in pairs. But deleting &+ 1
from the sequence when a, ., = k+1 and a, = 1 leaves a sequence of k terms
which can be t-shifted. Thus for each pair of solutions at the k+1 level related
by a p' swap, there is a corresponding pair of sclutions at the k level related by
the t-shift. (Considering s, such solutions for k or for p=k+1 come in
quadruples when k> 2)

Remark 6. There is a one-to-one correspondence between the solutions
for k and those for k+1 when k+1 is prime.

This follows at once from Remarks 2 and 3.

Remark 7. Ifk+1 is not prime, then any solution 4, ..

.y &y, must have
all proper prime power factors of k+1 in position. :

Proof. a; < k forces n and n+k+1 to be multiples of k+ 1. This means
that each proper prime power factor of k-1 is in position.

Strategy for the placement of primes. For a particular value of % and a
particular prime p, assume all primes less than p and all powers ¢
q“+q*~' <k with @ > 2, are in position. We wish to place p. Notice that for
p > k/2, p cannot be placed on 2, 3,..., p—1, or p+1, else the resulting «;
would be greater than k. Thus p is placed in position when p-+1 < k < 2p. We
call the set 4 =2,3,...,p—1, p+1 a blocking set.

Notice that when p = k, we cannot force p into position using 4, but the
blocking set 2, 3, ..., p~1 forces p into the first or kth position, which agrees
with the p! swap.

When p+2 < k < 3p, the blocking set B=3,4, ..., p—1, p+1, p-+2 will
place p in position unless p-+2 is prime. (When p=3, B=4, 5) _

When p < [k/2] we will place p in position using induction, described
later. If p = [k/2] and k = 2p (ie., k = 2p or 2p+1), and p and p+2 are twin
primes, there are two possibilities for placing p and p+2. These are dealt with
by the p+2 twin prime double swap. Notice that the swapping of p and p-+2 in
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no way interferes with the blocking set 4 when placing the primes between
p+2 and k ' :

In the inductive proof that follows, our strategy will be to place all primes
less than [k/2] by an inductive procedure. We will need to place the powers of
these primes which have not been placed by induction.

Assume all primes p less than [k/2] are in position (after possible
renumbering of the «’s), and we wish to place p®. Assume further that the
exponent a 2z 2. If p* < k< p“+p*7, we use the blocking set 2p*~1, 3p°~ 1, ...
oy (p=1)p*" 1 to force p into one of two possible places, agrecing with the p*
swap. If p“+p*~ ' < k < 2p%, we simply use blocking set p*~* 4 (ie., blocking
set 4 with each member multiplied by p*~1) to place p® If p°+ 2p*~ 1 < k < 3p%,
we can use blocking set p* 1B =3p*"1 ..., (p—1p*" %, (p+1)p" "L (p+2)
xp*! to force p* into position. (Note that (p+2)p* ' <k with p* 1 > 2
implies that p+2 < [£/2].) Thus all p* with p?+p*~! < k < 3p° (a = 2) are in
position.

The placement of the powers of 2 and all prime powers less than k/3 will
be done by induction. Thus all appropriate prime powers will be in position.

TororEM 2 (The main theorem). If {a,}, 1 € i<k, has (i) a; < k for all i
and (ii) the consecutive integer property, then {a.} is one of the listed solutions.

Proof. Our proof is by induction, We prove the theorem true for k < 6,
and at the same time we set up inductive sets for each k/2 or (k— 1)/2 which are
used to generate all possible solutions for k. These inductive sets (sequences)
consist of solutions up to symmetric flips for k/2 or (k—1)/2 when the sets are
avgmented by p for each p® swap. We exclude from our inductive sets any
¥ (u, J) permutation and any twin prime double swap since, as we prove below,
they do not induce any solutions for k.

