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The aim of this paper is to extend the results of the previous paper of
k

this series concerning the reducibility of ag+ Y. o;x™ over Qfag, ..., %) 1o

= ,
the case, where Qfa,, -.., o) is & transcendcn{al extension of @. In order to
do this we have to establish first a result about roots of unity, which seems
of independent interest. L. Rédei [3] and H. B. Mann [2]} considered
representations of 0 by sums of roots of unity with rational coefficients, the
present writer [4] and J. H. Loxton [1] considered such representations of
an arbitrary algebraic number. Here we prove a theorem which generalizes
all these theorems in their qualitative’ form.

Tueorem 1. There exists a function C(d, k): N* =R with the following
property. If K is an extension of Q of degree at most d, ay, a1, ..., a €K, {y
is a primitive root of unity of order N, (N, py, ..., p) =1 and

k
e8] aot Y, a(x =0,
=1

then either there is a non-empty set I ={1,2, ..., k} such that

Z a; H=0

is!
or

N <Cd, k.

The proof of this theorem will be conducted by the method of [4],
although to obtain a good explicit value of C(d, k) the method of [1] seems
more appropriate, _ :

Let us denote for a given polynomial f&C[x] by Kf(x) the polynomial
£ () deprived of all its factors x—{, where { is 0 or a root of unity. Since all
conjugates of a root of unity are also such roots, the coefficients of Kf (x)
belong to the field generated by the coefficients of f.

Using Theorem 1 we shall obtain trom the results of [6] the following
theorems. ' '
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TueorREM 2. Let k> 1 and ay, aq, ..., 0, be non-zero complex num-
bers such that age Ky = Qla /fag, ..., ay/ay). The number of integer vectors
m=[n, Ny, ..., m] such that O=no<m<..<nm <N (N23) and

%

K(ag+ Y. a;x7) is reducible over K, is less than
j=1

-8 a0
{loglog N)?

a, and for k <6 the logarithmic

where C{a)e R depends only on ay, ay, ...,
Jactors can be omirted.

THeOREM 3. Let S be a set of positive integers with the counting function
S(x)=Q(x'"Y) for every &>0. If vectors [ay, ..., ay]e C**1 (1 <igh)
satisfy for each i < h the conditions

(1) tio# 0 and a;#0 for at least two j >0
and
(i) t10€ Qa /o, ..., ayao) = K

then there exist infinitely many vectors [ny, ..., n] such that

meS (1<j<k), nm<n<..<n

and for all i < h

k
K(ao+ Y ayx”) is irreducible over K,.

=1
- Rem. arks. 1. Since every finitely generated field of characteristic 0 is
1somorphic to a subfield of C, the complex numbers 4, ..., a, in Theorem 2
and g, ..., @ in Theorem 3 can be replaced by e]ements of any field
of characteristic 0.

2. It is clear that if z a; =0 for some i<
=0

“h we cannot require in

Theorem 3 the irreducibility of a4+ Z ay x,
At the end of the paper we glvc an example showing that the said

1rredu01b111ty cannot be claimed even if Z ay# 0 for all i h,
=0
The proofs of the above theorems are based on several lemmata. The
proof of Theorem 1 has been simplified by J. Browkin.

Lemma 1. For all positive integers hand N>
qarlsfymg the condztmns

3 there exists an integer D

- 1<D<(log N
(iD+1, Ny=1 for i=1,2 ..,k
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Proof, see [4], Lemma 1. :

LemmA 2. There exist functions Ci(g,1): N*—R (i=1,2) non de-
creasing with respect of each of the variables and with the following property.
For every 121, N3 and every subgroup G of (Z/NZ)* of index g there
exist positive integers A and B such that

@) max {4, B} <C,(g, /)(log NyFzed
and
3) A+ BjieG mod N (j=0,1,...,1).

