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1. Introduction. For z = x+iy, y > 0, let

o

A (Z) — ez::iz ﬁ (1_827rinz)24 — Z _r(n) ez::Enz
n=1

n=1
by the Ramanujan cusp form of weight 12. Ramanujan conjectured that
(n) — O(nl 12+ey

for any ¢ > 0. This coniecture was proved by Deligne [2] in 1974. Actually,
Deligne proved the more general result (Petersson comnjecture) that

(L) aln) = O (n*~ 127

where a{n) is the nth Fourier coefficient of a holomorphic cusp form of
weight k associated to a congruence subgroup of SL{2, Z).

Ramanujan’s conjecture can be generalized to non-holomorphic cusp
forms (Maass wave forms) associated to arithmetic discrete subgroups of
GL(r, R), r 2 2, and in this form, the conjecture is still open even for r = 2.
We now briefly describe the generalized Ramanujan conjecture.

* This author would like to acknowledge supports from the Vaughn Foundation and alse
from the NSF grant DMF-8502787.
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Let G, =GL(r, R), I, =S8L{r, Z), O(r) = the orthogonal group, and
Z = the center of G, consisting of scalar matrices. We define the generalized
upper half space

=G,/0nZ.

By the Iwasawa decomposition, every te H™ has a umque coset rcpresenlatlve
of the form

1 XI’Z . xl,r ylyz - y""“l .
1 : PiVa oo Ve
(1.2 B} :
(1.2) 4 X ”J ,
1 {
- 1
where yy, ..., 3oy >0 and x,;eR for j > 1.

If v, vy ....v-; are complex pd,rdmf:ters, we define a function

? N H’-+ € by requiring that

r—1r—1 o
(1.3) Lygy o £T) = i

i=1 j=1
where

(’_i)j'v ng’gwia
YU lr—pi, i<jsr—1.
_ Let < denote the algebra of G,-invariant differential operators on H'.
Then I,, . _ , 1s an eigenfunction of &, and hence determines a character
Vi

Aupron on & by the formula

| Dlyy oy = 2oy Dy (DE).
Let /. denote the identity matrix oa G,. For a positive integer M, let
' C(M) = [yel,] y =I,(mod M)

be the principal congruence subgroup (mod M).
DerFmrion 1.1. A function @ on H' is called an’ automorphic form of

type vy, ..., v,.1 for I"(M if
(1.4) @(yr)=¢{r) for yel, (M), tcH
(1.5) - De=4, ., Do Tfor Deg,
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(L.6)  @{g1) has polynomial growth in y,, ..., y,_, on the region {1 y; = 1

i=1,2,...,r-1)}, for-every gel',(M)\T,.
H, furthermore, ¢ satisfies
{1.7) [ oeloutydu=0 (tecH)
TM) AU

for every oI ,(M)\I,, and each group U of the form

0 I,
then ¢ is called a cusp form. This implies that ¢ € %2 (I,(M)\ H").

Let N, denote the group of upper triangular matrices with unit diagonal,
and for integers ny, ..., n,_,, define a character & of N, by

2ni
eﬁ"jx.i,j +1

(1.8) 8= J]
1€j%r—1
where
1 X33 000 Xpy
X = . ' eN,.
Xe—1,r
1
For a cusp form ¢ for I',(M) and gel',(M)\T,, let
(£9) ey D= [ ploun)Olwydu
L(M)nNA\T,

where du is the Haér measure for N,.
Then ¢ has a Fourier expansion (see [16], [191, [1], [9], [7])
2 X

g0 '
CE e (1)
n1=1 ny= oo ny 12-—-~mg§}t 1 ! 0 1

np #0 m—y #0

(110 o=

where R is a set of coset representatives for I",_ (M) N,_;\TI',-,, and for
each ge R, we choose g, such that

%90
|: ”0 1]6?’,(M).

Now, by the multiplicity one theorem of Shalika [19], it follows that
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_there exists a constant a§ _, _, such that
r—1 w—_( )
(1.11) Orm D=0 HI ml 2 .1 (de)
=1
where

Ny ... 04

The constahts &,y are called the Fourier coefhicients of @. If ¢ is an
eigenform for the Hecke algebra, then the Fourier coefficients satisfy multipli-
cative properties,

(GENERALIZED RAMANUJAN CoNIECTURE. Let ¢ be an automorphic cusp
Jorm of type (v, ..., v,—1) for I',(M) with Fourier expansion given by (1.9,
(1.10), (1.11). Then

Re(v,) = Ref(v,) =... = Re(v,_,) = 1/r

and

a1 = O (¥)

Jor every & > 0, and every geI' (M)\T,.
If, in addition, ¢ is an eigenfunction for the Hecke algebra, then the
above conjecture implies that

lag1,.. 1,1 S 7elaf,

This conjecture was first explicitly stated by A. Selberg [18] for the case
r=2. The conjecture can be rephrased in the adelic language and is
equivalent to the non-occurrence of complementary series represen‘tatlons.
We indicate how this is done at the Archimedean place.

. If ¢ is a Hecke eigenform of type v,, ..., v,_, for I, let ¢, be the
restriction of the right regular representation of G, (defined on #2(I',\G)) to

the subspace spanned by {o(z) te H"}. As ¢ is square-integrable, G must )

be unitary, and this is a constraint on the possible values of vy, ..., v,.,. Let
B denote the Borel subgroup of upper tnangular matrices of type

1 X1,2 0 Xy Yo¥i v Vet
1 ! ythL-'- Ye-2
xr—-l,r

-

1 . Yo
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in G,. Then p, is the representation induced by the character
C6TP, ., of B where
r—=1r-1
Ly, (B = H1 H |y
i=1 j=1

as in (1.3),-and & is the modular function of B (cf. [eD

@ = T

Now §7%*1, ., _, is a unitary character of B if

-1

Re{v;) = Re(vy) = ... = Re(v,. ;) = 1/r,

and in this case g, or ¢ is called unitary principal series. If g, 18 unitary, but
sy, 1oy, 18 DO, then @ is called complementary series. The generalized
Ramanujan con]ecture asserts that complementary series do not occur in
&2(T,(M)\H"). For example, if r =3, g, will be complementary series if
vy =0+it, v, =0—it, 1/6 <o <1/2, teR, o+ 1/3.

Langlands [11] bas made some very general conjectures on liftings of
representations that would settle not only the generalized Ramanujan conjec-
tore, but also Artin’s conjecture on the holomorphicity of the Artin
LAfunctions associated to non-abelian Galois groups. At present, however, the
so-called “Langlands program” is generally considered to be a long way from
completion.

The purpese of this work is to provide an approach to the generalized
Ramanujan conjecture for GL(2, R) and GL(3, R) via Kloosterman sums.
Such connections first appeared in the work of Kloosterman [10], who
essentially showed that

where a(n) is the nth Fourier coefficient of a holomorphic cusp form of
weight k for a congruence subgroup I'<SL(2, Z). In 1948, Weil [21]
elucidated the connection between the Riemann hypothesis for curves over
F, and the classical Kloosterman sum

o (nk,'z —1/8 -H:)

p-1 e

z e
a=1

a7 =1 (mod p)

=57

S(m, n; py =

Using multiplicative propertles of the Kloosterman sums, this led to the
bound

IS(m, n; &) < T(Q)(m, n, )22

where t(c) denotes the number of divisors of ¢ and. (m, n, ¢} is the greatest
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common divisor of m, n, ¢. A consequence of this is the estimate
’ a(n) — O(nkj2—1/4-!~e),

a considerable improvement over (1.12).

Connections between Kloosterman sums and holomorphic Poincaré
series were already given in 1932 by H. Petersson [15]. A. Selberg [18] went
considerably further by investigating the non-holomorphic Poincaré series

Pz, 5)= Y {(Im(pz)} e®™= (Re(s) > 1)
: yel G\

b or { 1 m
where n >0, I'y, = [01
the usual action by linear fractional transformations. He, for the first time,
brought into play the deep connections between Kloosterman sums, which
occur in the Fourier expansion of P,(z, s), and the spectral theory of I'\.H%.
By use of this theory, Selberg obtained the mcromorphlc continuation of the
zeta function

(113) f

] meZ}mF, z=x-iyeC, y >0 and yz denotes

mnc}

{Re(s) > 3/4).

As a consequence, he obtained the bounds
1/4 < Re(v) <3/4,
a, == O(n1/4+6)

where @, denotes the nth Fourier coefficient of a cusp form of type v for a
congruence subgroup I = SL(2, Z}. Recently, [14], [5), the Fourier coeffi-
cient bound has been improved to

.a" — O(n1f5+a)

by use of certain liftings in accordance with the “Langland’s philosophy”.

In order to generalize the Kloosterman sum approach, we consider
Poincaré series for G,. For integets 1y, ..., 1,1, let 0 be the character of N,
“given by (1.8). An E-function is a qmooth function £; H"— C sausfymg the
conditions

{(1.14) E{xt) =0(x)E(z), xeN,, 1eH",
(1.15) [E@)| =0(), teH"
For complex parameters vy, ..., ¥, let I, ., be the function given by

o) 1s defined as’

D) E(y7)

(1.3). The Poincaré series P, .. _,(t; ¥y, s Ve

1‘_“,,,"_1(1'; vl: (RS} vr—l) = Z I\ll,...,v,....
: yelp AN AT,

(L1 P,

icm
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where the series on the right-hand side of (1.16) converges uniformly and
Lr—11If in
addition, E (1) has exponential decay in y;, () — o) for alli=1,2,...,r—1,
with © given by (1.2}, then it is easily seen that Py, _, Is square-integrable.

In Theorem 5.1, weé compute the Fourier expansion of Py ong (T3 1, ¥2)
for the Poincaré series associated to G,. It is shown that

(1.17)

11

. = 2mi(my xq +maxa)
ijnl,nz(Ta Vi, v)e 1 Ty, dx, dx,
00

O ey,

-3 —3v
D, 7D, x

=y;1’.v1+v2y;1+2v2 Z Z i

weW E].Eq= +1 DI,D2=1

Syley my, &3my, ny, ny5 Dy, Do) T, (P1s Yai V1, Vai €11y, 83135 0y, 1y Dy, Dy)
where W is the Weyl group of permutation matrices of GL.(3, Z), S, are
generalized Kloosterman sums (see § 4), and J,, are certain integrals given in
Table {5.4). Note that the triple integral on the left side of (1.17) is just (1.9)
applied to P, .,

The six GL(3) Kloosterman sums 8, can be described as follows.

Firstly,
- -
5D1,1.6D2,1: W = ) 1 .
L L
SRR
Sy = 51)1.1 8(my, ny; Dy), w= 1 s
L ]‘_
. ~
61)2,1 S(mls L Dl)! w= ) 1 H
L | 1 .
where .
1 m=
6 —_ » 3
i {0, m#£n
For the long element w = 1

S, = S(Dym,, ny; D)S(Dymy, 1y Dy)

if (Ds, D,) = 1. Finally, the remaining two Kloosterman sums, corresponding
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to the non-trivial Weyl group elements of order 3 (in the case D, = p,
D, = p? or D, =p? D, =p) are associated to a certain surface over F, (see
Appendix by M. Larsen). Using the Riemann hypothesis for varieties over
finite fields, proved by Deligne (cf. [3]), the multiplicative properties of §,,
lead to Larsen’s bound (Theorem 1 of the Appendix)

(1.18) S, < min {t (D)’ (na, Dz/D1}D'12= T‘(Dz}(mp Ay, Dl)DZ}a

001
log3
=100 |, x=pl
010 g
010
and a similar estimate (withindices 1 and 2 interchanged) whenw=1| 0 0 1
100

It is an interesting problem to determine the Kloosterman sums, and their
associated algebraic varieties, for the groups I, r = 4.
The meromorphic continuations of P,,ll,,z(r; vy, ¥5) and of the Fourier

coefficients (1.17) are obtained in Sections 6 and 7. It is shown that if
{¢P};=1,...» 18 an orthonormal basis for the cusp forms of fixed type (1, 1)
for I';, then P, ., (7; vy, v;) has a meromorphic continuation in vy, v, with

polar divisors at the lines

I}_ +2Iz"—1"'"2N,
(‘119) ‘ 2v1+v2—1 = I’l_l—xz"""le,

1w2I1—Iz~2N,
: . 1"’11—'}._2"'21\;‘,
(1.20) Vi +2v,~1 =< 4, —4; —2N,

20, +7,—1—2N,

~where N 0 is an integer. _ ‘
- In Section 6 (see (6.16) for a precise version) we show that the inner
product (for Re(w;) > Re(v,), Re(w,) > Re(v,))

. _ dx, dx,dxyd d
\| Pnl,nz(T; Vi, vszml.mz (T; Wi, WZ) : : : 3y1 22
ra\H3 (1 32)

also has polar divisors at the above lines with residue (for the lines N = 0)'

proportional to

, h
T 2vtvy vyt vy 2wittwy-l o wy+2wa—1
(1.21) n g m, my! jZ @ aﬁ’l my

where af) . denotes the n, th, n3th Fourier coefficient of ¢V as defined in
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_(1 11), and the constant of proportionality is independent of n,, n,, m, m,. It

is interesting that the continuous spectrum does not contribute any non-
trivial polar divisors.

