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Improvements to the Newman-Zndm result
for disjoint covering systems *

by

Marc A. BErGER, ALEXANDER FreLzeEnsaum and Avigzri S. FRAENKEL
{Rehovol, Israel)

1. Preliminary results. For ac Z, me N, denote by a(m) the residue class
n a(m) = {a+km: keZ}.

We refer to m as the modulus of this residue class. Let 4 = {a;(n): 1 i<t} '
be a disjoint covering system; i.e, a system of residue classes which exactly
partition Z. The modulus n, is said to be divmax if

(2) mlm=n=n 1<i<t.
M. Newman [3] and Zndm [4] showed that if n, is divmax then at least

p(n) residue classes in 4 must have m, as modulus, where p{n) denotes the
least prime divisor of n. Qur main result is an improvement of this bound.

TueoReM 1. If n, is divmax then at least

' . M
3) min G ( )
A Fng (nx‘: nk)
residue classes in A must have ny, as modulus, where G(n) denotes the greatest
divisor of n which is a power of a single prime:

4 G(n) =max(deN: d|n and d =p* for some prime p).

To see that this is in fact an improvement of the Newman-Zndm
bound, observe that since n is divmax

(5) ny = (my ) # =G ((n:"nk))a p(ny).

Theorem I applies to disjoint covering systems which have at least two
distinet moduli — otherwise the minimum in (3) would be over a vacuous

set. In Section 2 we provide a geometric proof of this theorem, and in

Section 3 we provide an analytic proof in the spirit of Newman [3]. In
Section 4 we improve the Newman-Zndm bound in a different direction.
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2 M. A. Berger, A. Felzenbaum and A. 5. Fraenkel

For subsets X, Y = Z denote by X+ 7Y the set
(6) X+Y¥={x+y: xe¥X, vt}
Let NeN. A finite nonempty subset S < Z is said to be N-uniform if
(7) : a(m) < [a(m) nS1+O{IS)

for all ae Z, meN satisfying m|{N and a(m)nS # Q.
Turorem 1. Let M, Ne N with M| N, There exists an N-uniform set of
cardinality M. In fact if N has the prime fuctorization

{
(8) N=T] 5
i=1
and if
l
©) M = T pf},
i=1

where the e; are allowed to be zero, then
(10) S={0<k<N: kimod pi) <pi; 1 <i<l}

is N-uniform and |5|
of k modulo x.
Let o=ay be the additive (cyclic} group {0, ...,

I
N=T] pf".
i=1

(11) Gt =l{keo: k(mod piy < p'; 1 €

= M. Here k(mod x) denotes the least nonnegative residue

N—1} medulo

For any subgroup G < ¢ define

i<l

i
where M = ]| p;t is the generator of G. If M is the generator of G then

i=1
(12) G=0(Mngo
Thus to establish (7) it suffices to show that
(13) . | C=(CnGH+G

for any coset C of ¢ with C nG* # (0. We prove this with the help of tzvo
lemmas. To simplify notation in their proofs we use k% to denote k(mod p;’).

LEMMA 1. For k,, k,eG*

(14). = ki—k,eG = ky _k2
In parncular o= G~+~Gl

icm
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Proof.
(15) ki—ky €G>k =k (mod pf), 1<i<]
=k =k (modp), 1<i<!
=k =k, 1<i<l = k =k,

the next-to-last step following from the definition of GL. a
Lemva YV, If i1 eG, LeG* then

(16) P+ <pl, 1<i<l
Thus there is no “overflow” when adding 1, and L, modulo pl'. Therefore
(17) (L) =04+ 1gigl

From this follows that if H is another subgroup of o and if, as above, |, € G,
l,e G+ then

(18) L+beH <1, LeH,

(19) Li+hLeH" = I, LeH*

Equivalently '

20) H={HnG+HNGH,

21) _ H* = (H* A G)+(H*~ GH.

It also follows that if te H' ~G* then

(22) (H+0 NG =(HnGY+t.
Proof. Since

23) PR, o<1 <pl 0k <pf

{16) is obvious, as is then. the implication

(24) h+lheHY = 1, LeH.

