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i. Introduction. Let F{x) be defined by

@ anx™
F(a) = F(a, x} = f::u A—(1—x3)...(1—x9

{Ix] < 1).

Then F(x) satisfies
F(a) = F (ax) +axF (ax?),

so that F(x)/F(xx) can be developed in the Rogers-Ramanujan continued
fraction '

(0 ' Flo) — ax ax? ax®
Flax) 1+ 1+ 1+
In particular, by virtue of the Rogers-Ramanujan identities, we have
H oo xﬂz
RS =£&(Lﬁwu—xﬂ“41—ﬂ)
1+1+"" ] xnz-fn

n;o =0~ x5 . (1)
_ 5] (1_x5n+2)(1_x5n+3)
- oo (1 _x5n4‘r1)(1 _x5n+4)'

(For details see for example [1], [5]) We put for brevity
fla,x)=F@yFlx).

In 1971 Osgood [8], [9] proved that, if a, b, and d are non-zero integers with
ld] = 2, then, for any &> 0, there is a positive constant go = go(a, b, d, €)

such that
A, f{a 1\ p P
= === >
1f(b’ d) ‘11 !

for all integers p, g {= qo)-



24 I Shiokawa

For the values of the exponential function at rational points more
precise results have been obtained (cf. Bundschuh [2], Durand [4], Mahler
[7], Shiokawa [10]): If a/b is a non-=zero rational number, then there are
explicit positive constants B = B(a/b) and C = C (a/b) such that

ea/b_gl = Cq— 2 - Bfloglogg
q

for all integers p, g (> 3). Especially, Davis [3] proved that, if b is a non-zero
integer and

1/]b} if b is even,
1/14b|  otherwise,

then, for any &> 0,

loglogg
log q

for infinitely many integers p, g, while there is a positive constant g, = g, (b, ¢)
such that

2/

<(C+epg?

€

_yloglogg
log g

ez""—g\ >(C—e)g

for all integers p, g (> q,). ,

Comparing these results, we see that it would be interesting to replace, if
possible, the £ in Osgood's theorem stated above by a function of g. In this
connection, we prove in this paper the following theorems.

TrEOREM 1. Let a, b, ¢, and d be non-zero integers with
2 : ld| > [ef?.

Then f(a/b, c/d) is an irrational number, and furthermore, there is a positive
constant C = Cla, b, ¢, d) such that

ac\ p
4 & E)”a

Jor all integers p, q (> qq), where

>Cq” 2~ 24~ BivTogq

_ logjc|
" log|d/cY
and

' _logla®d|— Aloglb/a?|

B
logld/e?

CoroLLARY. Let a, b, and d be non-zero Integers with |d| 2 2. Then there
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is a positive constamt C = Cl(a, b, d) such thar
al ey
f'(—,- _P S cg2-mivioes
b d] ql

for all integers p, q (= 2), where
_logia*d|

Jlogldi

Theorem 1 is in a sense best possible since we have the following

theorem:
TugoreM 2. Let a, b, and d be positive integers such that (a, b) =1,

d=2, and a divides d, and let
2
_b. [f (E) = d’
a b

ja .
—  otherwise.
bd

Then, for any & >0,

fa 1\ p -2~ iogd/vIogg
— = |-l < (C+
/(5o <eson

for infinitely many integers p, q (= 0), while there is a positive constanr.
go = qola, b, d, &) such that

C:

> (C __B)q—l- v‘logd}'v‘l?gq

for all integers p, g (= q0).

2. A lemma. We shall make use of the following lemma.
LemMa. Let ay, 6, a3, ... be a sequence of real numbers such that

iianan+1' >4 (H = 1)
and .

m.
2 |y Gy eq] 7! =0 <00,
n=1

Define as usual p, = dyPp—1 -+ Pom2s Gu = Gnn—1 +dn-2 (N> 1) With po = 9-1
=0, p., =qo=1. Then pfa,a;...a,) and g,/(a, a, ...q,) converge to finite

non-zero limits, and they satisfy .
e <|pflaaz...a.) <€,

et < g fayag...a) <€,
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so that the continued fraction
1 1 1 . Pn
— — — .= lim
ay+as+das + n-w n

is convergent.
For the proof see [6], § 4.4; [10].
To apply the lemma, we transform the continued fraction (1) by using
the formula
11 1 1
L1414 1 b b, Dbib
t L0, B Dybs
by by byby byb,

(cf. [6], (2, 3, 24) and obtain the regular continued fraction

1 1
1 = 1+-— -
( ) f(a x) 1+a2+a3+
where
(3) ap—y =a 'x7, an=x"% (kz1),

We note here that

@ ayay...am.=a"*x7 gia,...ay ma kxR (k= (1),
and‘hence _

) logla, a;...a,) = —in?log|x| —nloglax|+ O (1).

3. Proof of Theorem 1. Let o = a/b and x = ¢/d 'be as in Theorem 1.
Then a,, and hence, p,, ¢, are rational numbers for which d,p,, d,q, are
integers for all n = 1, where

dypy = | Csz’ doy = |a* Cklﬂ‘l;
§0 that
(6) ' logd, = Znlog|c|+%nlog|ac/+ 0 (1).
Here and in what follows constants implied in O-symbols as well as positive

constants m, no, ¢o, ¢;, ... depend possibly on a4, b, ¢, d (and & in Section 4).
e

= 1) with |x] <1, the series Y, (a,a,.,) " is
=1

absolutely convergent and there exists an integer m=1 such that

12, tyy1] >4 (n = m). We may thus apply the lemma and find that the

continued fraction :

Since a, a4,y =a 'x"" (n

- 1 1 1
(7 ’ ...=80, say,
Auiy 8+ ;+
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is convergent for each n 2 m and

e <ty pqy O] <%
- G
e ™ <|a"+k+1qﬂ,k/QH,k+-1| <666

where p,./q,x 15 the kth convergent of the continued fraction (7) and

o
o= ) |@y 8,4+, ' Hence

n=1

®) (n=m, k1),

‘ pnk 1 < 2
" Dk IQn.k (Goger 1+ Onage 9n il
for all sufficiently large k. But using again the lemma with {5) and (6), we get

IQJ%J: Qi+l

}g%_lﬁ'ikawﬁﬂ e 2log c] ﬁ
log|d, k44 G il log|d| k’
so that, for any ¢ > 0,

0 '_dnﬁ-k Pu,k
" dn+k ‘?Jr,k

for all sufficiently large k. This establishes the irrationality of 8, (n = m), since
Ausk Pugs i Gng are integers and 2(loglcl)/logld] <1 by (2).