There are additional intriguing spectral results; for example, double poles
on the diagonal v; = v, correspond to the Gelbart-Jacquet lift [5] from G,
to . Gs.

On the basis of the above results, it can be shown that the Kloosterman
zeta function '

3 =3
Z z S (m1,m2= Ry, n2=D1=D2)D1 vID 2
wsW Dy,Dp= 1

has a meromorphic continuation in v;, v, with polar divisors at the lines
(1.19), (1.20) with residue proportional to

g 1—=2vy=vy I—vy~— 2v2 L=2vy vy 1-vwy—2vy Y
(1.22) " n my P, Z a s 05 g -
i=1

It is reasonable to conjecture, that for any fixed we W, the zeta function

Zv)= 3 S(ml,mz,nl,nz,Dl,Dz)Df“D‘“z

Dl Dz 3

has a meromorphic continuation in vl, vy. In Section 8, heuristic evidence is
developed, which suggests that for

[0 107
w=| 001 |,
[ 10 0|
Z,(v{, v;) has polar divisors at the lines (1.19},'while for
[0017]
w=|100 |,
| 01 0|
Z,{v1, ¥;) has pdlar divisors at the lines (1.20), We are, therefore, led to

ContecTure 1.2. The partial Kloosterman zeta function

(1.23) Z(vy, v) Z Z, (v, v3)

wi=1
has a meromorphic continuation in vy, v, with polar divisors at the lines (1.19),
(1.20), and with residue proportional to (1.22) at these lines, where the constant
of proportionality is independent of m,, m,, vy, n; at the lines N = 0.
The conjecture has the following consequence. :
THEOREM 1.3. Suppose Conjecture 1.2 is true. Then the generalized Ra-
manujan. conjecture holds for r = 3.
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Proof. First, the bound given in (1.18) implies that the partial Kloo-
sterman zeta function (1.23) is holomorphic in the region Re(v) > %,
Re(v;) > 3. Hence Conjecture 1.2 implies that every automorphic cusp form
of type (4;, A,) satisfies Re(4;) = Re(d;) =34, or equivalently that comple-
mentary serics representations de not occur in the decomposition of the right
regular representations of GL(3, R) on #*(I";\ H?). As for the finite primes,
set

vi=dotde, vy =X+ 3e,

and choose m; =n; =1, m; =n; = n. Then Conjecture 1.2 implies that

h
coln =2 3 laf?
j=i

&

(1.24) 1Z (%, +%e, I +30) ~
as ¢ —r 0+, where ¢, is some constant independent of a. On the other hand,
using the bound (1.18), and recalling that
= 1 1
Z DI
as £- 0+, one finds that
(1.25) [Z(Ay+46, A3 +40) <cyfe

for some constant ¢, independent of n. Combining (1.24) and (1.25), the
theorem follows.

While we believe Conjecture 1.2 to be true, it should be pointed out that
there is also reason to be cautious. The conjecture predicts that the zeta
fanction Z(v,, v;) has absolute convergence right up to the point where the
first pole occurs (if one restricts one’s attention to the line v, = v,). This is in
contradiction to the analogous situation with the Selberg K loosterman zeta
function formed with GL(2) Kloosterman sums, where the Selberg—Linnik
conjecture predicts that cancellation between the sums will cause the zeta
function to have a pole-free region extending somewhat to the left of the line
of absolute convergence. '

Finally, let us compare this method with: the results obtainable by
representation theory. We have already pointed out that for a cusp form of
type (v, v2) to exist, the representation g, must be unitary, which implies
that Re{v,), Re(v;) <4. This is the same precise bound obtained by as-
suming that the poles of the Poincaré series correspond to the poles of the
“big cell” Kiposterman zeta function

001
010
100

Z,vi,vy), w=

icm
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By contrast, the Xloosterman sums occurring as coefficients in (1.23) are
smaller than “big cell” sums, so Conjecture 1.2 predicts a result stronger than
that obtainable by representation theory.

2. Poincaré series. Let
Vi Y2 Yy Xs X3

(2.1) T= nox
1

eH3.

We now redefine the notion of an E-function on H®. For every pair of
integers n,, n,, an E-function is a function

Ey ny H*—C
satisfving the condition
14, &
(2.2) Ey iy 1§y |7 j=elm & +nyE0)Ey (D)
1

for all &, &,, £&3eR. Clearly, such a function is independent of x;. In
practice, we shall usually work with the special E-function
(2.3) By {t) =elnyzy +n323)

where z, = xy +iy;, Z; = X, +ip,. An E-function which is also an eigenfunc-
tion of & (see [1]. p. 21) is necessarily @ Whittaker function for GL(3, R).
Now let us fix the notation

I'=SL(3, Z),
1 % %

I, = 1 = [eSL(3,2)
1

where I',, is the minimal ﬁarabolic subgroup of I.
For vcH?, let

(2.4) Loy (1) = ypi 2y 22

and for fixed integers ny, n,, let E, . (7) be an E-function satisfying the

growth condition '

(for Te H?, yy, y; = 0(1)).

Let vy, v, be two complex variables where Re(v,), Re(v,) > 2/3, and

Eqp o, {T) a8 above. The general Poincaré series for the minimal parabolic
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subgroup I',, is ProrosTion 2.1, Let oe #*(I'\H%). Then
(26) Pnl,rlz (Ta Vi, Vz) = Z Ivl,vz (’J)T) Enl,nz (')f’f) ) . 0 oo Yi¥a
relmil . <Pn1,n2= Py = I j(Pnl,n;_ Y1
By abuse of notation, we have not expressed the dependence on E,  n, in the 00 1
symbol P, ., (z: vy, vy). In view of (2.5), it is clear that the series on the right- vy :
hand side of (2.6) converges absolutely and uniformaly on compact subsets of oyt it p 12 dy, dys
H? as long as Re(v,), Re(vy) > 2/3. h Yz nLn2 % ¥
Now, let 4, 4, be the two generators ([1], pp. 33-34) for the algebra of 1 \
GL (3, R) invariant differential operators acting on H3. It is easily shown that where
P, .», satisfies the following differential recursion relations, which we have 111 V&, &
tabulated for two different choices of E-functions. Here A, 1, are defined by Py (D = [1f@{ | 1 &0 |t Je(ny & +ny&a)déy dE, dEs.
the eigenvalue relations - oo 1
A, 1, ,,(t) =44 Ivl,vg(f)a Az 15, (0) =1, Iy v, (1) . Proof. By the Rankin—Selberg unfolding method
FOI' Enl.nz (T) = e(nl X1 + ) xZ)! we have ‘ . . dx1 dx2 dX3 d,V1 d.V2
<Pn1,n2: 9y = _( Pnl,nz(TS vy, V2) @(3) 3
Al Pnl,nz(T; Vis Vz) = j'1 P”l’"z (T; Vis v2) : ’ nu3 (yl y2)
. 2 '
~4n? [n} Pyiny (T; v +%. v2—3) - ‘- @ (7) yi"l vy y;1+2"2 By )dx1 d?;djs)gyl dy,
(2 7) +"2 Ay ,,2(1: Vi— %9 v2+%)]: o\ 12
) : To complete the proof, we note that
A2Pn1,n2 (z; Via Vz) = ;"2 nl,nz'(’c; Vi, v2) P P
woolll
—4n? [0 (1= vy —=2v2) Py, (73 V1 +3, v2—9) ,m{Ha =1l
(1 02— 1) Py, (55 v, =3, v +8)]. and that
Yi¥a
For the case K, ., (1) = e(n, z,+ny2,), we have
1212 - E
A Pﬂ1,n2(T Vi, vz) == }'1 g (T! Vi, VZ) EHI,HZ(T) E(nl 1 +n2 xz) "en2 h 1 ’
'—4132 fty 1y Pnl,nz(r; L3 +%: V2 +%)
_ *he last assertion following from (2.1), (2.2) and the identity
'_677:[”1 141 Pnl.nz('r; vy +%: VZ_%) )
28) Fry vy Py (T v 4, v +9)], 1 x; X3 ¥1¥2
Aanl,,,z(T;vl,vg)=22P,.1,,.2(7:;v1,vg) | i L g 1
1
+87t2 1y Hy (VZ'"Vl) Pnl.nz(r; V1 +%a Va2 +%) :
+omlny vi(vi+2v~ 1) P, Lo (55 vy 43, v~ : Let us close this section by considering the maximal parabolic Poincaré
series. There are precisely two non-conjugate maximal parabolic subgroups
V2 (=20 —va+ 1) Py (25 vy — 4, va+ 9] of I'. Namely
The most useful property of a Poincaré series is that its inner product P ' 1 * *
against an automorphic form is essentiaily the double Mellin transform of P, = x k% |el'y P, =<1 0xx|er

the ny th, a,th Fourier coefﬁc1ent of that form. This is expressed. in the .
following proposition. S _ 001 0 * % “
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1 %
1

(Im ('}JZ))S gminy(a)

For z =x+iyeH? I'* =SL(2, 2), Fﬁo:{[ Jefz} and n= 0, let

(2.9 P(z,8)= 3
pere\r2
be the Poincaré series for . We can now define the SL(3, Z) maximal
parabolic Poincaré series induced from (2.9).
With the convention

S @MY= f ()

for any f: H®— C, we define for n 2 0

P (t.s, 85) = Z

(yeGL(3, R))

(1 vl P, (xg +1yy, sy)v],

(2.10) reFaT
Pris,s0= % (vovd) " Polxy +iyy, s5)l0y].
vePy 2\l
-
Now, for geGL(3, R), let 'g = w'g™ ' w with w = 1 . Note that

1 —

this preserves the Iwasawa decomposition, so 1 gives rise to an involution on
H? which we also write ;.
But, 'P,; = P, , since

ad0 [ ad o0 1f ¢
wibel w=w| b &0 |w=|0¢ ¥
c f1 ¢l O0dd
Hence, we see that

(2.11)

We also have

Pultis, )= ¥

Pn(,T; $1, 52) = PH(T; 51, 82)-

(v J’z)sl Py(xy+1y,, s2)I[v]

vePg g\l
= ¥ 0iw"( % yEUIm
vePg |\ yerZ\r2
Since .
MAr? = P \Py,y
we obtain

212 Pumisisd= 3y T AL = Pofr; 25y, 5, +8),

vel g\l

icm
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3. Invariants of '\ I’ and Brubat decompositions. Let ge I' = SL.(3, Z),
and define the involution

1
(31 L og=wgttw, w1
1
Thus if
11 dyz 013
g=1 431 Qaz Gz3
A, By G4
then

Q3837 — 0150y 833031 —4811823 12023 —0134823
'‘g=1 apA1—ay B, a,,Ci—a34; a3Bi—a; G

ayy By —~a;; Ay a33A1—a3 €y a33C —ax By

If (A,, B, C,) is the bottom row of ¢ and (4,, B,, C,) is the bottom

row of ‘g, then A,, By, C;, A4;, B;, C, depend only on the orbit of g in

' \I'. They are subject to the one relation
(3.2) Al CZ+BJ. Bz"*“C]_A.l =0.
In fact, [1] and [20] have proved
Proposimion 3.1. If A,, By, Gy are coprime integers and A,, B,, C, are

coprime integers such that (3.2) is satisfied then there exists a unique orbit of
T \I with the given coordinates. Furthermore, if

iy g3 i3

g =1 dzy diz Qa3
A4, B, €,

then

Ay =ay B1“"“22‘A1y

By = a3 Ay —ds Cu

Cz = azg Cl“"azs Bl‘

Let W denote the Weyl group of GL(3, R). We also define -

1 ow o *
Go=1" 1% [eGL(3,R), D=] = eGL(3, B).
1 * :
For we W, let

(3.3) Gy =GowDGo
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so -that ’
(34) GL3, R = G, (disjoint pnicn).

weW

We call (3.3) and (3.4) the Bruhat decomposition.
Let ge I' ,\ T with

Gy Qg 43

421 dy3 Qi3
Ay By €

have coordinates (4, B, C,), (4,, By, C;). We shall give the explicit Bruhat
decomposition of such a coset representatlve There are precisely six cases to
consider, and they are contained in the following six propositions,