Start by assuming that we have all solutions for [k/2]. We wish to find all
solutions for k. Let a,, a,, ..., &, be any sequence which has properties (i) and
(ii). For k even, let the sequence a;, @12, ..., @j4i-2, With j=1 or 2, be the
subsequence of even integers in {a,}. Let a;=2b,, ;45 =2b,, ..., @jry-2
= 2by. For k odd, a, = 2by, a,=2b,, ..., &1 = 2by_1)n. The sequence
{b}, 1 < i< [k/2], has properties (i} and (ii) for [k/2]. So the sequence of b’s
must be one of the solutions for [k/2]. We use our inductive sets to fix the evens
in {a,} and hence the primes less than [k/2]. We then use the blocking sets
described above to place the remaining powers and the larger primes.

List of solutions for small k. For k=1, we have only the identity
permutation. For k = 2, we have two solutions: the identity and its symmetric
flip. In general we find half the solutions from the inductive set(s), and the
others from the fact that the symmetric flip of any solution is a solution.

For k = 3, we again have two solutions: the identity and its symmetric flip.
So our inductive set is 1, 2, 3. We have four solutions for k = 4: the identity, the
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22 swap and their symmetric flips. Here our inductive set is 1, 2, 3, 2 which
leaves the 22 swap open. (In the solutions by induction for k = 8 and 9 there is
a corresponding 23 swap.) For k = 5 we again have four solutions: the identity,
the 2% swap and their symmetric flips. (Notice that 5! = s:2%) We take our
inductive set to be 1, 2, 3, 2, 5 again leaving the 2% swap open. ‘

We choose to begin our induction with k= 6. Since k+1 is prime, we
work with k+2 == 8 and place the factors of 8 in position. We now have seven
positions, but we do not know whether the solutions will come from the left six
or the right six. Let us call this set of positions a ableau. With the factors of 8
in position, our tablean looks like this:

121412118

Since our inductive set for k/2 = 3is 1, 2, 3, the corresponding «'s are 2, 4, 6.
They must be placed consecutively in every other slot of our tableau, and
indeed can only be placed on the 2, 4, and 2 in positions 2, 4, and 6. Now since
6 is in position, 3 is placed in position and we can use blocking set 4 to place 5.
QOur tableau now looks like this:

12345618

Here we have seven numbers in our tableau, and we need only six. We
evidently have two solutions: the left six or the right six. Note that the left six
positions are the identity permutation while the right six account for the t-shift.
Thus there are just four solutions for k = 6: the identity, the t-shilt and their
symmetric flips. We have two inductive sets: 1,2, 3,4, 5, 6and 2,3, 4, 5,6, 1.
We use the notation 17, 2, 3, 4, 5, 6, [1 to indicate these two inductive sets in
Table 2.

In the case of k = 7, we have to place exactly three even integers. So they
must be placed in even positions. We proceed exactly as for k = 6, and finally 7
can be placed in position 1 or 7. Of course, this represents the 7! swap. So we
have four solutions, and our inductive set is 1, 2,..., 6, 1.

For k == 8, we use k+1 =9 to set our tableau, and place 3 in positions 3
and 6: .

11311311109
Since our inductive set is 1, 2, 3, 2, we must place 2, 4, 6, 4 in positions 1, 3,5, 7

or in positions 2, 4, 6, 8, But the 3 in position 6 forces us to place the 6 in
position. Our tablean now looks like this: :

1234161489,

We use blocking set A to place 5 and again to place 7. We have four solutions:
the identity, the 2% swap and their symmetric flips, and our inductive set for
k=811, 2,3, 4,5 6,7, 4
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For k= 9, we have exactly four even integers to place. So they must be

placed in even positions. We place 5 and 7 using blocking set 4, There are eight
solutions generated by 2°, 32 and s.

For k=10, we set our tableau using 12 since 11 is prime:
1234161432112,

The five evens are placed in position, and we use blocking set A to place 7 in
position. Again our tableau has k+1 entries:

123456743101 12
We have 16 solutions generated by 2% 32 ¢ and 5, and two inductive sets, the
left and the right.
For k= 11. the five even integers must be placed in even positions. We

proceed as for k = 10, getting 16 solutions generated by 23, 32, 11! and s.
Finding solutions for k = 12 illustrates another case. Since k41 is prime,