Now we may assume p,,q,, # 0, since at least one of p,_, g,—1, Pa g, 18
different from zero, because a,s 0 (n=1). It follows from the formula

P = P oynm ™ P= 1 Pran—ms Gn = Gm Gma-m+ Q-1 Pmyn—m that

Pu — Prm Qm,n—m (l_l_pm—lpm,n—-m),
a

—2+2
<l Gt (oglelylog|d] +&

a2a3...an a2a3...a"am+1.‘. n pm qm)n_m
A _ Gm Um,n—m (1 +qm—1 pm,n—m)
aydy...a, Ay dy e Gy pgg o by Gm  Gmn—m

By the lemma, quantities on the right-hand side above converge as n — oo to
finite limits which are different from zero, because of the fact that 6, is
irrational and p,q, # 0. Hence the continued fraction (1°) converges to
fla/b, c/d), which, as is easily seen, is also irrational. Thus we have, using (5),

d bd
)] loglq,| = log +-log ~+—0(1)
and so, using (6),
In+1 In d
- Al = o(1
(10) log o log Z log e +0(1).

Hence, noticing (2) and (8), we can choose ng = m such that

an el <12 1/ ol <ladd (0 = no).

'an— 1' < 'qn[a
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Now let p, g be given non-zero integers. We may assume that |g,/d,,|

< 4g. Then by (10} and (11), there is an integer n =n(g) > n, such that
(12) |9 - 1/dn- 1| < 4 <lq./d,].

By virtue of the formula p,q,_;—p,—19,= +1, at least one of p,_, ¢
~qp-1 P Paqd—4np is different from zero. Assume first that p,q—q,p # 0.
Then we have

a ¢ P _vdn(pnqqup) ( (9 f —
dafi'n(.f(i;’ﬁ) E)'_m"q___”" Iy a) )

where |d,(p,q—g,p) > 1 and

oy ) e
" § b, d ! ,qn+l+9n+1qn‘ = #QVIF 2‘-1,
40 that _
[ EN Pl 1 -1-(ogld,a,Diloss
4 ‘f(b’ d) q‘“q :

The same inequality will be obtained also in the case of p,_; g—g,-, p # 0.

It remains to estimate |d, g,/ from above in terms of 4. Combining (3),

{6), (9), and {12), we get
IOg [dn q"J 5 lqu—f— IOg (dﬂ‘]. du)+10g |££ f+ Cl

< logg+3n®log|c|+4nlog|a? dI—i—Cz

Here it follows from (12) with {(6) and (9) that

n> I b : n* d
]og +2]og —~C; <logyg < 7 log 51+% log =z +C,,
so that _
=2 /log g//log|d/c?| +o(1),
and hence

< 4logg  4./Togg 1og|b/a2|
logle/d®/log le/d?| log |c/d2|

Therefore, we obtain

It B
og|d, g, <l4d+ ’
log g Jlogg

which together with (13) leads to Theorem L.
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4. Proof of Theorem 2. Let o = a/b and x = 1/d as in Theorem 2. Then
flu/b, 1/d) can be developed in the regular continued fraction

1
PN
—-d +d+ d2+d2 +Ed"+idn+

whose partial denominators are positive integers, so that its convergents p./g,
(n 2 1) are just all the best approximations to f(a/b, 1/d). Thus we have only
to estimate

o bl

We note first that

1 1

’Qr? an+1| l

0, Gy
| pontdy ot
Uny1  Oyiytn

im Oy 1/, 5y = im g, 1/g, 8,+1) = 0.

[ e 4} f—too

If 1 =2k then by (3)
lOg azk+1 = klOgd—HOg (db/a).
But by (4)

J 10g 43¢ _log(db/a)

g
Jiosd  Zlogd +o(l),

and hence

log aayyq \/—Og
log ¢y \,’ log g4

+3log(db/ay+o(1)

Similarly, we get

o logan «--Au/z]-%i:ﬁlog(a/b)+o(1)
IOg‘hkl JBgchk”l

{14) together with thesc cstimates yields Theorem 2.
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1. Introduction. For z = x+iy, y > 0, let

o

A (Z) — ez::iz ﬁ (1_827rinz)24 — Z _r(n) ez::Enz
n=1

n=1
by the Ramanujan cusp form of weight 12. Ramanujan conjectured that
(n) — O(nl 12+ey

for any ¢ > 0. This coniecture was proved by Deligne [2] in 1974. Actually,
Deligne proved the more general result (Petersson comnjecture) that

(L) aln) = O (n*~ 127

where a{n) is the nth Fourier coefficient of a holomorphic cusp form of
weight k associated to a congruence subgroup of SL{2, Z).

Ramanujan’s conjecture can be generalized to non-holomorphic cusp
forms (Maass wave forms) associated to arithmetic discrete subgroups of
GL(r, R), r 2 2, and in this form, the conjecture is still open even for r = 2.
We now briefly describe the generalized Ramanujan conjecture.
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