Prorosition 3.2, Let geI’m\F have coordinates Ay =4, =B, =B,=0,

Cy, C; #0. Then

1 %z, G

dy1 Qg s agy
a1 dy
9= 0 doy 3 - G I 1 fﬂgi.
G : G,
A0 ¢ C, 1

Prorosrrion 3.3. Ler gel \T" have coordinates Al =4, =B; = 0
Cy, By #0. Then

—a,C ar 7]
iy 4y dy3 1 '"*%ﬂl" 010
2 .
= %)
Qay Qzy Qa3 I o 100
1
0 0 ¢ 1 00 IJ
—B e -
2 1 C2 0
Cl B'_), \
X i —
'B'; 1 a;3B,

icm
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Prorosimion 3. 4 Let gel' AT hdue coordinates A, = A, = B2 =0, B,
C, #0. Then

— - — [

. a a
4, a2 43| 110 0 100 T aij-ﬁ
= a B] Cl
0 ay; ax 1 .Bi: 001 » 1 B
0 B, C, 1 L0‘1 0 TR 1

Prorogrrion 3.5. Let gel' AT with invariants Al =0, B;, A, # 0. Then

: a; By —by, [ 4, 4 @22 B ass B, |
ay, 4, a ] 2 U0 01 = R
11 fia 3 | 4, 4 B, J A, Az
== : ‘ Cl
dy1 O3 Qa3 1 0 160 B, 1 B
. ‘ | . 1.
0 By C1 oo i 010]" Ay 1

where by, = ay; 03— 0128,
ProposiTion 3.6. Let gl A\ I have invariants A, =0, A,, B, # 0. Then

g Bl Cl ]
10 — 0104 ‘ — —
dyy Gyo a13| A, | 1 A, 4,
! AZI 1 “"bzsz
= 1 — {001 — 1l —
dz1 Qa2 azaj - 1 4, B, T4,
. . B )
A, B, C, 1 {|100 2 1
Where b22 = all Cl —a1'3 Al"

Prorosimion 3.7. Let geTl \T have invariants A,, A, # 0. Then

_ —_ . — Ty —_

—bay aqy ] ; B, C; ]
dyy Gyp Gy 1 _A;‘“ “Aj'; 11 Ay 1 A_l A_1
; 11 . 4+ . 4, - B,
Qg dap 4o |= 1 A_1 , 1 ) ”'X; 1 A,
S |
‘VAI Bl C1 : 1 1 b ) ""A'""z" 1
L - L P R ' R i R .

where-by; = a,, 4, ~ayy By.
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Propositions 3.2 to 3.7 are easily verified by direct calculations.
Now, for we W, let us define
(3.6) F,="w 1l ,winl,.

Clearly I, is a group which we give explicitly as follows:

i 1
1 , W= 1 ,
| L L
1 m (010
1 , mclZ, w=|100 i,
1] | 001 |
1 ] 100
1rn |, neZ, w=|001],
1 | 010 |
r,= - - - -
1 1 ‘ 001
1n|, LneZ, w=\11001],
1 | 01 0]
1 om 1] [ 010]
1 , mleZ, w=[|001 |,
| 1] | 1090
[1m 1] [ 1]
In|, mlnelZ, W= 1 .
. IR
Let
&y
U= £, |y = %1, 818065 = +1
£3_
Note that
*. * * &y * * *
dyy 3 433 &3 | E1dz1 €3da; 83 4y
A4, B, C, €3 g1 Ay & By 8C,;
sends A; —e A4, B, - B, C,—sC,, Ay —ey8.4,, B,—58,B,,

C;— &85 C;. Thus one obtains representatives of, I',,\G,, » I'(mod U) by
fixing two signs of nonzero invariants. Tt is easily verified that .I', acts
_ properly {on the right) on I,,\I'nG,/U with G, given by (3.3). That is t
say, if geI'nG /U, tel, and T gt = I', g, then v = identity, S

icm
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We shall now exhibit, for every we W, a canonical set of coset represen-
tatives R,, for the quotient space

F'y\G, nIjur,,.
1 .
ProrosiTion 3.8. For w= 1 ., we have
1
1
R, = 1
1
010
ProposiTiON 3.9, For w=| 10 0 |, we have
001
a1y a;; 0
R,=<| -B, c, 0
0 01

where (By, C;) =1, B, >0, Cy(modB,), and for each pair (B,, C,), a,
and @y, are uniquely chosen so that a;, Cy+ay, By = 1.

100
ProposiTIoN 3.10. For w=| 00 1 |, we have
010
1 0 0
R, = 0 az; as
0 B, C,

where (B, C;) =1, B; >0, Cy(modB,), and for each pair (By, C,), 622,
ayy are uniguely chosen so that Gy, C;— B ity5.= 1.

001
ProrosiTioN 3.11. For w=| 1 0 0 |, we have
1010
811 Gy2 13
A
R, = B—f 2C, BC,
' .0 B €y
where (Bla Cl) = 1) Bl >.O= Cl (mOdBl)s- (AZ/BII CZ) = 1: A2 > 03

Cy{mod 4,), B, B,+C{ A, =0, and for each pair (B.i, C\), o, B are uniguely

d . Anta Aritheaerion &N
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chosen 50 that aC,— B, = 1. For every guintuple (B;, C,, A;, B2, C3), a4y,
a3 are uniguely chosen so that the matrix has determinant one.

a2,
610
ProrosITION 3.12. For w=|{ 00 1 [, we have
100
rau A1z 3
4 a,, B
R, = a3y 2_;1—1“ da3
A, By
where (Ba, Co)=1, By>0, Cy(mod B;), (A;/B,,C))=1, A, >0,

C;(mod A}, A; C;+B{ B, =0, and for every quintuple (4., By, Cy, By, C3),
A1y, @13, Gy3, Ga1, dp3 are uniquely chosen so that the matrix has determinant
one.

1
ProrosiTioN 3.13. For w= 1 , we have
1
Q11 @12 Gy
R, = a1 Gz Qa3

where Al: AZ > 0: Bl: Cl (mOd Al): BZa CZ(mOd A2)s (Al’ Bl’ Cl) = 15
(A5, B,,C;)=1, A, C,+B B,+A4,C, =0, and for every sextuple
(44, By, Cq, A3, By, C3), @yq, @y, das are uniquely chosen so that

Ay =ay By—a224,, By=a;3A4,—a;,Cy, Cy=a;,C,—ay3 By

and a,y, a;,, a,3 are further chosen uniquely so that the matrix has determi-
nant one. .

4. SL(3, Z) Kloosterman sums. In the Fourier expansion of the Poincaré
series (2.6), certain exponential sums, reminiscent of classical Kloosterman
sums, appear. Although the actual Fourier expansion computations are
carried out in Section 5, we shall now . introduce and study the new
Kloosterman sums that occur there. It is interesting that there are two
distinct such SL(3, Z) Kloosterman sums. They are given as follows. Let
my, My, Ay, meZ Then for Dy, D,eZ”, the fist type of SL(3, Z)
‘Kloosterman sum is -

4.1) S(m;a My, ny, Nyy Dy, D)
. my By +”1(}’192*2132)+m232+”2(Y2D1“‘2231))

| =Ze( Dy Dy

icm
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Summation is over By, C;(mod D,), B,, C;(mod D,) such that (D,, B,, C,)
=(Dy, By, C))=1and D;C,+B, B,+C, D, =0 {mod D, D,); for such B,,
Ci, By, €y, we have chosen Y;, Z,, Y,, Z, such that

Y, B,+Z,C, =1 (mod D,),
Y,B,+2,C, =1 (mod D,).

We show in Lemmas 4.1 and 4.2 that the sum (4.1) is well defined; that is to
say, 1t is independent of the choice of Yy, Z,, ¥,, Z, and also independent of
the choice of representatives B;, C, and B,, C, of the residue classes
(mod Dy) and (mod D), respectively.

The Kloosterman sum (4.1) can also be written as

(42) S(m17 mz= Ry, nl; Dl: DZ) mzenl,nz (bl) emz,ml (b?.)

where the summation is over ye ', \I'/I,, y = b, wdb,, with b, b,eG,,
where

1 Dy
w= 1 , d= —D,/D, >
1 1/D,
and where, if
N 1 B2 Bs
b= 1 B leGy,

1

and ry, r,€Z, then e, ., (b) =e(r, By +72 Ba).

The second type of SL(3, Z) Kloosterman sum arises only when D,|D,.
It is given as :
1C1 +n1 51 C2+ nzéz )

D, D,/D, )
where the summation is over .C,{(mod D), C,{(mod D;), (C,, Dy)
=(Cy, DyfDy) = 1, and where C,, C, are chosen so that C, C, = 1(mod D,)
and C,C, = 1(mod D,/D,). . .

We now show that the Kloosterman sum (4.1) is well defined.

Lemma 4.1, If (Dy, B,, Cy)=1, D; #0,

D,C,+B, B,+C, D, =0(mod D, D,),

and if X, D+ Y, By +Z,Cy=X1D,+Y{B,+Z,C,, then

Y, D,~Z, By _Y{D,~Z;B,

D, D, {mod ,1).” |
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Proof. Changing the value of C, if necessary, we may assume that
D, C,+B,B,+C, D, =0. The vectors {(C,, By, D3> and &y, 1, () =
(X=X, Y,—Y!, Z,—2Z,> are both orthogonal to {Dy, B, C;), so théir
vector cross product is parallel to (D, By, C;>. Hence, there exists a
rational number 4 such that

1 Dy—{ By, {4 Ca=81 Dy, s By—my Ca)y = A<Dy, By, Cy).
Since (D;, By, C{) =1, A must be an integer, and so

%,D,-2\B, , YiD=ZiBy
D, D, '

It is not a priori clear that the sum in (4.1) does not depend on the
choice of representatives B,, B, of the residue classes mod D,, D,, respect-
ively; and indeed, there is a slight nuance regarding this point. The sum
would more properly be written

e( ),

By(modDy) Cy(mod D)
BaimedDg) Colmod Dq)

where the inner sum is subject to the conditions (D,, By, C,) = (D2, By, Cy)
‘=1, D, Cy+ BB, +C, D, =0 (mod D, ;). We now have the following:

Lemma 4.2, The sum
Sy, (my, my, ny, g Dy, Dy)

my Bl+n1_(Y1 DZ_Zl Bz)+n12 B;'I'nz(Yz DI_ZZ 'Bl))

=Ze( D, D,

(The summation being subject to the conditions (D, By, C,) = (D5, B,, C;)
=1, and D, C;+ B, B;+C, D, =0(mod D, D;).) depends only on the residue
»lasses of B,(mod D,) and B,(mod D,).

Proof If By =B;+.1D;, we show that

Spy.8, (M1, Mo, 1y, Na; Dy, Dy) = Sg; 5, (M1, M1y, 1y, 125 Dy, Dy).

For C;(mod D), C,(mod D,) satisfying (D,, B,, C,) =(D,, B;, Cy) =1,
D, C,+B,;B,+Cy D, =0(mod D, D;), we associate C(mod D,} and
Cy(mod D,) where Cy = C,—1B;, so that (Dy, Bj, Cy) = (D,, By, €3} =1
and D; C3+ B B,+C, D, =0(mod D, D,). 1t follows that Y\ B\ +2Z,C,
= 1(mod D), ¥;B,+Z,C, =1{mod D,) where Y;=Y¥,+.1Z,. Summing
over all C, and C,, we obtain

Sp, .8, (my, my, ny, ny; Dy, Dy) = Spy b, My, My, 1y, 1y 5 Dy, Da),

the point beipg that Y;D, -2, By =Y, D,-Z,8,. =

icm
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Thus the SL(3, Z) Kloosterman sum S(m,, my, ny, ny; Dy, D,) is weli-
defined. We now proceed to develop some of its properties.

ProperTY 43. If pyq; =prq;, = 1(mod Dy Dy}, py, g1, Pz, 426 Z, then
S(p1my, pamy, Gy 1y, o025 Dy, Do) = S(my, my, ny, ny; D, D).

Proof. Given (D,,B,,(,)=(D,,B,,Cy)=1, D,C,+B,B,+C,D,
=0(mod D, D,), let ¥, B;+Z,C, = 1{mod D,), Y, B, +2Z, C, = 1(mod D,).
Also, let

B| = p, B, B, = p, B;,
Ci=pp2C1, Cr=ppCs,
W=q¥, Y;=4g,7,,
Ly =qi14:2Zy, Z3=q14:2,.