Table Z, Inductive sets and solutions for & < 27

k Tnductive set Selutions Number of
. (up to symmetry) solutions

1] 1

21,2 2

3 01,2, 3 2

4 1,2,3,2 22 4

5 1,2,3,25 22 4

6 11,2,...,6 [1 t 4

7T 01L2,..,6 1 7 4

§ 1,2,..,7, 4 2* 4

9 1,2,...,7.4 3 23, 32 8

10 1, 2,...,7 4 3 10, [1 2, 3 ¢ 16
1M 1,2,...,7 4,3, 10,1 2, 32, 11t 16
12 11,2121 t 4
13 4,2,...,12. 1 13 4
4 1;2,...,14 2
15 1,2,...,15 2
16 1 2,...15 8 [ 2t 8
17 1, 2,..., 15 & | 2417t 8
18 1], 2.3, ..., 15 8 17, 18,1 A 8
19 1, 2,...,15 & 17,18, 1 2191 8
200 1, 2., 15 8,17, ..., 20 2 4
21 1, 2,0, 15, 8 17, ... 2 2 4
_ 2 r(2, 1) 8

22 11, 2,.... 15,8 17,..., 22, [1 2 ¢, 1142 16
23 1, 2,..,15 8 17,...,22, 1 2%, 234 1142 16
24 1,2,...,2 : 2
25 1,2,..,24, 5 5 4
26 1,2,...,24, 5 26 5 4
27 1, 2,...,24, 5 26,9 52, 3 8
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we use k-+2 = 14 to set our tableau:
1212127212121114.

Since k/2 = 6, we have two inductive sets (the ¢-shift and the identity) and two
possible placements for the evens:

141618710112121]14
or

121416781101 121] 14

Notice that the right inductive set (top tableau) forces a 3 on the 7 in position 7
which violates property (i) So we must use the bottom tableau. Lel us
generalize this.

Remark 8. Inthe case where k4 1is a prime p and k+2 is twice a prime
2g, we have g = 1 (mod 3), and the right inductive set on k/2 will force a 3 on g,
giving 3g > k which contradicts property (i)} Thus we need only consider the
left inductive set in this case.

Returning to k = 12, blocking set 34 = 6, 12 places 9 in position, then A is
used to place 11 in position, Our tableau now leads to the four solutions for
k = 12: the identity, the t-shift and their symmetric flips. Table 2 above gives
inductive sets and solutions for &k < 27.

Remark 9. Inducting on any r(u, j) permutation solution leads to a
contradiction. Thus we never include an r(u,j) permutation among our
inductive sets.

Proof. Suppose we used an r(u, j) permutation as an inductive set and
[k/2] = 12u~3. Then k = 24u—6 or 24u—5, and we can set our tableau using
24u— 4, forcing even integers into even positions. The r (u, j) inductive set forces
2(6u+1) into position 2(6u—3), and thus 6u+1 is in position 6u—7. But all
primes and their powers less than 6u—1 are four positions down (ie., a, = 6,
a,=8,...). Thus 6u—3 crowds into position 6u—7. And since B+ 1) x
% (6u—3) > k, property (i} has been violated. Thus we never include an r(u, )
permutation among our inductive sets.

Remark 10. Inducting on the twin prime double swap solution leads to
a similar contradiction. Thus we do tiot include the twin prime double swap
among our inductive sets.

Proof. Suppose the twin prime double swap were used as an inductive
set, Then we would use it to place the small primes in position, to place 2p in
position 2p+4, and to place 2p+4 in position 2p (after renuvmbering the
positions if necessary). Then p+2 would be in position p—2. But all prime
power factors of p—2 would also be there. And (p—2)(p +2) > k, contradicting
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our assumption. Thus we can never use the twin prime double swap as an
inductive set.

In summary, we have one inductive set when [k/2]+1 is not prime and left
and right inductive sets when [k/21+1 is prime ([k/2] > 4).

The induction. Suppose all solutions for all positive integers less than k are
of the listed types. We need to prove that all solutions for k are of the listed
types. We consider various k's.