Proof. In virtue of van der Waerden's theorem there exists a number
W(g, 1) with the following property: if all positive integers not exceeding
W(g, 1) are partitioned into g classes then at least ome class contains an

arithmetic progression of I+1 terms.
By Lemma 1 there exists an integer D satisfying the conditions

“) 1 <D< log N)ZO(W(QJ)— n,
(5) (D+1,N)=1 for i=1,2,..., W(g, -1

The condition (5} is clearly satisfied also for i =0. Let

@Ngy® = () 1,

where H, are cosets with respect to G and let us assign a positive integer
i< Wg,!)totheclass 4; (1 €i<g)if (i—1)D+1€H;mod N. By the choice
of W(g,!) at least one of the classes A4;, say A,, contains an arithmetic
progression of I+1 terms a+bj (j=0,1,..., ), where

(6) ' 1<a<a+bl<Wig, ).
Since a+bjed,, we have '
(7 (a+bj—1)D+leH,,mod N (=0,1,..1

and in particular
{a—1)D+1eH,mod N.
Th-e cosets H; form a group of order g, hence
{(a—1)D+ i)g—leﬂ,‘,“mod N.
This together with (7) gives
((a=1)D+1)"" '{(a+bj~1)D+1)eG mod N U 0,1,...,0
and the condition (3) is satisfied with
= (@—1)D+1¥, B={a—1D+1f""bD.
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Using (4) and (6) we verify that (2) holds with
Cilg, h=Wig, 1y, Calg. 1)=20gW(g, f)

Lemma 3. Let fi(xy,....,X,) (1<j<m be polynomials of degrees

My, M, ..., W, respectively, with coefficients in a field K, c C. If
.fj(él:'--: én)=0 (1 g.]\‘(-»n)
and
a(fl: “':j;:)
e e &) #ED
a(xla'“,x")(gln ,€)¢
then [K, (&, .., &) K< mm, .. m,

Proof, see [4], Lemma 2 with a proof due to H, Davenport.

Proof of Theorem 1. Let us consider the eguation (1) assuming
ek (0<i<h), [K:Q1<d, N23, (N, py, ..., pd=1L.

Let G be the Galois group of K({y) over K. G can clearly be
represented as a subgroup of (Z/NZ)*. For its index g, we have the
inequality

foGy:01 _  [K:@Q]

9=LZIND*: 0] = e Ty = TR 0

<[K:.Q]<d.

In virtue of Lemma 2 there exist positive integers 4 and B such that

8) max {A, B) < C,(d, k—1)(log N)*24*™ "
and
©) A+BieGmod N (j=0,1,..., k—1).

Among the numbers p; let there be exactly » that are distinct mod N,
= N/(N, B). By a suitable permutation of the terms of (1) we can achieve

t_hat Pygs Psya --os Py, are all distinct mod Ny, 0=15, <8, <... <s, =k and
(10) p=pomod Ny if s,y <i<s, (1<v<n).

Let us choose intégers gy, such that

(11) y=p,mod Ny, (g, N)={p,, N) (1<€v<n).

It follows from elementary congruence considerations that such choice is
possible.

We write eguation (1) in the form

12 ot Y INS, =0,
wal
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where n < k,

Sy

S,= &

=gy +1

o ghT d<v<n).

By (9) {(#*? is for all nonnegative j <k a conjugate of {y. By (10} and (11)

C(]::i “aATBl C(Npl g4

(Sv-I <i s Sv)'

Substituting {4"% for {y in (12) we get

ao+Zc"“"’“’” S,=0 (0<j<n),

where

R

S= X

i=sy,_+1

i qd
oty M e K (L)

is a conjugate of S,.
We take in Lemma 3

Gy, o, x) =wo+ 3. X3RS (1<),
: v=1
K =K({{g, &=(y (U<vsn.
Hence
S(fys - )
13) (. -,6.,}
( ) a( P )( 1
= H(A-f—B] B)HS’ e | I (-t
I1€p<v<n
If S, =0 for some v<n thens also
Z aiﬁvﬁ =Sv=0
i=sv_1+l

and the theorem holds with = {s,_,-+1,...,5,].

Il S, # 0 for all v <n, then by (13) and the choice of ¢4, we have

015 i )
am(fu o Ea) # O

Therefore, by Leroma 3 and (8)

w1

(14} [K( ?v’, Fes O K] < [K(Le): K]H (A+Bj)

<n!max {4, B}"“’1 <

<KICy(d, k=1 (log N)

i k+1
< k!max {4, B}
e+ 1}Cy{d.k— L}
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On the other hand, by (10) and (11)

(Nn q&')m(le psv) =(le psv_1+15 R ] psv) (1 = VS;H),

hence

(N, ‘h, RS q»)=(N1: pl: LR Pk)zl

and
K GF - G K] =[K(LW: K]
K QUEMILO N : €] S (P(N).