We have

(D, By, C}) = (D3, B3, C5) =1, D, C4L+B B+ C, D, =0(mod D, D),
Y{Bi+Z,Ci=1(mod D), Y;B,+2Z,C, = 1{mod D,).
Now
E(P{_m1Bl+QI "5(Y1Dz“"Z1Bz)+P2szz+Q2”12)(Y2D1”2231))
1 2

_ e(fm Bi+n; (YD, -2} B'z)+mz By +n, (¥, D, — 25 BY)
Dl D2 )
Summing we obtain Property 4.3. =
PROPERTY 44. S(my, mg, ny, ny; Dy, Dy) = S(ny, 0z, my, my; Dy, Dy).
Proof. Given (Dy, By, C;) =(D;, B;, C;) =1 such that D, C,+B, B,
+C1 Dg_ = O(mod D1 D2)> let X1 D1+Y1 B1 +Zl Cl - 1 B.I‘ld X2D2+Y2B2
+Zz C2= 1. AiSO, ]et

By =Y, D;—Z B,, B, = Yz_D1_Zsza

C, =2Z,, Cy=2,,
Y=X.8,-Y,C,, Y;=X,B,-Y,Cy,
llmcz, ’2=C1.

We have
/B +Z:C) = Y1_31+21 Ci+D,Cr(X, 2, + Y, Y.+ Z, X;)(mod D, Dy),

SO '
Y/ By+Z} C; = l(mod D).

Similarly, o
Y;B3+25C, = 1(mod Dy).
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Also, we have
D, C2+ By B3+ Ci Dy =D, DX Z,+ Y, Yy +Z, Xy) = O(mod D, D)
and
YWD, —Z1 B, =B (X, D+ Y, B,4+Z,C,) = B (mod D, y)
and similarly

Y;D,—Z, B, = B,(mod D, D).

Thus
(’"1 By +n(YyDy~2Z, By) myBy+ny (Y, D, —Z,By)
e -+
D, D,
_ (”1Bl1+m1(Y1’Dz—Z'1 2) M By+my (YD, —Z) BY)
=¢ + .
D]_ DZ

Summing, we obtain Property 4.4. .
PropPerTY 4.3 S(ml, Mq, Ny, Ny Dli Dz) = S(mz, my, Ay, Ny, Dz, D‘l)'
Proof. Trivial
PropERTY 4.6. If my =m), ny=ni(mod D), my=m}, ognd n,=

n, (mod D), then

S(mI: mz: Ry, Ra; Dl: DZ) = S(m;: m’2: n’].!.nrz;i‘Dla Dl)'
Proof. Trivial.
ProeerTY 4.7. If (D, D,, D\ DY) =1 and if
D, D, =D, D, = 1{mod Dy Dy), DD, =Dj,D;=1(mod D, D,),
then
S(my, ma, n, ny; Dy DY, Dy DY) =
N0 Dy my, D, Dy my, ny, ty3 Dy, Do) S(DF Dymy, DEDy my, ny, ny; DY, ).

Proof Let p and p’ be" found so that pD, D,+p' D) D) = 1. Given
(Dl, Bl’ Ci) = (Dg, ‘Bl’ CZ) = ]., Dl C2+BLB2+C1 Dz EO(mOd ‘Dl Dz) Elnd
(D1, By, Ci)=(Dh, By Cj) =1, D)Cy+B)B,+C; Dy =0(mod D} D3),
let '

d, =Dy D}, d; =D, D3,
by =p' Dy D;B,+pD, D, By, b,=p D\ D;yB,+pD, D,B;,
¢, =p2DED,CL+p*DiD;Cy ¢y = pPDIDFC,+p* Dy DAC,,
Then - | | . '
(dys by, cy) = (dy, by, Cz) = 1,
dycy by by+cydy = 0(mod d, d,).
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Let
i=pD1DyYi+pDi D, Y], y,=pD\DyY,+pD, Dy Y;,
2, =P Dy DRZ,+pD D3Zy, z,=p D2DyZy+pDiD, Z5.
Then
Vibi+zic, =1(mod dy), y,bs+2,¢, = 1{mod d,),
my by +nfy dy—z, by) _m p'DyBy+n, p DE(Y,D,—~Z, B,)
d, Dy

LmipD Bitn, pDi (¥, Dy~ Z B))
D;

(mod 1),

with a similar identity for d,.
Summing, we obtain

S(my, my, ny, ny; dy, dy)
=S’ Dymy, p'Dymy, p'DFny, p' D ny; Dy, Dy)
xS{(pD,my, pD{ m,, pD3n,, pD¥n,; Dy, DS).
But '
D, = pb,, D, = pD{ (mod I, D),
Dy =¢D;, Dj=p Dj(mod D, D)
and Property 4.7 follows from Property 4.3. m

PRO_PERTY 4.8.

S(ml-a Mg, My, My, -Dla 1) = S(mls By Dl)

and
S(my, my, ny, ny; 1, D) = 8(my; ny; D)
where '
am+dn
Sim, n; D)= - e( ) .
a(m;dﬂ) D
af =1 {mod D) ™

{a,D)=1
is the classical Kloosterman sum.
Proof. Trivial.
ProperTY 4.9. If (D4, D;) = 1, then
S(my, mg, ny, ny; Dy, Dy) = S(Dym, ny, D1} S(Dymy, ny, Dy).

Proof. This follows by combining Properties 4.7 and 4.8.
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. Finally, we conclude our discussion of the big cell Kloosterman sum
(4.1) with an explicit evaluation in the case D, = p where p is a prime. To
this end, set

p—1,  plm,
-1, pAnt.
Proprrty 4.10. Let p be a prime. Then

(@) S{my, mying, na:p, p)=8(p, n)8(p, my)+3(p, m)8(p, ny)+p—1.
by For I > 1,

alp, m = {

Simy, my, 0y, ny: p, py = 6(p, 1) S(ms, 1, P P)+8(p, m) Sing, my p, ply.

Proof To evaluate S(my, my, ny, 0y p, pY, we must sum over
B, Ci{mod p), B,, Cy(mod p') such that (p, By, C;) =(p, By, C;) =1
and

(44} PC2+31 Bz'i'pi CL = O(mod ]JH-.I).

For 121, this implies B, B, = O(mod p). We split the sum into subsums
over the three possibilities;

(1} By =B, = 0{mod p),

(2) By =0(mod p) and B, % 0{mod p),

(3) B, = 0(mod p) and B, % 0(mod p).

In case (1) we can choose B, = 0 by Lemma 4.2 and the sum is empty
unless =1 where one gets p—1.

In case (2) we may choose Z, =C,, Y,=8B,; Z,=0 so that C,
18 uniquely specified (mod p') by (44) and the sum is reduced to
3(p, n) S (my, nyp, p).

Finally, in case (3) choose Y, =B,, Z, =0, ¥, =0, Z, = C,. Write
B, = pB; where Bj is determined (mod p'~!). Then (4.4) becomes

Cy+By By+p'~ ' C; = 0(mod p').

When I'=1, By =0 and the sum reduces to 8{p, m)d(p, ny). For > 1,
since p¥C,, ptB,, the sum reduces to

B B, ~n, C
Ze(ml 1+m2P 2 :“h’zczBi)
p 14
where the summation is over By, C;(modp) and Bj(mod p'~1) such that
p4¥ByB;, and where C,= —(ByB,+p'~!C,)(mod p). Summing over C,
first, we get 0 unless pln,. When pin, we then sum over B, to obtain
o(p, m)$(my p, ny, p). Since §{m,p, nz, p)=0 unless pln,, the proof is
‘complete. '

We now consider the second type of Kloosterman sum (4.3).
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Property 4.11. S(my, ny, 053 Dy, Dy) depends only on m,(mod D)),
ny (mod D,) and n,(mod D,/D,).

~Proof. Trivial.
ProrerTY 4.12. If pygq, = 1(mod D)), then

S(pymy, gy, nys Dy, Dy) = 8(my, ny, ny; Dy, Dy).

Proof. Trivial.
Property 4.13. If p,g, = I(mod D,), then.

S(my, pang, q2np; Dy, Dy) = S(my, ny, ny; Dy, D).

Proof. Trivial.
PropERTY 4.14.

: n, C
S(my, ng, nyi 1, Dy) = Z e(‘%—z)
Co(mod D 2) 2
€3.0=1
Proof. Trivial . _
ProrerTY 4.15. Let (Dy, D3) =1, Dy|D,, Di|D;. Then
8(my, ny, ny; Dy DY, Dy DY)
= §(m, B?, ny D, "21-352§ Dy, Dz)'S(m1 D,, ny D;, ny D3; D, DY)
where
D, D, = 1(mod D), D,D,=1(mod D),
D, Dy = 1{mod D;), D,Dj, = I(mod D).
Proof. We compute the right-hand side. It is given by

D,2C, DicCh D, C, D¢
49 o e("Z(D~ 5, * D, sz)"*"ml( b, D
€ (modDy) CyimodDy) /D, 2/D1 1 1
Cy{modD3) Ch(mod DY) L
(DyC,C, D,CL Y
+n1 ( D1 + D’l
. ( (Da"-i"z Cy/Di+ D, D3 CY/D, )
= (3 nz ;
Cy(mod Dy} € (mod DY) D, D3/Dy Dy

Co(mod Dy) Ch{modDy) ' . e
D, D, C,+D,D,C} D, Dy C, Cy+ Dy D, C) c;))

1 ] +n1 N 2
D, D} D, D, .

the summations on both sides of (4.5) being subject to the conditions

(Cy, D)) ={C1, DY) = (Ca, D DTY) = (Co, D2 DT ) =1
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Let us now choose p, and p; such that

(4.6} pDy+pi Dy =1,
and set
€ =piCD1+p C1 Dy, €, =Cy D\ Dy +Cy D, D,
Note that
47 (Ci, D) =(Cy, Dy =1 = (%,, D, D) =1,
D, ( D, : ( D, D)
4.8 Cy, == €, =1 = | %, —|=1,
o ()e(@ ) = (022
(4.9 As C, varies {mod D,) and (| varies (mod D)), %, varies
(mod D, Dy).
(410) As C, varies (mod D;) and C} varies (mod D)), %, varies
(mod D, D),
(4.11) %, =y C, Dy +p; C; Dy (mod Dy D).

The last ass&rtion follows from

Dy) =(p} Cy Dy +p, Cy D) (py €, D +p; CL D)
=pP DE+piDl = 1(mod D, DY),

6 61 i +P1

where the last congruence follows by squaring (4.6).
Now, take p, and pj so that

4.12) PaDa+py Dy =1.
We claim that

7

_ - D
(4.13) G =pFCo=24p
Dl

—D D, D,
2Cl ] od 2 )
2 2D,( D, D;

In fact, if we multiply the right-hand side of (4.13) by %,, then we cbtain

: , ~ Dy =D
(C2.D4 +CDD2)( 5 p%czﬁf)

=C,CyptD F+Ch 2P2D2-—P2 Dz +piD

D, D,
(mod ‘**‘2"—0"7)
where the last congruence follows by squaring (4.12).

Consequently, we may write in a well defined way
D —D, D, D,
@, =Dy*C 2+D2 d 22

, 2 Y~ b, mo D.D, )
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Hence
¢ %, =, C, \+p1 Cy D){(C, Dy Dy +C, Dy Dy)
=nC CZD'EDM ¢, Cy 3D,
=C,C, D Dy+C; CyD, D, (mod D, D)),
the last congruence following [rom (4.6). We thus obtain
@414 @ %, =D1D,C,C,+D, D, C} Cy(mod Dy D).

If we now combine (4.7) to (4.14) we see that the expression on the r1ght~
hand side of (4.5) is equal to
n, Cy mCy nCC,
5DyDy DDy Dy Dy

( )ms(mlanu”ziDlD’i:DzD’z):
%-I(modDID’l) D2
#a(modD D)

where the summation is subject to the conditions
(Cy, Dy DY) = (Ca, (D, DTH(D DY ) =1. »
ProperTY 4.16. Let p be a prime number. Then for b >a >0
S(my, ny,ng; pf pf) =0

unless b = 2a, or ny =0(mod p*~2%) and b > 2a, or n; = 0(mod p**~") and
b < 2a. _
Proof, We first consider the case when b > 2a. Let b =2a+1 [>0.

Then C,+p'(m C ¢, C)
. n +pim +n CyCp
4.15) S(my, ny, nys p )= Y e( 272 L )
: a r
'y {mod p4)
Co(mod pb)
where the summation is subject to the conditions (C,, p) = (Cy, p) = 1, and

where
C, € =1(modp’), C,C,=1(modp'™).
Now, suppose n, = 0{mod pf), ¢ <! and n, % 0(mod p°*'). Then ]e?