Case 1: kodd:
le k+1 not twice a prime.
Lp: k-+1=2p:
Lpc p+2 not prime.
1.p.p: p-+2 prime:
1lppc
lppp

Case 2: keven:
2.c k+1 not prime.
2.p: k+1 prime:
2pc
Zpp

k+2 not prime.
k+2 prime.

k+2 not twice a prime,
k+2 twice a prime.

Case 1: kodd. When k is odd, we must place precisely (k—1)/2 even
integers. Thus even integers must be placed in even positions.

L.c. When k-1 is not twice a prime, we do not have a t-shift among our
inductive sets. Thus our inductive set is unique and is uniquely placed. All

_primes less than (k—1)/2 are placed in position using the inductive set, and as

described above, all powers of these primes are placed in position. If k =2p+1,
we try to place p using blocking set B. If p and p+ 2 are twin primes, they are in
position or in each other’s position, the twin prime double swap. In any case,
all other primes g with k/2 < g <k arc then placed using blocking set 4. We
have the identity, possible p? and twin prime double swaps and their symmetric
flips. ' :

’ 1p: k+1=2p. When k+1=2p, we have two inductive sets: the left
(k—1)/2 and the right (k- 1)/2. The left inductive set places evens in position.
The right inductive set places evens two down from position (a, =4,
o, == 6, .,.).

) Lp.c. k+1=2p and p+2 not prime. Setting a tableau on k-1 places p in
position, while the right inductive set forces all factors of p-+2 into this same
position, which violates property (i). Thus, the right inductive set cannot be
used, and we must use the left inductive set. Now all primes less than p are’
placed using this inductive set, and their powers are then placed in position.
The primes g with p < g < k are placed using blocking set A. Our solutions are
the identity, possible p* swaps and their symmetric flips. -

6 — Acte Arithmetica t. 49, z 5
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l.p.p: k+1 = 2p, and p+2 prime. Since k > 5, the twin primes p and p+2
are of the form 6u+ 1. We set our tableau on k-1 for each of the two inductive
sets, fixing evens in even positions and p in position.

lLppc k+1=2p, p+2 prime and k+2 not prime. Using the right
inductive set, factors of k-+2 will be placed two positions down giving
a, = k+2 and viclating property (i) (k42 ¢* since 3|k and k-1
= 2p # ¢*—1). Using the left inductive set and prime power blocking sets
places in position all primes less than p and their powers. Primes greater than p
are then placed using blocking set 4. Thus the identity, possible p* swaps and
their symmetric {flips comprise all possible solations.

Lppp. k+1=2p, p+2 prime and k+ 2 prime. The left inductive set places
all primes less than p in position and then their powers are placed in position.
All primes greater than p are placed using blocking set A. Thus solutions using
the left inductive set are the identity, possible p® swaps and their symmetric
flips.

The right inductive set places all primes less than p and their powers two
positions down. Let us renumber the positions in our tableau with new
numbers 3 to k+2 so that these primes and powers will be “in position”. But
this renumbering will place p in the new position p+ 2. This will force p +2 into
position p using blocking set 3, 4, ...; p—1, p+1, p+2, p+3, p-+4. Now all
primes greater than p+42 will be placed in position using blocking set B unless
there are a pair of twin primes, in which case the twin primes may be placed in
position or swapped. This, of course, gives the r (4, j) permutation plus its j
optional twin prime swaps. Possible p* swaps and symmetric {lips complete the
description. -

Case 2.: keven, In the case where k is even, we have two possible
placements for the evens. So we will always use a tableaw.

2.c. k+1 not prime. We set our tableau using k+ 1. Let ¢ be the least prime
divisor of k+1. Thus (k+1)/g is in position and also in position 2(k+1)/g.
Notice that for k> 8, (k+1)/g is at least 5 and if of the form p* then
PP T < 4p*/3 = 4(k+1)/3g < 4(k+1)/9 < k/2. Thus (k+ 1)/g occurs in the
inductive set. Now there are at most two inductive sets and two possible
placements of the evens in our tableau. These place 2{(k+ 1)/q in position or 1,
2, or 3 down from position in our tableau. But {(k+ 1)/q is in position 2 (k- 1)/g,
so 2(k+1)/g must also be there, and not 1, 2, or 3 down.