Of course the implicatioh

{25) : Ly heH = L +LeH

! .

is also obvious, since H is closed under addition. Let [] pi' be the generator
i=1 X

of H; 0% f, <d;,, 1 €i< and suppose !, +1,eH. Then

(26) pHIP+1Y, 1<i<l

I £, < e then by (23) pi |1{?. Otherwise if f; > e; then by (26) we must have
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9 = 0. In any event it follows that
Q@7 s, 1<i<l

and thus /;, and consequently I,, belongs to H,
Suppose next that I, e HL Then

(28) pE, 0 <pt, 0<IP <min(l’ i),
If f,<e then K%' =0 and P'+19 = K < p/i. Otherwise if f; > ¢; then
(29) B+ < 104 p < pl.

In any event it follows that
CUN (5 =B +1) <pf’

and thus I, +l,e H"
To see (22), suppose that he H and te HY Observe now that h+teG*if
and only if h, 716G m

Proof of Theorem II. That S (in (10)} satisfies [S} = M follows from
the Chinese Remainder Theorem. Let C be any coset of any subgroup H of
g, CnGt Q. According to Lemma III there exists t=C n HL Since
CnGt# @ we have h+teG* for some he H. Thus by (19) (reversing the
roles of H, G) we conclude that feG*. By (20), (22) then -

1<igl

(31) C=Hti=(HAG+HANGY)+t < G+{H NG+t
=G+({H+ NG =G+HCnGY.
This establishes (13). =

We make two observations about N-uniform sets now. Say that a finite
nonempty subset § < Z is uniformly distributed if

(32) {x(mod|S|): xS} =10, ..., |SI=1}.

Our first observation is that N-uniform sets are uniformly distributed. To see
this simply choose m =1 in (7). Next observe that if § is N-uniform then

(33) a{(m, 1S} = [a(m) ~ S1+0(S)

for all ae Z, me N satisfying m| N and a(m) S # . Indeed, it follows from
Euclid’s algorithm for the g.c.d. that

(34)  a(lm, 1Sh) = a(m)+0(S),

and (33) now follows at once from (7).
‘ Given a disjoint covering system 4 =!a;(n): 1 <i<t} and a finite
nonempty subset § < Z-define the reduced system red (4|S) to be the multiset

(35) | red (415) = {a{(n;, |S)): iel} -

icm
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where

(36) IF=I,s={1<i<t: a;(n)n8# O
TueoreM V. If § is N-uniform, where

(37) [y, ... n]|N,

then red(4|8) is a disjoint covering system.

Proof. First we show that red(A]S} covers £. Since the moduli of
red (4]S) are all divisors of |§], and since S is uniformly distributed, it suffices
to show that red(d]S) covers S. But this is immediate:

(38) §= iLEJI (@) nS) = UI a; () = U: a {(m, |S1)).

Next we show that the sets in red(4|S) are all disjoint. Suppose

(39) xea;((n, 18)) oay((n, 1SD); 4 jel.
According to (33)
(40) x=yp+alS =z+F|5|

where yea;(n) NS, zea;(n)n S and a, fc Z. Thus y = z(mod |§]). Since § is
uniformly distributed this implies that y =z, and since the sets in 4 are
disjoint, we must have i =J. =

Remarks. (i) If § is uniformly distributed, then every set a(m) inter-
sects §, whenever m||S|. In particular, then, if § is uniformly distributed

(41) red (red (4]S)|S) = red (4[S).

(i) Let n, be divmax. If § is vniformly distributed, |S| = n,, then the
residue classes of modulus m, in % and red(4}3) coincide. Thus we may
always assume, without loss of generality, that a divmax modulus of a
disjoint covering system is in fact the maximum modulus of a disjoint
covering system, all of whose moduli are factors of it — without altering
the residue classes which have n, as modulus.

(i) Let F: N — N be any function. Denote

. n
42 F(n; 4) = Til: F ((ﬁ:«j)
¥ [S] =n then
(43) F(n; 4) < F(n; 1ed (4]5)).
Indeed,
: ~ R n . n
(44) F(n; red (48)) = (nﬁr;nF ((nh n}) = r;n: F ((”n n))'

isf



6 M. A. Berger, A. Felzenbaum and A. 8. Fraenkel

We next introduce some of the lattice geometry described in [1]. A
product set, #, in £" is any finite nonempty set of the form

(45) #=R, x...xR,

where R,, ..., R, = Z. The set R, is referred to as the ith projection of @,
denoted