Ca = tho+ 1y PHoootligyrmemy P*T T bty PP
where .
I<uy<p and O<u<p (for 0<is< 2a+l—1)
Siinilarly,
Com ot thpgmom PP Mt PP
where ' '

l<u,<p and O<uy<p (for 0<i<2a+i-1).
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If we substitute C, and C, as given above into (4.15), replace n, by nj p*
(ny = ny pf), and pull out the sum corresponding to 0 < u, -,y <p, we
obtain a sum

i /
Rylyyi-e—1
e(__.ﬂ_.__...c_... = 0.
Ofugtr—e-1 <P P

This establishes property (4.16) in this case.
If b <2a, let b=2a~1 with a > [ > 0. Consequently

Z e(nzézpl‘l“mi C1+n1 (—jl Cl)

(4.16)  S(my, ny, ny; % ) = o
C_l[rnodp“)
‘ Cq(mod pb)
where the summation is subject to the conditions (Cy, p) =(C,, p) = 1, and
where C, C, = 1{mod p%, C,C, = 1(mod p*79).
' Now, suppose ny =0(modp9), ¢ <! and n, #£ 0(modp°™!) so that
ny = ny p° with pjtn). We let

CZ =tpt.. '+ua—c—lpa-c“1+---+u2a-i~—1 pZu—I-—l

where

L<ug<p and O<w<p (I<i<a-I-1)
Similarly

Co=tlg+. Aty P75 Uy PP
where V

dI<uyy<p and O0<u<p (1Kig<2a~1~1).

If we substitute C, and C, into (4.16), replace i, by n} pf, and pull out
the sum corresponding to 0 < u,_,_, <p, we obtain a sum

WGt
Z e (1’11 1Ugee—1 ) = 0
O0fuy gy <p Iy
since (Cy, p) = 1. This completes the proof. =
PropeErTY 4.17. Let p be a prime number. Then for az 1,

p*—p*=t i plmy and pin,,
S(my, ny, ny; py ) = < —~p27 1 if p“"‘lim_l and p°|ny,
{0} otherwise.

Proof. Omitted.

ProperTY 4.18. S(my, ny, ny; Dy, Dy) = 0 unless n,D,/D?*e Z.

Proof, This follows immediately from the multiplicativity relation given
in Property 4.15 and the vanishing criteria given in Properties 4.16 and 4.17,
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If D,|D,, define
Sl (nll.: My, Ry, Ny Dl: D?_) = 5m2,n1D2/D%S(mla Ry, s, Dl) DZ)

{0 = Kronecker delta).

ProrerTY 4.19,
D3} D
Sl(mlﬂ mz: My, nZ: Dln Dl) mv_lSl. (nlv nla mz: ml; '_2": Dz .
D, D,
Proaof. Trivial

5. Fourier expansion of Poincaré series. Recall that an arbitrary
pe L*(I'JH?), I = SL(3, Z), has a Fourier expansion (see [16], [19]) given
by

@ w e
CRY D)= Y @om,®+ T XN X Oupmy(77)
my= @ yerarzmy=1lmy=1
where
AB
r’=<\cp ||A. B C,DeZ, AD—BC= %1 >,
Lo
1 B
I = 1 |‘BeZ
1
and
111 142 ¢
I,Dml‘mz(’f)zt[&[.ifp 1 & |t je(—me &y —mylo)dd dE,des.
1

The main purpose of this section will be to give the Fourier expansion
of the Poincaré series
(52) . Pnl,nz (T» vl? v?.) = Z lvl,vz (')I’C') Enl,nz ('}]T)
yel g\l

where Re(v,), Re(v;) > 2/3, and for

YiVa Xa2¥1 X3

T= vy, xy |eH?,
1

o Avptvn vty
Iul,vz(T) — yl Y2

while E,, ,, (1) is an E-function as defined in (2.2). For later applications, we
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always choose _

E, o, (1) = €(ny (xg +iyy /M) +12(x, +iyy/ M)
for some integer M. Since an E-function does not depend on xs, it will be
convenient to set

(53) Enl,nz (T) = Enl,nz (Zla ZZZ)

where z; = x;+iyy, Z3 = Xz+1iy;.
Tueorem 5.1. Let Re(v;), Re(vy) > 2/3. Then

‘11 1 &, &
§§1Puyny L& |t |ed—my & —mylo)dE, diyddy
200 ]

o

=e(my x+m; xz)Ivl,vz(T} E Z Z Sy(e1my, 82my, By, Ny; Dy, D))

weW gg,89= 1 D.Dy=1

3vy pm3v2 . . .
x Dy D, T (V1 Y23 i, V2i 8 My, 83 My, ny, Ha; Dy, Dy)

where S, are the Kloosterman sums and J,, are the integrals given in the
following table:

(54) Table of Fourier expansion data

Mw=]|" 1
1
S,y ma, ny, Nyl Dy, DY) = 5,,1_; -51,2.1 (Kronecker delta),
Jw(yls Yai V1. Va3 By, mzs. My, 1y, Dlv Dl) == Jml,nl 6mz.rl2 Enl.n2 (}’17 yl)-
010"

100 |
001

1f we=

Sulmy, ma, 0y, nyi Dy, Dy) = c‘i,,l_lZe(wmz—l-a’nz)D; )|
(summation over a =1, ..., Dy, (g, D) = 1, af = 1{mod D,)),
Ju (s Pai vy Vol my, g, Ay, g Dy, D)

=8, 00m0 | E3H¥ T E, L, (0, ~(8ativ) ™ DI e(—my EdEs,

100
001
010

1Ifw=

8, 0my, my, g, 02y Dy, DY) = 502,122{(am1 +En,)D{1)
(summation over a=1,..,, D, (a, D{) =1, 6@ = 1(mod D)),
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TP, Mo Vi Vat My B, s Hyl 2, D;}

. - = 3v2 . . - -1 -
= 8,08 By ({8 +ip)7 DT Oje(—my E1)dEs.

Moy

o L E+

00§

100,
010,
Sy gy 1, it Dy Dol o= T e(ny 0y Dy oy O DY Ay ¢, C,D N,
{This term only occurs when D(D;. Summation is over €, (mod D), Cy(mod D,),
(€ D s |, (Cyy DD = 1Oy Himod DDy, Gy €y = 1{mod Dy}
myhdor Ny -\I‘ _\-'; (& + il

) B & Ty ZYHER R D D03 (g (& 22T (01 D2 N)el—m ddd, dEs
where Z, = &3+ & i+ vias

Ifwe=

. S 3vpid ., Bvail
Julprs Pai Vpa vai Mpe g, i1y Bl Dy Do) 8 "z

EURSY

001 |

100

Sy, g, Ay igs By, Do) e 3o (ny €D D3 Vb m € Dy T, &, C DY)
(This torm only wecurs if Dl . Summation is uvcrﬁc‘l(mod D), Calmod Da), (Ca, D)
=1, (C,, Dy Pyl =1, €€y & Limod D, D31, €, 0, = 1{mod Dy))

I w =

—-3vy/2

* - 3u,/3
) L e
Jolias Yo v Vo s Mg, iy, s Do Dgd = ‘)’mln"é..rzm L ,_",r.és

G+
® By ng ((f:"i Ay (83 D)) 25 (D, Dy (8 Eatin VAR (E + D) D, D3 et —nm &)y

where Zy = &34 64yt 4yl pi,

001
010{,
100
Selmy, Mz, g, 15 Dy, D)

mze((mz Bym (Y, Dy~ 2, B2l D3 Ly By ng{Ya Dy -—Zsz)]D;‘)‘
(Summation over By, €y (mod D), By, Cylmod Do), {0y, By, €)= (D3, By, C;) =1 such
that D, C'yek By By D3 € m 0(mod Dy D) here ¥y, Z,, Yz, Z; are chosen so Y, B,
2, € e lmod By), VBt ¢y = 1(mod D3))

Ifw=

w e w L Avy (R o vyl ;

. = Za 7 Tef{—my & =myf

Frs Yt Ve Vs s g M gt D Dy = [ f T Za T T el Gy 252!
I

CEyp (b £1 6oy ZUVZ3) 0207 (= Eadam b V10 ZH 207 D1 DTN
where 7 = 83+ E3yi i pd, Zo = S+ &Rl b= &y —£a.

010 1090
Remark. Note that the sums arising from the w = 100,001
010

001
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‘ 001
terms are classical Kloosterman sums. Forw=}) 100
‘ 010
Swlmy, my, ny. ny; Dy, Dy) = S(my, ny, ny; Dy, Dy)
0190
is the sum introduced in (4.3), while for w=1{ 0 0 1 |,
100
Swlmg, ma, ny, nzy Dy, Dy) = S(my, ny, ny: Dy, DY),
1
Finally, when w = 1 , Sy is the sum introduced in (4.1} with mj and

|
my exchanged, S, (my, my, ny, ny: Dy, Dy) = 8(my, my, 1y, ny; Dy, Dy
Proof of Theorem 5.1. Let
£y
U= &g |Ei—-"+‘1 E1E9 83 = +1
&3

s0 that U has exactly four elements. We can then write

Z Z IV1.V2 }’T)E"I'”Z '))ll'f)

rel o\ wall

Pni,nz (T; Vi, Vz)

The Fourier expansion is, therefore, given by

111 1§ & _
(5.5) b[i!b[Pulmz L&y [ Je(—my & —Mmy Eo)dE  dEy dEy
1
111 Yiy: vy &
=e(m, x1+m2x2)"r‘[_“Pn]_,nz o€y
000

1
xe(—my & —m, E,)dE, dE, dé,

YiVa yiéa &

11¢%
=€(m1 X1 +m2x2) Z | r I W
vsrm\nuaevbou[ w12 Bugny 1 ‘:11'

xe(—my &y —my &) dE, dé, dé;.
But each u sends some § to ~¢&, and this can be undone by a simple
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variable change. Hence, we see that the above integraﬁ is equal to

111
(56) C’(ml .-\‘1 “WL‘HIZ .\'2) Z ‘ f "I“I"'Z
- Q00

£1.83= 1 ye I \TJU

Viya ¥ 8y &y

By {7 oS e(—my ey &y —my8yCa)dE dEs dEs.
1
Now, I',. given by (3.6), acts properly on the right on each
. \G, /U,

Hence, using the Bruhat decompositions given in (3.3), (3.4) and Proposi-
tions 3.2 to 3.7, we can compute

-4 “
YiVa Viswz &3

111
(5'7) I'= ‘ ‘ (I R "1 "y 7 ¥y él
yelG\JU 000 |
xe(—my &y ~myEy)de, dlydls
111
= 2 2 sl BRI
wel yeRy, .!e]w()OO
y=bqwdby
bl.bzeGm,deﬂ
_3’13’2 vid: &
X Ey; ny wdby 1| - o6 e(—ny & —my&a)dly deadls
17.
‘here
1 x5 * _
€y nn I ox =e(n; x; +n,X,)
1
and

R,=T \G,nI/ur,
is the set of representatives given in Section 3.
Note that we have used the basic Property 2.2 of an E-functlon to bring
out the factor e, ,,(by)
Now, by (3.6), we see that I',, is one of the following six types of
subgroups of I',:

t 1 1 1 % =* I % 1 % =
1 . 1 . RIEN P 1 , 11, 1 *
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Since I lies in one of the above groups, a simple change of variables in ¢,, ¢,,
&, on the right-hand side of (5.7) yields

(5‘8) I = Z Z enl.ﬂz(bl) ‘ IVI,VZ
weW yelg\(Gy nNUT, Dy
y=bywdby
yiy2 ¥1 &2 &s |
XEp | ny | Wdb2 yo & e(—my & —my Ep)dE, deydes
1

where in the &3 x&; x &, space

o -
[0, 11 %[0, 1] %[0, 11, w=| 1
010
[0, 17 x[— 0, 0] %[0, 1], w=|100]
001 |
100]
[0, 1] %[0, 1] x[—o0, o], w=|001]|,
010
39 @,= -
1001
[—o0, 0] %[0, 1] x[—oc, 0], w=|1060]
| 010
| 01 0]
[—ov, 0w)x[~, 0] %[0, 1], w=1001{
' [ 100
el -
[0, 0] x[—ow0, 0] x[~ow, e, w=1] "1
_1 el
010
Actually when w = |1 0 0 | further justification of the above is required;
001 '

. (5.8) holds since the ;-integral is independent of the interval of integration
- provided it 18 connected and has length one. This follows from Table (5.12).
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Let

1 B2 Bs

bz == 1 ﬁl

1

‘Consequently
Y12 Wié2 & 1Yz VillatBa) S3+B 8+ B
b, v & = Vi ¢+
1 1

If we now make the change of variables
i —~&i—Bi, Lo &P Ca— Bl B
then (5.8) becomes
{5.10)
111
I= Ivl,vg(T)Ewl,nz V1, ¥2) _fjje(("l_m1)§1 +(ny —my) ‘fz)d‘f1 dt,dé,
o 000

+ 2 Z enl,nz(bl) eml.mz (bZ)
welW ye g NGy DU T,
R y=bywib,
1

t

yiy: ¥y1éa &3
x f Ivl,sznl,nz wd .yl £y
gw.bz 1
xe(—my ¢y —my &rlddy ‘_lgzdéa
for a certain domain of integration &,,, depending only on w and b,.
We now tabulate w, b,, d and sz explicitly by using the canonical

representatives and Bruhat decompositions as given in Propositions 3.3 to

3.13. Tt is remarkable that ultimately the integral [ depends only on d,
@W,bz

001 010
except when w1 1 00 |. | 00 1 | in which case an extra exponential
010 100

factor arises which is absorbed in the Kloosterman sum.