Thus the left inductive set must be used, the evens are in position, and all
primes less than k/2 and then their powers are placed in position. If k = 2p, we
try placing p using blocking set B. If p and p+2 are twin primes, they must be
in position or in each other’s positions (the twin prime double swap). All other
" primes greater than k/2 are placed using blocking set 4. Thus the solutions to
this case are the identity, possible p” and twin prime double swaps and their
symmetric flips.

2p: k+1 prime. Since k+1 is prime, we set our tableau on k-2, fixing
evens in even positions.
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2pc. k+1 prime and k+2 not twice a prime. Since k+2 is not twice a
prime, we have a unique inductive set which the tableau uniquely places. All
primes less than k/2 and then their powers are placed in position. If k/2 = p, we
try placing p using blocking set B. If p and p+2 are twin primes, they again are
in position or swapped (the twin prime double swap). All other primes greater
than k/2 are placed in position by blocking set 4, Since we have k+ 1 positions,
we can use either the left k or the right k, giving as solutions the identity, the
t-shift, possible p” and twin prime double swaps and their symmetric flips.

2p.p. k-+1=p, k+2=2q We set our tableau on k+2 to place into
position the even integers and g. By Remark 8, we must use the left inductive
set, placing all primes less than ¢ and then their powers in position. We use
blocking set 4 to place all primes greater than g. But we still have k+1
positions. We may use either the left k or the right k, thus giving as solutions
the identity, the ¢-shift, possible p* swaps and their symmetric flips.

Numbers of solutions. Except in the case where k = 1213 with 6u+ 1 and
12u4—1 primes (the r(u, j) permutation), there are surprisingly few solutions.
Table 3 gives the r(x, j) permutations for k < 5000.

Table 3. r{u, j) permutations with k < 5000

ko bu—1 fu--112u~1 j bV ko bu-1 6u+112u—1j b

1617 809 811 1619 20
2037 1019 1021 2039 26
2061 1031 1033 2063 25
2097 1049 1051 2099 26 |
2457 1229 1231 2459 30

© 3 7 11 0
o
1
1
3
2577 1289 1201 2579 29 3
2
1
0
1
1
1

21 11 13 23
57T 29 3 39
gl 41 43 83
357 179 181 358
381 191 193 383
477 239 241 4719
561 281 283 563
837 419 421 839 11
261 431 433 863 1
1281 641 643 1283 14
1317 659 661 1319 15

—

2901 1451 1453 2903 32
2961 1481 1483 2963 31
3861 1931 1933 3863 42
4257 2129 2131 4259 46
4281 2141 2143 4283 47
4677 2339 2341 4679 50

o~ ] 00 b — =
_— D o O B R

(1) b is Lhe number of p* swaps for the given k.
Tolal uumber of solutions for & = 12u—3 s 2X 12 41).

Table 4 gives the number b of p* swaps for each & from the value listed up
to but not including the next value listed. For example, there are two p“ swaps
for each k from 169 through 181,

The twin primes in Table 5 can be used to find p+2 twin prime double
swaps as well as to verify the number of optional twin prime swaps, j, in the
r(u, j) permutation.

We can easily use Tables 3, 4 and 5, together with a table of primes, to find
the number of solutions for any & < 5000. The b column in Table 4 gives the
number of p® swaps (a > 1) between indicated values of k.
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Table 4. Number of p* swaps, a> 1, k= 12

E b k b kK B k b k b k b k P
12 0 64 1 192 0 512 1 992 0 2048 1 3072 0
16 1 81 2 243 1 529 2 1024 1 2187 2 325 1
24 0 9 1 256 2 552 f 1331 2 2197 3 3481 2
25 1 108 0 280 3 625 2 1369 3 2209 4 3540 1
27 2 121 1 306 2 729 3 1406 2 2256 3 3721 2
10 1 125 2 324 1 750 2 1452 1 2366 2 3750 |
32 02 128 3 343 2 768 1 1536 0O 2401 3 372 0
36 1 132 2 361 3 841 2 1681 1 2744 2 4096 |
48 0 150 1 38G 2 870 1 1722 0 2809 3 4489 2
40 1 160 2 34 1 .961 2 1849 1 2862 2 4556 |
s6 0 182 1 392 0 972 1 1892 O 2816 1 413 2