(46) Ri=m(a); 1<i<n

Fbr b={by, ..., b)e N* the set

(47) P=le=(c,...,c)eZ" 0< ¢, <h; 1g<ign

is called the (n; b)-parallelotope. If by = ... = b, = b then this parallelotope is
called the (n; b)-cube.
We define now the parallelotope function . (This is not the same

function used in [1].) Again let ¢ = oy where N has the prime factorization

(8). Let 7 =y be the (I;(pl,, ..., p{)}-parallelotope. Given keo and

jell, . 1) set
dj
{48) Yk = 3 aP P,
: =1
where
dj
(49) : k(mod p?j) =3 a p;j -

i=1

(Observe that the coefficients for WY (k) are in reverse order to those for k.
Then set

(50) : Y (k)
In this way ¢ =¥y 0 - 7.
ProrosiTion VI.  is bijective, and if C is a coset of o,

= (K, .., YO (R)).

!
(51) i€ =TT pi%
. i=1
then
{52) p(C)y=c+ T’
where 77 is the (I; W ..., p{’))~parallelompe and ¢ =(c,, ..., e)e T satisfies

(53) . pile, 1<j<l

Proof. Observe first that (k) uniquely determines k(mod pjf) Thus
it follows from the Chinese Remainder Theorem that ¥ is one-to-one. Since

icm
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lo| =177, ¥ must be a bijection. Next observe that if H is a subgroup of o,
)
. .‘".
(54) |H| = Hl Pi’s
: j=

then for each he H

(55) p:,{j’ff|h(mod PP, 1<j<l

This means that the first d;—f; p-ary coefficients for h{mod p'f-f) are zero.
Thus for any keo the first d;—f; p;-ary coefficients for (h+ k) (mod pf,fj), or
equivalently the last d;—f; pi-ary coefficients for * (h+k), must be indepen-
dent of he H. From this it follows that

(56) W (h+ k) = a; 51+ B,

where a; is independent of h and 0 < §; < pj", 1 <j <[ Since ¥ is one-to-
one it now follows from a cardinality consideration that

(57) W (H+k)

2. Geometric proof of Theorem I Let N =[m, ..., n] with p_ri.me
factorization (1.8). We can restate Theorem I in terms of an exact partition
I'=|C: 1<i<t} of o into cosets. Say that C, is divmin if

Cf Tt g
=([x1p1.11"'1051p[ )+"/ . B

M ICI|ICd = 1Cf = 1Cyl-
Turorem 1. If C, is divmin. rhen at least

@ min G(__'QL-)
ezl MG 1C)

cosets in I' have cardinality |Cy.
Proof. According to Remarks {ii), (iii) above we may assume, without
loss of generality, that C, is a singleton. Set

(3) = min G(|Cy).
_ je;l =1
Let y: ¢ — .7 be the paralielotope function, and set

(4) T R=CNT,
where % is the (I: x)-cube. Observe that
&) J7e; ()] =

(In general, x may be larger than pjf' for some values of j. In other words, %
need not be contained in ) By translating & if necessary we may assume
that w(C,) = gf‘ Let C be any coset of ¢ with |nJ ¥ (O) = [ (#) for some J.

min(x, pjf), 1<j<l
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It follows from (1.52), (1.53) that

©® YO NR+O <= m((C)) =, ().
Consider now one of the cosets C;, [C| # 1, and let G(|C|) = p}fj 2 x. Then
Y (6 (C))| = pf 2 x = |m; (1),

and thus according to {6)
B Y(CINR# O = |u; (Y (C) RY = |m;(4(C)) N7y ()] = () = x.
In particular

©) x| (C)nal.