icm

68 D. Bump, S. Friedberg and D. Goldfeld
W d b, ff/“w‘bz
- 1 % .
010 -B, 1—29
B,
1 0,1 —w, 0,1
100 1 1 0 [0, 1] x[—a0, 0o] %[0, 1]
B,
001l L 1 1.
1007 B 7] 100
001 B &
! E: P[0, 1] %[0, 1] x[—co, o]
0190 ! 1
L L B,
loo 1l T4z T[], %C:B1 fCs B,
B, Ay A,
C «C, B all, By ]
100|1 Bl_ 1 E:- [*w,oo]x[*??z_‘.lqnh*jz“]x[-ao,oc]
i .
010 — 1
. N _ 5
010 |4, B4
4, A,
1 ""bzsz ”bziﬁz bZZBl_
Qo1 — 1 -0, w]x[—o0, 0] X[, | e
5 4 [ Ix[ ] Al )
100 B: ,
o L A,
1 A, 1.B_‘ 9&.
A A
"AJ. "'"BZ
1 R [—o0, 0] x[—w0, o] x[—w, wl
4y Ay
1
1 — 1
. A,

Now
(511) Sw(ml-: My, 1, d) = enl,ng (bi)eml,mz(bz)
el MGy UL,
y=b1wdb2'
- dfxed

i§ the  Kloosterman sum appéa_ring in Theorem 5.1, except when
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001 010
w=]100]|,] 001 |. It remains to be shown that the integral . |-
010 100 Fw.by

can be transformed into a suitable multiple of J,,.
Let

V1¥2 y2&2 & Yiye yixh x5
wid wn & ¥ioox
a1 1

mod(0(3)- Z)

where Z is the center of GL(3, R) consisting of scalar matrices.- For
convenience, led d have the same signs as those specified in Propositions 3.9
to 3.13 (ie., B, > 0 in the first row below, etc.). We give xj, x3, x5, ¥, y2 in
the following table.

Table (5.12)

x} x5 x3 » Ya
0107
—-&, &y i Yz
100 ~B, ¢ e B By (3+00) | g
] : BiE D B, BT B3 (&3 +D)
001
=1 00 :
""61 §1£3+‘52y% ¥ 2 212
001 g e B{& &—¢ By (&3 yhY
o BE WG YrEy | maon |
0017 '
100 é(ﬁl E+ED —B, AL Z 1 Ay, Z3* By ya (£ +yP2
o010 ]) B & PRERSe B A,EHy | BEEED AFZ,
£y =i daba
Zo=¢Ei+yiii+rla
0 1 07
001 E‘iﬁi i(f _ $2ls ) E Etéart |Bay (340017 Ay y, Z3?
100 ArzZy B2\ B4y, A By Zy iz, B2(¢5+)3)
Zy = E+yityivi
- 1 ,
—Ay (& +Eap)) —Ay EE T E VS s Ay y, 252 Ay, 232
Ll A? Z, A? Z, A, A, 2, A2z, Aiz,
) ‘fa=ftfz"‘fs:
Zy =224 82p2+y2y3 | Z, = E4 EL yd+ v 0d
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It immediately follows from Table (5.12), (5.10) and (5.11) that we can

1 010 100
verify Table (54) for w= I , 11001, 1001 | We treat the
1 001 010
remainder of Table (5.4) on a case by case basis,
001
For w=1| 100 [, we have
010
1+D¢C2B1
—3vy 3y 42 A
.@w,bz wCqBy Bl
Az
% .‘* iv Z4 3‘)2"2(62 )—'3\!1/2

< E (ﬂi("‘fl Eatiy  ZYPY By [—&utiyy (61 4+9D"?
" A B &+ yi gt Zy

xe(—my E)dé, dé, dE,.

Making the change of variables sending &, to &, = £, &, —&;, and computing for
Ay/BY # my |

L+aCyB 457

(5.13) ,[ 1 e((nl AzBlmz“‘“mz)é:z)dﬁz
dCzBlAz
..—.._L nlaCz mzacZBl n1A2 yq Az . -
= mi\TB el—%5— |- 1 | —m2
i 1 A, B3 B}
gives
Vg =3y C, myaC,B\ = ©
f "*A23 2B; I (n]a 2 Mmyal, s, PP SPY S NP
By B, A, _,L} ___fw(§1 +y1) Zy

XEy (_Ifl_g_ —61 Ea+iyy zj‘ﬂ’ By —cs+iy, &+yde
B Z, A2 Z,
' xe(—my &, dg,dEy o
where
1 ' : il my =ny 45/BY

‘5= nlAZ fn A
- (e(ﬁu—B% )——1)/2m( 13%2

) otherwise.
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- Note that
Hy och mzacz Bj_
ZE’ N (bl)em » (bl)e( -
5 nymz 1:M2 B, A,
B e(nlcz m, Cy nlélcz)
Cy(mod D) D,/D,y D, - D
Cg(mole)

(the summation being subject to the conditions {(C,, Dy) =(C3z, D2 DTYH =1,
with C, €, = 1{mod D,), C,C, =1(mod D, Dy 1), where D, = By, Dy = A,.
However, by Property 4.18 this sum vanishes unless n; D,/D?eZ. But in this
case, the integral (5.13) vanishes for m, # ny 4 ,/B}. Hence, we obtain the
result of Table (54).

010

When w=| 00 1 |, we obtain in a similat manner
100
_bazfy .
A A ’
k1Y n
[’ = Al IB [ 6’(( szl —m1)51)d51
by ~ba2B) 2

y }’ “E Z;amz(cg ) 3»2/2 (Bz (534'1)’1(524']’2)1/2),

. v\ g2 Z,
Ay (—& & +in 257 :
- e(—m dé,d
B%( €§+y% ( 2‘52) 52 53
and the computation for this case follows as before.

1

Finally, when w = 1 , from Proposition 3.7, Table (5.12), and

1

the above considerations, we obtain

Ze(fh ﬁ1214“"?121'}1l_”z13’21'Jr'7"’11 BI)A;hx Az"-“"zjw
. Ay 4,

for the contribution of the right-hand side of (5.10) coming from

When Y; B;+Z; C, = 1(mod 4,), then
Y,4,-Z, B, = Yy {azs By —a2244)— -7, (azaAJ—an 1)
= a5, (Y, By +Z; Cy) = azy (mod 44).
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Similarly, when Y, B,+Z,C, = 1{mod 4,), we have
Y, A1 —2Z, B, = by, (mod 4,).

After renaming B;, C;, C,, ¥;, Z;, Z; by their negatives, using the
representatives for R, given in Proposition 3.13, and setting A, = D,, A4,
= D,, we obtain the Kloosterman sum given in Table (5 A). This completes
the proof of Theorem 5.1. =

6. Spectral decomposition of Poincaré series, cuspidal contribution. Let
J%'g be two square-integrable automorphic forms for I” = SL(3 Z). We define
the inner product
——dx, dx,dx, dy, dy
(61) Sgd= [ [k ——22at2

I'\HS (yl 2)

With respect to this inner product, the Hilbert space .&?2 (I‘ \ H?) decomposes
into the direct sum

gl F\H:’l) :C@gghep F\Ha)@)fﬁz’ﬁ(F\H3)@$§%(F\IIB)

where &2 is the space spanned by cuspidal automorphlc wave forms, ¥,
is spanned by integrals of Eisenstein series, and Fr., is spanned by integrals
of the mon-trivial residues of FEisenstein series. We now describe these
spaces.

For 1 eH3, let e i=1,2,.
P Also let

..) be a complete orthonormal basis for

Po(z) = (Vol (I'\ H) ™2

“be the suitably normalized constant function.
To describe the continuous spectrum, we introduce three types of

Eisenstein series. These are associated to the three nonconjugate parabohc
subgroups of I. Namely

eSL(3, 2 ;, -

(62) Py, -

Pya= 0% = EF_
|0 % %

Firstly, the minimal parabolic Eisenstein series associated to I' ‘is

icm
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defined as
Cw 28y +sy §9F 29
(6.3) E(tisy,s) = 3yt 5 Iy
ve g\l

where f(t)l[y] = f(yt} for any f: H® — C. It is easily seen that the series on
the right-hand side of (6.3} converges absolutely and uniformly on compact
subsets of H* for Re(s;), Re(s,) > 2/3. It is also well known that Eit; 8y, 84)
has a meromorphic continuation and functional equation (cf. [17], [13],
121, {201, [8], £1D. _

Now, let w;(z) (f =1, 2, ..., z = x-+iy, y > 0) be an orthonormal basis of
Maass waveforms for S1(2, Z). Then u;(z) are characterized by the proper-
ties

u;(pz) = u;(z) for all yeSL(2, Z),

i '
(6.4) —y (~— a,)uJ (2 =@G+rhHu(z) (FeR),

dx
lu;{(2) = O(1)

Let us also fix ug = (Vol(SL(2, Z)\H?)" Y2 to have length one.
We can also define the two maximal parabolic Eisenstein series asso-
ciated to u;. They are

Eiftis) = Y iy wlg+iyllyl,

(65) yePy (\
Ej("’; sh=" Y (¥ ¥3Fu; (e +iy)IDy].

’ vePl,z\I"

The series on the right-hand side of (6.5) converge absolutely and uniformly
on compact subsets of H® provided Re(s) > 1.
For te H®, let us recall the involution

'z = w('7)" ' w(mod KZ)

where K = 0(3), Z = center of GL(3, R} consisting of scalar matrices
. 17

. In a manner similar to {2.11

and w = | ), we see that

{6.6) &mg=@wny
It is well known that E,(z; s} and EJ (t; 5) can be meromorphically continued
-and satisfy a functional equation (see [12]). The space £, is spanned by

integrals of #(t; s, s,) and Ei(v;8) (f=1,2,..)
rinatly, we consider #5%,,. Using [1] or [12] or Theorem 5.1, it can be

shown that the minimal parabolic Eisenstein series E(t; 815 5,) has polar



74 D. Bump, 8. Friedberg and D. Geldfeld

divisors at the six lines
5, =0 or 2/3,
(6.7) 5, =0 or 23,
1-s,—s,=0 or 2/3.
Then #%. is one-dimensional with basis, say, a suitable integral of

(6.8) Res E(7;8,, 83) = Eo(t; 83+%)

s1=2/3
for some constant ¢’. This is obtained by comparing the Fourier expansion
given in Theorem 5.1 (in the case ny, = n, = 0) with the Fourier expansion of
the maximal parabolic Eisenstein series £y(r; s) given in [4]. Here Ey(t; 3)
is given by (6.5) with u, = (Vol(SL(2, Z)\ H)™ "~

We mnow state Selberg’s spectral expansion for an arbitrary
de LI\ H?). We have
@0 c. ’
6.9y &)= 3 (((D, (Pj>(Pj{T)+'4T;;‘j f (B, E;{(x, 5)> E;{t; 5) ds)
j=0 Re(sy=1/2

c :
e ] (@, E(»: 81, $2) Y E(v; 51, 5,) dsy ds,
(27" Rogs 3= 1/3 Retspd=1/3

where ¢, ¢; (j=0,1,2,...) are cerfain constants.
7 Now, for Re(v,), Re(v,) > 2/3 and M = 1, the Poincaré series
2vy+v v
610 Py @y, v M= Ty 2 T e (n 2y g 20)| )
relg\l"
where n,, n, > 0 and

zy = xy +(y, /M), 2y = xz""(iJ’z/M)

lies in #2(I"\H®). The spectral decomposition (6.9} applied to the Poincaré
series (6.10) will give the meromorphic continuation in v, v, of the Poincaré
series. In the remainder of this section, we compute the cuspidal contribution
of the spectral -decomposition. :

~Accordingly, let @ be a cuspidal avtomorphic wave form for I'. If 2
denotes the algebra of differential operators acting on H* and commuting

wichPLA(E',lR), we say ¢ is of type (4, A,) if it has the same eigenvalues
1Az A
¥

as y 2 “2%2 for any partial differential operator in %. By considering
the action of the six elements of the Weyl group
1 1l [ 1 1 1
1 , 1 . 1 . 11, 11, 1
1 1 1 1 1 1
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on y?lﬂz y;ﬁuz, it can be shown that if ¢ is of type (4, A,), it must also

be of type

(A +A,—% 3—4y), G-y, A +Hd—3)
(A2, 1241 —4a).