The number of solutions for the r(u, j) permutation gets very large as u
increases because of the apparent increasing number of pairs of twin primes

between 61+ 1 and [2u—1. The total number of solutions for k= 12u—3 is

2v+1(2)+1): the 2/ permutations from the j twin prime pairs plus the identity,
each of those allowing b additional p* swaps, and all of them finally being
symmetrically flipped. Notice that the largest number of solutions for k < 5000
is for k = 4677 with 4(25°+1) solutions.

Table 5. The 126 twin prime pairs less than 5600

3 5
5 7599 601 1619 1621 2711 2713 3917 3919
1., 13 617 619 1667 1669 2729 2731 392% 3931
17 19 641 643 1697 1699 2789 2791 4001 4003
29 31 659 661 1721 1723 2800 2803 4019 4021
41 43 809 81l 1787 1789 2969 2971 4049 4051
59 61 821 8§23 1871 1873 2999 3001 4091 4093
71 73 827 829 1877 1879 3119 3121 4127 4129
101 103 857 859 1931 1933 3167 3169 4137 4139
107 109 881 883 1949 1951 3251 3253 4217 4219
137 139 1019 1021 1997 1999 3257 3259 4229 423}
149 151 1031 1033 2027 2029 3299 3301 4241 4243
179 181 1049 1051 2081 2083 3329 3331 4259 426]
191 193 1061 1063 2087 2089 3359 3361 4271 4273
197 199 1091 1093 2111 2113 3371 3373 4337 4339
227 229 1151 1153 2129 2131 3389 3391 4421 4423
239 241 1329 1231 2141 2143 3461 3463 4481 4483
269 271 1277 1279 2237 2239 3467 3469 4517 4519
281 283 1289 1291 2267 2269 3527 3529 4547 4549
311 313 1301 1303 2309 2311 3539 3541 4637 4639
347 349 1319 1321 2339 2341 3557 3559 4049 4651
419 421 1427 1420 2381 2383 3581 3583 4721 4723
431 433 1451 1453 2540 2551 3671 3673 4787 4789
461 463 1481 1483 2591 2593 3747 3769 4799 4801
52 523 1487 1489 2657 2659 3821 3823 4931 4933
565 370 1607 1609 2687 2689 3851 3853 4967 4969
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Except for those k’s which have an r (4, j} permutation, the largest number
of solutions for any k < 5000 is 64. For example, k = 2458 has 64 solutions: the
2% permutations involving the 2'*, 37 and 7* swaps, each of which can be
1229 ++2 twin prime double swapped, each of these in turn can be t-shifted, and
finally all resulting permutations can be symmetrically flipped. There are a
total of 16 &’s up to 5000 which have 64 solutions (the eight p—1, p pairs at
p = 2459, 2579 and at the six primes between 2209 and 2256).

Table 6 gives the number of k < 4096 in ranges 2' < k < 2! where the
only solutions are the identity and the symmetric flip. There are 722 or
approximately 18% of the ks less than 4096 that have only these two solutions.
On the other hand, there are no k, 2*® < k < 2%°, with only the two solutions.

Table 6, Nurber of &'s between powers of 2 where the
only solutions are the identity and its symmetric flip
g k<2t

I # of k's i 4 of ks i % of ks

1 2 3 4 9 22
2 0 6 T 10 310
3 2 7 27 11 272
4 { 8 75

THEOREM 3. There are infinitely many k with exactly two solutions.

Proof. We will show that the logarithmic density of those values of k
with exactly two solutions is positive.