Observe next that
(10) A=W (C)nR: Y(C)n & # @)

forms an exact partition of #. Since the cardinality of 4 is a multiple of x it
follows from (9) that the number of singletons in A must be a multiple of x.
This number is at least one, since ¥ (C,)& A, and thus it must be at least x.
Finally, ¥ (C) "2 is a singleton only if C; is a singleton. w

3. Anmalytic proof of Theorem 1. In this section and the next we consider
a disjoint covering system 4 = {g,(n): 1<i< t} and make the reasonable
assumption ' '

(1) 0~.<_al'<ni, l-ﬁlét.
Under this assumption the identity

t a; 1
@ y

i=1 1"—2’&. 1-z

is valid for ze C, |z| < 1. In particular, if n, is divmax then it follows from (2)
that P{w,) =0, where @y, 18 & primitive nth root of ‘unity and P({z) is the
polynomal :

(3) Pl@)= Y 2z

=y

M. Newman [3] used this condition to obtain the bound P foir the
number of residue classes in 4 having n, as modulus. In fact he proved the
following ' '

LEMMA VII. Suppose Q{w,} =0 for
E L
{4) : Q@ = ):1 2z,
. - _ o i=

)wkerb Qy, ..., ap are distinct integers between 0 and n—1, and 8y, ..., 0 are

nonzero rationals. Then Lz p(n). .

iom
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We improve upon this estimate by exploiting the fact that Plw) =0
for several roots of unity of different orders, simultaneously. Precisely, if

(3 n|”i¢>”i=”k, 1<i<t

then P(w,) = 0. Thus we are led to consider equations satisfied simultaneous-
ly be several different roots of unity.

Lemma VIIL Let My, MeN with M, |M, and let M have the prime
Jactorization

i
(6) M =TT py.
. f=1
Weite
1
(7 M, =[] p/
i=1

where the e; are allowed to be zero. Suppose Q(w,) =0 for every n in the
quotient range

8 M |n| M,

where Q(2) is as in Lemma VII. Then

©) L > min p" ",
e:>0n

J
Observe that if M, = M then (9) becomes L= p(n), as in Lemma VII.

Proof. If (n, s} =1 then
(10) T Qw,) =0+ @(w]) = 0.
We claim that

Sayp

o

(11) o 0n = Qo) =0
i=1
for every s in the range 1 < s <x, where
. di=eit1
(12) ' X = min p/

ej>0

To see this observe that wiy = w!, where

1 M R
4 "SEm e
For s in the range 1 < s < x this value of n lies in the quotient range (8).
Furthermore (r, 5') = 1. Since Q(w,) =0, it follows from (10) that Q(w},)
=Q(w) =0, as claimed. _ : _

Now we consider the equations (10}, 1 < s < x, as a system of x—1
linear equations for ay, ..., #y (with complex coefficients). If L < x then the
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first L such equations would form a homogeneous L x L system with the

Vandermonde matrix (cu!;c,j) as coefficient matrix, The determinant of this
matrix is

(14) | w3+...+aL 1—1

15i<jSL

a; @;
(wl‘i — Wyr)s

which is manilestly nonzero. This contradiction thereby proves that L2 x. =
Remark. Newman [3] used precisely this prool with x = p(n). In this
case every s, 1 € 5 < x, is clearly relatively prime to n, and so @{w}) = 0. We
simply observe here that if Q(w) = 0 for several different roots of unity, one
can take advantage of this to increase x.
Proof of Theorem I Let N=1[n;,...,n] have the prime factors
Pi...-. oy and write

i
(15) m = T p.
F=1
For n # m, define
(16) vi=pi"t
where j(i), e;; are defined through
ny d e~ @iy
17 G = ,Ji(l) U
(1 ((”h ”k)) 7
Then 'ejm is the exponent of py, in the prime factorization of ;. Set
{18) M= nmn#nl], M=n,.

Since ey is strictly less than dy,; it follows that each y, (hence M—1) is
a divisor of m,. On the other hand no ¥ is a divisor of the corresponding n,
and thus M, is not a divisor of any #;, n; # n,. The upshot of this is that
every n in the quotient range (8) satisfies (5). Correspondingly, then, for these
values of n, P(w,) = 0. Thus according to Lemma VIII the number of terms
in the polynomial P{z) must be at least

) A ) n
min pj? " = min G(-~-"—~ .
n; Fhy np Fmy

4. A consequence of the Conway-Jones vapishing sum criteria. A disjoint
covering system 4 = {a¢,(m;): 1 <7< 1} is said to be n-reducible if some of its
residue classes of modulus », can be combined into a single residue class of
smaller modulus — precisely, il :
my ' U a(n)=a(m

S =
for some acZ and proper divisor, m, of n,. Otherwise 4 is said to be n,-
irreducible. : . o . .

icm
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Theorem IX. Let my be divmax and suppose A is ny-irreducible. Then m,
must have at least three distinct prime factors; and ar least

(2) Pit+pa+ps—4

residue classes in A must have n, as modulus, where p,, p,, ps are the three
smallest prime divisors of n,.