B [K:Q] T d

It follows now from (14) that
P(N) < k1dC, (d, k— 1)+ (log N)

Since for N = 1 we have ¢(N) > %\/ﬁ it follows that' N < C(d, k).for a suitable
function C(d, k) and the proof is complete.

(k+1)Co{d .k~ 1)

k
Lemma 4. Let oy, ..., o, be non-zero algebraic numbers. If ag+ Y. a; X
i=1

has {y as a multiple zero then there is a linear relation

k
Z }',—ni=0,
i=1

where ; are integers, 0 < max |y < Co(a) and Co(a)e R depends only on
1<igk
Ly ooy Ol

Proof Let w,, ..., o, be an integral basis of the field K — Glog, ..., o)
and let A4 be a positive integer such that Ax, are algebraic integers

‘ k
(0 <i < k). We shall express C, (&) in terms of o,’s and Ao’s. If o -+ Z a x"

has {y as a multiple zero we get by differentiation =l

!
"
2 umiy=0.
i=1

Ift S be a subset of {1,2,..., k! irreducible with respect to the property
that : ‘

e
z am{y = 0.
icS

We may assume without loss of -generality that 1e8. Since

(15) . . 0:1 n1+ Z aini ;5"'?11 = 0’
: EeSii}
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it follows from Theorem 1 that cither

N

(16) No = (N, g..c.sd.(ni—"l))

< Cls, k—1)

or there exists a mon-empty subset I of §\{1} such that
lei H; ’;\;-"1 = (),
iel
However in the latter case
a1n1+ Z ainfﬁﬁ_"l“»——()
e S\[INT
and

Z 0 1y gg =-0:

ieS\I

- contrary to the choice of S. Therefore, (16) holds. Taking the trace from

K{{y,) to K we get from (15) |
a7 [K({ngh: Klayny + Y oanTey ™M =0

feS\1}
The numbers Ao, Tr(y '} are algebraic integers. Hence for suitable b, e Z
we have

(18) Ay Ty ™) = ¥ byo, (i€5).
' r=1

Passing to the conjugaies with respect to Q and applying the Cramer
formulae we get

(19) byl < 7 Al T @ (max lo ]y,

1€r€s

where for an algebraic number « with conjugates a, ..., o

[al = max o).
1€i<d

However, by (16) _
(20) [Tr@n 0] < [K(lwy): K1 € @{No) < Cls, k—1).
Substituting (18) into (17} we get

z n; Z bira)r m O:

ie§ r=1
hence

Z wrznibir':()

r=1 ieS8
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and since @, ..., @, are linearly independent over

(21) Znib,-,.=0 (1-'5;7’%5)
ie$
Taking
Co(@) = 5% 4 max e} C (s, k~1){ max faT,])s_l

0=igk 1€psy

we get from (19), (20} and (21) the assertion of the lemma unless b, = 0 for
all ie8 and all r < 5. However in that case we get for i =1 from (18}

Aoy [K (L) - K] =0

contrary to the assumption that o = 0.
a, such
numbers

LEMMA 5. For every k+1 non-zero complex numbers ag, ...,
that age Ky = OQla/fay, ..., ayfa,) there exist k+1 algebraic

k
<n, and K(Y a;x")

i={

Blgs -.on Bp—1, O =1 such that if 0=mny, <ng <...

k
K(Y o;x™) s
i=0

o Q4— 1) OF there is a linear relation

is  reducible over K, then either reducible  over

K§ = Qlay, ..

@) 5 i =0,

=1
where vy, are integers,
(23) 0 < max jyl <

max Ci(@) and C,(a)eR depends only on a,, ay, ..., a.

Remark. Note that K¥ is not the set of invertible elements of K;.

Proof. Let by, ..., b, be a transcendence basis for Ky, b = [b,, ..., b,]
and let us choose for Kg/Q(b ) a generator & of degree d, integral over Q[b]
{(such choice is always poss1ble) By Theorem 7 of Chapter V of [7] the
integral closure of Q[b] in K, is contained in a certain Q[h]-module
[¥i, ..., y4]- Let us choose D(b) so that

(24) ~ D(heQ[b]\ {0},

(25) Db ye Q[b, 6]
We have q,e Ky (0<i<k). Let

(I<i<d).