The logarithmic density of those values of k which have a t-shift. a twin
prime double swap or an r(u, j) permutation is clearly zere. It suffices to show
that the set of k which satisfy none of the inequalities

(1) PPk <piptT?

has positive logarithmic density.
First observe that for every prime p

(2) T 1k = (L +o))(Inx)(ln (1 +1/p)/inp

LS
where the dash indicates that the summation extends over all k < x which
satisly (1) for some a. The proof of (2) is really easy. We have

Y k= (1+o())n(l+1/p),

paSk<pa-tpa1
and this implies (2) since there are Inx/ln p choices for a. Now (2) immediately
implies that for every p and x
(3) Y. 1k <(2lnx)/(plnp).

k<x
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Of course (3) im‘p‘l‘ﬁés that for every & > 0 there is an 4 so that the logarithmic
density of the integers k which satisfy (1) for some p > k is less than epsilon
since Y 1/(p1n p) converges. Here we only use that the rth prime is greater than
crlnr; ie, we do not need the prime number theorem.

Now from the rational independence of ln p we immediately obtain from
(3) and the sieve of Eratosthenes that the logaritmic density of the inlegers
which do not satisfy any of the inequalities (1) exists and equals

“) [[(G-In(+1/pinp)=¢c. O<ec=<1,

where {4) is extended over all primes p =2, since as stated the product
converges. Table 7 shows that the density is less than .1799 and seems to be
converging nicely. In the region between 5/3 millicn and 2 million, it hay
decreased by only .0001.

If (1) is replaced by

pa g k <pa+rppa-1,
the logarithmic density exists and is positive as long as

{5) 2/plnp) < co.

It is easy to see that if (5) diverges then the logarithmic density of the
integers which are in none of these intervals is zero. It might be of interest to
investigate for which values of the sequence t, there are infinitely many such £'s
when 3 ¢,/(plnp) = co. We have not worked on this.

r
We have used the logarithmic density since it is easy to show that the
lower density is zero while the upper density is positive.

Table 7, Logarithmic density
bounds

Least Logarithmic

prime density
2 41504

1 24383

101 20754
1009 19377
10007 18698
100003 18299
1000003 18042
1999993 17986

Denote by A (x) the number of integers k < x which do not satisly any of
the inequalities (1), It easily follows from the linear independence of the
logarithms of the primes that liminfA (x)/x = 0 since for every & there are
infinitely many integers x so that all the integers x < k < dx satisfy at least one
of the inequalities (1). (We only need ¥ 1/p = 00.) It would be of some interest
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to bound from below the largest integer 4 (x) < x which does not satisfy any of
the inequalities (1). Also we could try to give reasonably good upper and lower
bounds for A (x).

Let b(k) be the number of solutions of (1). We have determined this
number up to 5000 (Table 4). It might be of interest to obtain a good upper
bound on h. The largest b in our table is 4. It follows from the linear
independence of the logarithms of the primes that lim sup b (k) = co and clearly
b (k) < ln k/In 2 since for every ¢ there is at most one p which can satisfy (1). In
fact, b{k) < c(Ink)/Inlnk is easy. More may be much harder.

i > k for some i. We now consider sequences of k positive integers where
some o’s are greater than k.

THEOREM 4. If a, ..., q, is a sequence of k positive integers with the
consccutive integer property and a; < k+1 for all i, then no integer will appear
twice. In the case where [ a, = k!, a, < k, for any prime power factor q of k+ 1
must divide a,. In the case where | | a; # k!, the sequence will be a permutation of
the first k--1 positive integers with one integer deleted. Moreover, the deleted
integer which a; = k+1 replaces will be ged(j, k+1).

The proof is similar to that of Theorem 1 and is left to the reader.

The smallest k for which maxa; = k+2 and []a; = k! is k = 4 where the
sequence of consecutive integers {n+ i} with least n is 41, 42, 43, 44. For k = 10,
the sequence with least n is 7186, ..., 7195, We hope to investigate further the
case when some a;> k and []Jo, = k! in a later paper.

2. Estimates on the Jeast prime factors of binomial coefficients. It has been

observed [1] that the least prime factor p of the binomial coefficient
satisfies p < N/k when N is large compared to k. Selfridge [2] conjectured that

for N = k*~1, (D always has a prime factor less than or equal to N/k with

one exceplion: (6(2) Combining this with the case when N < k%, we have the
'

following:

. NY .
CONJECTURE, For N 2 2k, the least prime factor of ( k) is less than or equal
to max (N/k, k) with 14 exceptions which are listed below.