Before proving this theorem we introduce another type of reduction for
a disjoint covering system, in addition to that one described in Section 1, Let

N =[n;,.... n] have the prime factorization

© N=ﬂﬁ

Any divisor M= N of N has a factorization

) M= ,-[1 pi'

where 0 < ¢ < d;, 1 €i< 1L Denote

6 #= 11 b

We now define the square-free sysrem: S;QF (4) to be

(6) SQF (4) = {al(f): ieJ)

where

@ J=Jy={1<i<t: an)nO(N/N) = @}

and, for ielJ, a; % is the least nonnegative integer in a;(m) N O(N/N). Since

N/ N
&) a;{m)n O (%) = aéﬁ (ﬁfﬁ)’ ied,

it is clear that SQF (A) is also a disjoint covering system.
Remarks. (i) The moduli-of SQF (4) are square-free, and

9) [#: ieJ]=N.
(i) If n = N then

N
(§10)] ieJ < —la
N

. . N
in which case g = a5 and conversely

(1) o Fom N <= N,
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This shows that if O(N)ed then SQF(4) is N-irreducible whenever A is.

Proof of Theorem IX. By translating if necessary assume that ¢, = 0.
We first replace A with red(4|S), where § is an N-uniform set, |S| = n,, for
N ={[ny, ..., n]. This in effect allows us to assume in our original system A
that n, = [n,, ..., n,], without changing any of the residue classes of A with
modufus n,. Next we apply our square-free reduction, SQF. This allows us
to assume that m, is square-free, while preserving ng-irreducibility and not
increasing the number of residue classes with modulus n,. Furthermore we
still have O(n)ed. Summarizing all of this we assume, without loss of
generality, that @, = 0 and n, is sguare-free.

Let now
(12) S@ =71z

1174

be a minimal subsum of Y 2" such that (i) ke K, and (i) S (w,,) = 0. Define

=

. . .
an integer n by o= (m, a0 ieK) and set

13 Sz =3 2.
ieK
Then §(w,) = 0. According to Conway and Jones ([2], Thm. 5)
(14) Kz 2 (r-2)+2,
rln
pprime

and thus it suffices to show that » must have at least three distinct prime
. factors.

The only polynomials with rational coefficients of degree p—1 or less, p
prime, which vanish at ©, are scalar multiples of

(15) I4z+4. .4z

Thus if n=p then {a:-nﬁz I'EK} = {0, 1, ..., p~11, contradicting the n,-
'k

irreducibility of 4. It remains then to rule out the case n = pg, for two

distinct primes p and ¢. For this case decompose §(z) as

p—1
(16) Sz = Y 2"Ri(z"),
_ . i=0
where
g—1
(t7) ' Riz)= ) wyz), 0<i<p
. j=0

and each a;; is either zero or one. It follows from [2], Lémma'l, that

1 - Ro(@) =...= Ry (,).

icm
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By what we said above regarding (15) it follows that og;—e,; must be
constant, independent of j. If this constant is +1 then a; must also be
constant, and Rg(w,) = 0. Otherwise, if this constant is 0 then R, (z) = R, (2).
Arguing along these lines we see that either

{19) Ro (mq) == Rp—l (wq) =0
or else
(20) R =...=R,_,(2).

Alternative (19): Since the R;(z) cannot all be identically zero, one of

them, say Rgp(z), must be of the form (15). But then {a,—ni: ieK}
k
o 10,1, ..., g1}, contradicting the nirreducibility of A.
Alternative (20): Since Ry(z) cannot be identically zero, some coefficient,

say ogo, must be one. But then each o, is one, and ai;!p—: ieK}
'k
=10, 1, ..., p—1}, contradicting the n-irreducibility of 4. »

Remark. If 4 is n.-reducible then either it can be reduced to a disjoint
covering system in which n, does not appear at all, or else Theorem IX
applies. Disjoint covering systems which can be completely reduced (all the
way to (1)) are precisely the rarural systems of Znam. Thus Theorem IX
can be considered a result concerning unnatural systems.

Acknowledgment. The authors gratefully acknowiedge the help of the
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