G— 42, 34,
(1 H;Ll —’1’21 j'1)’

Let us now consider the inner product <P, a,, @ which occurs in the
spectral decomposition (6.9). By Proposition 2.1, we have

o0 0 W1 Yz
(6'11) <Pn1,n2: (p> == j. [ (Pnl,nz ))1
00 1
_ dy,d
2uybug vy+2vy - Znlnyyp+egpaM AV 0¥
i e =
o 2 (r1 ,V1)3
where
111 1 62 53 )
(pnl,nz(f)=jj'j-¢ 14 |r e(ny &y +nyy)dE dE,dEs.
000 :
1

Clearly, @, ,n, is an E-function and also an eigenfunction of type (14, 12)

" for . Since @y, ., has polynomial growth in y,, y, as y, y2 - <0, it follows

from Shalika’s multiplicity one theorem [19] that @, ,,, must be a constant
multiple of the Whittaker function

ny hy
ny T

1

Wi |

where (see [1], p. 161)

Yi¥2
Wisiag Y1
1

(6.12)

1 1 otiow ogtion . 1-54 1—8,
= z(—z—)—z [ f G(sy, 523 Ay, A){myy) (mty2) dsy dsy
g rr-:iuu o-“ico -

(a éufﬁciently large)
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and
(6.13)  G(sy, 825 4y, 43)

5o (51 +p (S1+? (Szha (Sz"'“ﬁ Sp~y
r r r
( 2 ) 2 ) 2 d 2 r 2 r 2 )
51 +5;
r( )
(a £ 1—‘21'"-2.2.2, ﬂ mllz"—il, P 2)\,14"»12""1).
Here o+ f+7 = 0 and a, B, y are permuted by the six elements of the Weyl

group.
Let us set

S — n Ry

Ay, n
(6.14) Ormy (0 = 2 My o e

hy 1y 1
Alng, n

We shall show that M must be the Fourier coefficient in the Fourier—

By iy

Whittaker expansion of ¢. That is to san (following [1], p. 65-66)

2 & A, ny) ny ny
(6.15) @(0) = Al na)
- gsrgj\rz H1Z=1 np=1 - ny Ny j'1_"12 Ry 1 gt
where
- B
T2 CD ‘A’B’C’DEZ:AD—B(Z'::{:l :
|1
71 « _
r,=<| 1 [eSL(3,2)
_ ‘ e

To deduce (6.14), we simply note that for ge I'*\I'?,

111 MRy 1£ &
Wl ] ny g V& It Je(ng &y +ny8y)dé, dE, dE,
0QGo ) 1 1

is zero unless g is the identity,
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It now follows from (6.11) that

fiy By Y1 Y2
Alny, 1p) 77
{Paynp ¥ = | §We 3, ny ¥1
BNz oo 1 1
xy?vl +\12y\:)’1 +2vy e""Zn(nlyl +n2y2)j'M.dy1 dy; .
(v y2)
Consequently
(6.16)  {Poyny @2
—— ® K K
_ A(nln nZ) i Z (—Znnl) ! (,‘"‘21”’12) 2 M_kl_k?.
nf"1+v2_1n;1+2"2~1 k1=0 k3=0 kl' k?.’
© Y1¥z2 . dv- d
. vy vy thy—2 vyt2uptky—2 Y18yl
x| Wi |- Y1 i ya =
gi[ 1tz 1 ViYa
e 33y —3v k
A, T 22—y (—2my)°
4n;1"“+vrjn;1+2v2~1 kitokmo kil k,;L!Mh*"k2

XG(2V1+V2+Ik1—'1, ¥y +2V2+k2—1; Ilr Zz).

- Here, we have used the double Mellin transform [1, p. 161]

I A
o A1rh2 ' Vi

(6.17)
— 1

Ote, §

5%““51—"526(51, S2; A1y A2).

Since the gamma function has simple poles at the non-positive integers,
we obtain from (6.13) and (6.17) the following proposition:

ProposiTION 6.1. Let ¢ be a cuspidal automorphic wave form for ' of
type (Ay, A2). Let Py s, (t; v1, v4; M) be the Poincaré series (6.10). Then the_
‘inner product (P, nq @> can be meromorphically continued in vy, v, and has

_polar divisors at the lines

Iy +27,—1—N,
2V1+V2'—1=" Il_xsz,

l—le—Iz"ﬂN,
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l—xl'”zIzWN,
vV, +2VZ‘—'1 = IZ—Il—N,
ZII‘I‘ZQ“—I—N,

where N is any nonnegative even integer.
We now diagonalize the Poincaré series by setting v, =v,, and for
simplicity we define

(6.18) Pom,(v;0) =P, (v, v 7).
Then P, ,. (v; 1) will have poles when
+d—N,
{6.19) 3v—1 =< +B—N,
+¥-N,

Cwhere a = 14, —24,, f=1,—~A;, y=24;+4;—1, and N is any nonnega-
tive integer. There will be double poles when any two of the expressions
on the right-hand side of (6.19) are equal. Let us consider when this can
happen. Since «, f, y are permuted by the six reflections of the Weyl group,
the condition

a=+f or a=d4y or f= 1ty
can only occur (modulo reflections of the Weyl group) if
Re(4,) = Re(l;) = 4.

In the special case 4, = 4, = 4, there will be a fifth order pole. We can now
assert

Ai=4, or A =21, and

Prorosimion 6.2. If @(t) is an automorphic cuspidal wave form of type
1, 4) with Fourier expansion (6.15), then {Pyynys @ With P, ., given by (6.18)
has a fifth order pole at v =4%. Moreover,

im (v =45 Py iy @5 = s Alny, ny).

v=1/3

ProprosITiON 6.3. If (1) is an automorphic cuspidal wave form of iype
(A, A) with A # % then (P, ... @) with P, .. given by (6.18) has double poles
at v=17% %—1 and a simple pole at v =%. Moreover

e _ 2z — 2
lim (r=4) Py 0 = $ ATy, 7 r(l 31) r (31 ‘) ,

v1/3 2 2
: 26X 2
L mg = S 3 =1
il_f.l;("' AV Py © WWA(HH nz)r(ﬂ*l)r(*—f"*) ,
61-2

fim d(v—(%";f))z <P’f-1”’2’ 0> = Alny, nz)r(1_3z)p(1 —231")2,

w281 9(n, ny)t=34
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ProrosmioN 6.4. If ¢(t) is an automorphic cuspidal wave form 'oj' tvpe
(D) with i#% and Re(d) =1, then (P, ... ¢> With Py ., given by
(6.18) has double poles at v=%(21+1), $(2—A—24) and simple poles at
v=14(1£(A—2D). Moreover,

lim  (v=5(1 £(A—2) (Prynyp @
v=(d Q- D3
Ang, ny)nFE 2 (H(A—Ip+(1—-1~20) 2r(i(X—I)»(l—A—2I))
= 6(n1 nz)tw-x) 2 ' i 3

im  (v—3G+2D) (Popny @0

v=+{d+27y/3

T 32— 2147 P b ] - =
Al m) 7 r(z"“‘ 1)1"(3" 1)r(2,1+,1_~1),
9(1’!1 ]12);“- 2i-1 2 2 /

im  (v=3Q2= A= 20 Py @

v 2 A= 203

=mn“““;“F(1—I—ZA)F(l—M)F{I_Mﬁﬂ
9(”1 nz)lﬂl'—l)( 2 2

7. Continuous spectrum. Let E;(z; 5) be the maximal parabolic Eisenstein
series (6.5) associated to the Maass wave form 1;j(z). If u;(z) has eigenvalue
2

é .
14} for the GL(2, R) Laplacian —y? (EE—FO_yE , then E;(t; s) will be of

the type (s—%—3%ir;, 3+%ir). Clearly, Ej(t; 9) will then be of the type
(-+%ir;, s—%~%ir). Consequently, it will be sufficient to ‘cons1der only
Ei(r; s) since a simple reflection will yield the corresponding results for
E;(z; 5). _ ‘
We now evaluate the inner product (P, n,, E;> occurring on the right-

hand side of the spectral decomposition of P, ., as in (6.9). For n, > 0,
Hq > 0, let

Ty

(7.1)

11 1 &3
HEJ L s E(mf1+n2§2)d51d§2d§3
00

[=]

ny g

= g;{Ny, Na; 5) Wﬁl.ﬁz neo T

1

where p, = s—3—3%ir;, pp =%+3ir; Here e;(n;, ny;8) is the n.th, n,th
Fourier coefficient of E;(t;s). The proof that a representation of type (7.1)
holds is almost identical to the proof of (6.14). It now foilqws from
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Proposition 2.1, (6.17) and (7.1) that
nRz Yy Yo
Yy
1

(1.2) <Pn1,n25 E; =¢i(ny, ny5)

Ot 8
Ot 8
&
[y
B
o

{n +Haya)
2vybvg vyt 2y —23_1_ylﬂ_juj:_dy1 dy'z
XYy Y2 €

(y1y2p®
2 (=2 (=2ny"
PRIV
XG2v +vat+ky 1, v 42054k, —1; Ay, I).

LTI e
. ej(nls Ha, S)ﬂ:

- 2V tva—2 v+ 2vp—~2
17v2 1 2
4ny n,

k=0 ka=0 kll

Consequently,
1
73 — $Puyougs Ei(%: 8) Ej(z; s)ds
dni Re(s)=1/2
. S S G A G
e = e S k!
~ky —k
M 1 2 .
X j 3;'(”1: Ry, 5)

Ami Re(s)=1/2
XG 2y +vatki—1, vy +2v, + ky—1; [y, Ha} Ey(t; s)ds.

Equation (7.3) gives the meromorphic continuation in vi, ¥y Of the left-
hand side of (7.3). Let us now examine where the possible poles can ocaur.
Since e;{ny, ny; s) and Ey(z; s) are holomorphic on the line Re(s) = 1/2, the
integral on the right-hand side of (7.3) converges absolutely and uniformly to
a holomorphic function of v, v, as long as G = G(2vs+vy+ky—1, v +2v,
+k;,—1; Ky, fi;) does not have a singularity on that line. We recall that

F(wl+%~§¥irj)r(wt+%-‘§—z‘rj)r(w1 +2§—1)
(74 G= 2 2 2. Jy

r(37)
o (Wi +E—in, (P h Sy (2= 251
2 3 2
where g
(7.5) Wy = 2V1+V2+k1—'1, Wa ~"-v1+2v2+k2-—-1.

Hence, singularities can only occur if Re(w,) = 0 or Re(w,) =0. In fact, (7.3)
shows that the left-hand side of (7.3) is holomorphic in v,, vy if Re{w,) > G,
Re(wz) > 0. To meromorphically continue the left-hand side of (7.3), we first
assume 0 < Re(w;) <&, 0 <Re(w,) <z for some ¢ >0 sufficiently small. By
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shifting the s-integral to the right, we pick up residues when
D Fedbwitin, dowybin, b-dw,, d+dw,.
Here §=1—s. Let us adopt the convention
R*=R*+R".
If we define
(7.6)  I(t; Vi, va; my, mg)
1

i <Pn1.n2(*; Vi, Va, M)’ Ej(*;S)>Ej(I;S)dS
AT pogsy= 12

then it follows from (7.3), (74} and the above remafks that for r; # 0 and
0 <Re(w) <eg 0 <Re(w,) <«

1
(7.7 Li(zivy, vaimy, mp) =— f <Pn1,n2= E;>E;(z; s)ds
4mi Re(s)=1/2+ 2
2—3vi—3v L3 . ko
_or i f (2ny) " ( zfl)ﬂc (RE+R5+R3+Ry)
4nf\'1+v2—2 n;1+2v2-2 kim0 kye0 k1| kz!M 1 2 .
where
(7.8)

3w, + 2ir; Wy + Wy = 2ir; wy— 2w, F 2ir;
—r r
2 2 2

Xej(nl, nz;%+ﬁ71 “T‘lrj)EJ(T, %"]‘ W1¢ir‘i),
3w2¢2irj)r (Wl +w22¢2irj)F (w1 —2»;2121‘}'_,)
2

RE = —2r($ir,-)r(

RE = ZF(iir_,-)F(
xej(hy, ny, 3 —Wy Fir) Ej(t:3— Wy Tiry),
3 i —ir —4w, —ir; Wy ~swy +ir
Fwytir; Fwy —ir; Wy —3w, —ir; I’( 2 i j)
R3=r( 2 )FC 2 )r( 2 2
o xeylm, nas H1—F) By (3 30— y),

3 ; 3w —ir. Wy~ Ew, —ir, Wy =g Wy 4 IF
FWa tir; FWo—ir; r (¥ 3w, I T( 1 EW, j)
R, = F( 2 )I’( 2 ) ( 2 2

- xey(ny, nys AW E;(t; 31+ W),
Wy =v,+2v, +k,—1.