¢
Rl
e QR0

(D ) 69 6 9 6 ) €

p=k+1
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L s N
The p on the left indicate the least prime in the factorization of the (k)

. .. {239 - T
An interesting near miss is 14 ) If we changed our conjecture to max (N/k,

k+3) we would have only one exception. A stronger conjecture would be
p < max (N/k, \/E) with a finite number of exceptions or perhaps even
p < max (N/k, ¢clnk).

It is clear that the properties of sequences of positive integers discussed in
Section 1 of this paper are directly related to the problem of the size of the least
prime factor of the binomial coefficient. To match our notation there, we lot
N =n+k

Let

1 <i<k where

a4; = [T pe b= 1] a

piln+i gi|n+i
pisk >k

(i) n+i=a;b,

[t 2]

If [Ta, > k! then (”:k) has a prime factor p < k. So assume []a; = k!

Let k|n+j. Then b, < (r-+j)/k, and umless b; =1, it has a prime factor
g < (n+j)/k < N/k. If any of the b, is composite, then its least prime factor is
less than N/k.

When []a; = k! we call the number of i such that b, = 1 the deficiency of

(Z) and use the notation d(N, k). For example d(239,14) = 2.

Remark 11, For some purposes it might be more convenient to define

the deficiency of (i) as k minus the number of prime factors g > k.

e .. .. (15
An example of when the two definitions give different deficiencies is (2)
An illustration of how the alternative definition can be interpreted in two
. . (10 . . Caa
different ways is ) ) However, the two notions of deficiency coineide if none

of the b; are composite. Either version of the definition shows that any binomial
coefficient with 4(N, k) < 1 is not an exception to our conjecture, Seven of

()

95 . 44 4N
and (10). Of the seven remaining, (8) and ( have

these exceptional binomial coefficients have a deficiency.of 1;
(23) (62) (94)
57 N6/ \1o)f
o {46\ (47 241
deficiencies of 2; (1 0), (10) and (1 6)

84

have deficiencies of 3, (47) has a
deficiency of 4; and (22 )

11

q has the remarkable deficiency of 9.
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Positive deficiencies occur only if ged ((‘Z), k!) = 1 and at least one of the

b;=1. For every k there seem to be several binomial coefficients with a
deficiency of 1. For example, for k = 10, we simply make a tableau similar to
those in Section 1 of this paper, loading as many prime power factors of small
primes as allowable on one slot of the tableau, and find d(635, 10) = 1. We
have no similar way to construct deficiencies of 2 for given k. However, for

, N .
fixed £ and N large, (k) will not have positive deficiency. We hope to make a

mote systematic study of binomial coefficients with positive deficiencies in a
later paper.
For given k, it is not hard to compute the density, D(N, k), of N, such that

(2’) has no prime factors p <k For example, for k=2 through 10, the

densities are 1/2, 1/6, 2/9, 2/45, 4/75, 1/75, 4/225, 2/75, and 1/15. it is clear that
the density goes to zero as k becomes large,

When N > k* and ¢; <k, 1 €i<k, and the b, are all primes, the least
prime factor of :) is nearly N/k. Each solution discussed in Section 1 should

yield an infinite set of N in which the b, are all primes. This is a well-known
generalization of the twin prime conjecture. To make p = N/k, we need choose

‘ 2

those solutions where a, = k. For example, for k = 3, we have (. ) and 15343 ;
12724 ‘ ; 1

for k =4, ( 124). For k = 5, there are two types of solutions: (255) and (1954 )

corresponding to the two solutions {'1, 4,3,2,5}and {1,2, 3, 4, 5. For each of
the eight primes up to 5000 which has 64 solutions, 32 of these solutions have
the property that ¢, = k. Notice that the number of solutions with a, = k is
always a power of 2.

Our study of sequences of integers with the consecutive integer property
and of prime factors of binomial coefficients has led us to consider many
related problems, too numerous to investigate in this paper. We hope to
investigate these problems in a later paper, should we live that long.

We would like to thank Robert Morris for helpful discussions.
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