W1 = 2V1+V2+k1—1,

Consequently (7.7) gives the meromorphic continuation of Ij{z:v,, va;

m, hy) to —% < Re(w ), —% <Re(wy). It is easily seen from (7.82) thgn: all

residues cancel in this region unless ir; is real. Using the 'bouqd 1417 > 1% (see
Selberg [18]) we obtain
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PropositioN 7.1. The integral given by (7.6) is holomorphic in the region
Re(2v, +v,) > 4, Re(v, +2vy) > §.
Remark. This clearly holds for j=0.

Finally, we consider the contribution of the spectral decomposition
of Py, (75 vy, vy) coming from the minimal parabolic Eisenstein series

E(z; sy, 55). We define
(7.9 I(t; vy, vai 1y, na)
1

= N2
(21D getsyi=1/3 Retsg)= 13

Py oy (%3 V1, va)y E(%: 51, 8200 E (75 81, 52) dsy ds,.

ny.M2

For ny,n; # 0, let

. 16 &)
{(E L4y TS s
© 1

e(ny &y +ny &) dd, di, déy

Oty
Oy

Byt
= €nymg (s1, 82) "75152 ny T
1

It then follows as before that
<Pn],n2’ E>
T e e (—2ny (—2my)"

k=0 kgm0 ki ka!

eni,nz (Sh 52) K

= 4n2\11+v2"2n\'1+2\r2—2 G(wlﬁ wZ:Sla SZ):
1 2

W1$2v1+v2+k1'f—l, W23V1+2V2+k2“1.

Consequently,

(7.10)  I(r; vy, vz 4, 1)

nznav'lwsvz o x (—2n1)k1(—2nz)k2 1

(2mi)?

= v +wyp—2 wyt2vg—2 Z
4T T om0 Kl kil

x enyny (51, 82) G(wy, wai 5y, B) E(t; 81, 53)dsy ds,.

Re(sg)= 1/3 Ro(sg)=1/3
Recall that
G(Wli W, EJ.J §2)

[ e e e e e
r{) -

B=F—F, -y=25+5—1.

Q= 1*3“1*23“2,
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Since Re(s;) =4, Re(s;) =4, we see that G(w,, w,:5,5,) can have
poles only if Re(w;) <0 or Re(w;) < 0. By shifting the contours on the
right-hand side of equatidn (7.10) we see that in the region —2/3
< Re(w,) €0, —2/3 < Re(w,) < 0 the function I{1; v, v5; ny, 1) can have
polar divisors only when w; =0 or w, = 0. Consequently, we have

ProrosirioN 7.2. The integral given by (7.9) is holomorphic in the region
Re(2v, +v,) >4, Re(vy +2v,) >4 except for possible polar divisors at the
lines

2V1+vlﬁl, V1+2V2 =1.

8. The Poincaré series associated with a Bruhat cell. In this section, we
denote

1 1
Wq = 1 s Wq =u 1 s
T .
W, = 1 , Wy = 11,
| 1 B 1
- _ =
Wy = 1 , Ws = 1
| 1 |1

We have conjectured that the zeta functions formed with the Klooster-
man sums arising from the w, and ws Bruhat cells have poles corresponding
to the cusp forms occurring in the spectral decomposition of ¥2{I'\ H). As
we have seen, this conjecture has important implications for automorphic
forms. The difficulty in supplying a proof is that the contributions of all
Bruhat cells occur together in the Fourier expansions, seemingly inextricable.

One may investigate the Bruhat decomposition from the view-point
of Minkowski reduction theory. Based on these ideas, we shall exhibit a
modified Poincaré series which in a weak sense isolates the contribution of
the w, cell. We shall show that if any cusp form of type (4,, 4;) occurs in the
spectral decomposition then this modified Poincaré series has poles among
the three lines o

Il‘l"zzz—l—“N,

2V1+V2"“1= Il—’zz—N,
1""‘211"”"12‘"!\]

for any nonnegative even integer N; in other words, the first of the two sets

of lines in Proposition 6.1. We hold this in evidence that the Kloosterman
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zeta function

id - —ay
Z SW4(m15 My, My, nZ;DhDZ)Dl 3"1D232
DI,D2=1
should have poles along the same lines.
Let © be a region in Rt xR™. Form the E-function

E® (r)={€(n:zl+nzzz) it (1, y2)ef,
() 0 if (}71:y2)¢‘Q'

Let P{ ., (T; vy, vy) be the Poincaré series formed with this E-function (cf.
(2.6)). This series is convergent for Re(v,), Re(v,} > 2/3. This function is
square-integrable but discontinuous.

Let A, (we W) be the regions given in the following table:

w Ay,
-1 —
wp = L L Fr.y221)
1
_ -
W = 1 TP 7R 1}
.1 a '
- -
wy=| 1 vzl <l
I
-1 _
Wa_'—‘L 1J =l
1
- 1 A .
Wy = 1 {prmsl, 2}
.1 d
_ -
wg=11 Wmnshyzl

Our philosophy is that if @ = A, then P;?l_,12 will in some sense isolate
the contribution of the w; cell in the Bruhat decomposition. To make this

precise, we consider the Fourier expansion. As in (5.8) the contribution of the
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w, cell is
Viya y1é2 &3
eni,nz(bl) j Ivl,sznl,nz dez J1 61
Vel \Gy, U, Dy 1
y=bywdby 1

xe(—my & —my{)dE  d,des
where now (with Dy, D, fixed) '

Doy = £(E5, &2, $i)e{Dy ) V1, y2)e ),

yi and y; being given in Table (5.12). Now, we assert that as y,, y, — o0,
.E%j will expand to become all of .@wj if j = i; otherwise, it will shrink away.
Indeed we have

ProrostrionN 8.1. Let Q = A, and, for fixed w;, fixed Dy, D,, let .02):%.
be as above. Let K. be compact. If y,, ¥, are sufficiently large, then

K9,
g
Kna, = @

i j=i

if j#i.

l'hus the contribution of the single Bruhat cell will predominate.
Actually, since we are mainly concerned with separating the w, contri-

butions from those of w, and ws, we may just as easily take Q2 = {y, > 1}
=A4,, VA, hy,. This region is easier to deal with since it is only defined by

one inequality. We shall show that P2

n1.n has poles corresponding to cusp forms
in #2(Ir\HY. '

Tueorem 8.2, Let ¢ be a cuspidal automorphic wave form for I' of type
(vi, v2). Let Q = {y, = 1}. The inner product <Pr?1-'=z’ > can be meromorphi-

cally continued in (vy, v,) and has polar divisors at the lines
Il+212—'1"‘2N,

:t.-l - Iz - ZN, '
124, A, —2N
where N is any nonnegative even integer.

Proof. The same as Proposition 6.1, except that instead of the integral
(6.17) we have the Mellin transform restricted to the region €. Indeed, if
o = 1—111—2/12, B o }.2—“11, ¥y = 2111"}"112"“1 then

2\’1""“’2'—1 =

YiYa

o ~1 uy-14y1dys’
J. ‘ Wzl,zz ¥1 i =2
10

1 ’J’1 Y2
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36
_ %r(ﬂl;a)r(ﬂlgﬁ)r (ulzﬂ')
1 ”+f“‘r(s;a)r (S;ﬁ)l" (S;?’)r(m;s

-1
. JRCETE R
27“ G—im
This may be deduced from (6.12) by Mellin inversion. The poles may be read
Note that the Mellin-

off by taking uy =2vi+v,~1, gy =1—v, ~2y,.
Barnes integral on the right is entire.

Appendix

Estimation of SL(3, Z} Kloosterman sums by Michael Larsen

Let 8{m,, n;, ny: D{, D;) be the SL(3, Z) Kloosterman sum (4.3). We

have the following estimate.

THeoRrREM 1.

‘S(’"la ny, fa; Dy, D,)f € min (T (D) (ng, Dz/DL)Diqa‘ (D3} (m,, "i1a D1JD1)

where
log3
= d = i
% iog 2. an 1(n) ‘% 1
‘ dzt

Proof. By Property 4.15, both sides of the inequality are multiplicative,
so it suffices to consider the case D) = p* D, = p", a < b and P prime. Since

S(my, ny, ny; Dy, D)) = PzH!S(mI [t y P—ka Ry P-_:i Dypt, D, p™*)

pjl(nz, D,/Dy)

whenever
and

Pkl(mh ny, D)

we may assume Dy =1, Dy, = D, or p¥(my, n)n,.
The first possibility is trivial; the second is covered by Property 4.17,

For the third, we introduce the notation '

Fk) ={0<n< p¥, neZ| (n, p)= 1),

l) +f'l1 C.l C2.+ (5] C‘-Z

If plny and a > 1, we have
P (my (ot kp™
ph~ﬂ

. b
S(my,np, ny p" pb) = -~
. Ciedla=1) k=1 P

Cype by |
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where C,C, = 1(mod P, C,C, = 1(mod p*). This equals

P2l imyk ~ .
1) e(T)S(mi, m/p, n; P, PPN =0,
k=0
since p4m;. When a = 1, one sees similarly that the sum is either 0 or p.
Likewise, if pjm,, the sum S(m,, ny, ny; p°, p’) is equal to 0 or p. ‘
We can therefore assume, without loss of generality, that ptm, ny n,,
and thus by Property 4.16 that D, = p°, D, =p?*. =
When a =1, since e((m, C;+n, C; Cy+n, C,)/p) depends only on the
image of C, under the map Z/p>Z — Z/pZ, it follows that
my Cy+n, C, Cy+ny ("?2)
14

o 2y _
S(mlv Ry, H23 PnP)—P B(
Cp.Cne &)

where €, C, = C,C, = 1{mod p). B ~
Now, define x =m; Cy, y=n,C, C,, z=n,C, and more generally
z{(x, y} =mynyny x~ 1y~ (mod pf).

In this notation, the above sum is

P

x,y,zer

. (x+y+z)
p

xypz=mynqiny

which by a theorem of Deligne [3] is of magnitude no greater than 3p®. Since
3p* =1(pf* D} =1(p*) D,

we have the theorem in this case.

More generally,
2,

X+ y+zix,
S=S(ml7 Ny, Mo, Pa: pza)____pd ( Y ( y))
x,ye(a)

ptl

To compute this for a > 1, we use the congruence
(x+rpfy~1 = x71—rx"2 4 r2x7 3 p¥ (mod p*Y)

and its consequence

(A1} z(c+rpk y+sp% _ o

= z(x, YY1 —=0x"" sy Y 2 x 2 hrsx~ y~ 4 5% =5 p™)(mod pPH).
1HLSJ/“‘)[J")

When a = 2k,
) PO et rp by Ptz (x, ¥)—z(x, P rxT
§=p 2 e 2k
xye k) r=0 s=0 P
N X+y+2z(x, y)
=p . € ka :
x,ye Pk
=y EZJ(.;}‘)} n!md ]
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The last summation has only one term for each solution to
x* =my ny ny(mod p),

an equation which has no more than 3 roots for any pair (p, k). This fact
follows from Hensels lemma when p # 3 and the fact that Z/3Z@PZ/3Z is
never a subgroup of (Z/3* Z)*. Consequently

S| < 3p* < min(c (D) D, 1(D3) Dy).
In the remaining case a = 2k+1,

-1 ~1 p"—ll -1
. x+y+z r(l—zx"1 (s(lmzy ))
S = LI AN T b A4
? x,ye.&"‘z(:k-é-)l)e( P )r;—-zo e( r )s:zo ¢ 7

7= 2{x,¥,

- - fx+y+z
=p2n 1 Z e( . )
xye Fk+1) b4

X =y Ez(modp")

a— X+y+z
x=ye k) pa

x Ez(x,x)(modpk)

X*’il ”ii . (rp"+sp"+z(x+arp", y+sp")—~z>
r=0 s=0 14
- X+ y+z
— pe-t 5 e( y )
x=yeF k) lf

x =z(x,x)(mod p¥)

Pf Pil . ((1 mzx”);‘tgl—zy‘l)s)e(x'l(r2+rs+s2))
r=0s5=0 P

the last equation coming from (A.1).
Since x =y = z(mod p*) the inner sum above can be rewritten

T, - "’2":1 ”il . (x‘l(r2+rs+sz—ArwAs))

r=0 2=0 P
for some A.

If p 46, setting u = (r+s)/2—A4/3, v = (r—s)/2, this becomes

_“x—13“1A2 p—1 3x—1u2 r—1 x-»1vz
e et
P < Ju=0 p v=0 14
This is a product of two Gauss sums and a root of unity, and is, therefore, of

magnitude p.
For p|6, we verify by cases that

2 if
< .
mi<i’ s
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Thus, in all cases,

This

(1]
[2]
3]
[4]
ts]
(6]

71
(8]

[9
[10]
o1
12
[13]
[14]
[15]
[16]
(17
[18)

119]

(201

[21]

S| < 3p% 3

completes the proof of the theorem.

< 3./3p™ < min(x(Dy D2, (D) D,).
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