Ai(b, )
2 ;= i
(26) =g O<i<k),
where _ .
(27) A0, (0<i<k),

BeQ[51\ {0}. '

F
- (29) f=g
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Clearly
Ko = Qfag/ay, ..., a1/
Let lurther
Dao/ay, -, G- 1/a)
§ = , ¥ y e Gy ) #£ 0,
(28) T(ag/ak, -.-,ak_l/ak) (QO/ak k 1/ k)?é
where
P, PeQxp, --s %11

Let us denote by M the least common multiple of all positive integers less
than C(d, k—1), by k, the field of all algebraic numbers contained in K, and
let feko(h, {H)[f] be the minimal polynomial of § over ko(b, {u),

G ek (Lh) [B1V {0},
where Fely({y)[b, t] is irreducible over ky({.).

For every subset S of !0, 1,...,k}], every positive integer N <
C(d, k—1) and every function p: S— {0,1,..., N—1} we have either

F|3 AP
i8S
or
(Z A Cp(r
ied
In the latter case the resultant of the polynormals F and 3 A; %" with

eS8

respect to f, which we denote by R (S, N, p>(b) is different from 0. Since by
(26) and (27)

A (b, ) = a B(B) # 0

and by (28)
Y (do/ts < -s G 1/ ) # 0

A A
the resultant of F and of A“““"P( AO .., koL
k k

denoted by Rg(b), is also different from O.
Let us choose an integer vector b* = [bf, ...,

) with respect to ¢, to be

b*] such that

NG R ] RS, N, po (%) #0.

R{SN.pY #0

(30) B D
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Let us take for 6* any zero of F(b*, t). Then

(31 [QFY: Q1< [Qh. 0):Q(h)] =
Also

A b*, %0 (0<i<h),
since otherwise we should have

<|Ija L, 0)(h*) =

and by (30)
R 05 =0,
contrary to the assumption g; ¢ 0. Let us set
(32) o= j;((l;;:j?)_:)) O<i<k), a=[eg, ..., % 1]
The numbers «, are non-zero and algebraic, o = 1;
33) K3 = Q@) = (0%,

‘We proceed to show that the %’s have the property asserted in the lemma.
To this end we shall show first that §*e K§. Indeed, by (26) and (28)

Aolh,0) A (O (Ao(b,f)) Ao (b, 0)\
W(Ak(b,ea"“’ Ak(b,a)) NGB8 A, B )‘O

hence in view of (29) and of the irreducibility of F over k(L)

A A, _ A A
FAm'\x{dEg(D ,deg'¥F) (ﬂp ( o . 2t 1 ¢ (—0, e oL
l Ak Ak Ak ’ Ak i

where the divisibility holds in the ring k;) (Ex) [b, ]. Substituting b*, 9* for b,
t respectively we get by (32)

6% Y (0)— D (@) =

If we had ¥(a)=0 it would follow from F(h* 0% =
‘contrary to (30). Thus ¥(a) % 0 and

Dla)
q}(a)e Ko.

0 that Rp(d*) =0

(34) o =
k i .

I K(Y a,x") is reducible over K, then
i=0

%
(35) Y 4 x" =a, Po(x) Py (x) Py (x),
_ . i=0 _

icm
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where

(36) Pq, Py, PreKo[x], KPy(x)=1, KP,(x)=P,(x), degP, >0

(v=1,2) and P, are monic.
By (26)

k 2

Y b, 0) A (b, O X" = A, (b, 6 T] P,(x)

i={ v=10
hence

2

_ degP,, X
= 11 4. 0) (Ak 5. 9)) |

The polynomial on the left-hand side and the three factors on the right-hand
side are monic. In virtue of a theorem of Kronecker (see [5], Theorem 10, p.
48) the coefficients of the factors are integral over the ring generated over Z
by the coefficients of the product, hence they are integral over the ring
Q1h, 9], Since 0 has been chosen integral over Q[b] we get that the

coefficients of
degP X
A8, 9 (Ak(b, 9))

are integral over Q[h]. By (25) it follows that

(b, ) A (b, BT T

u'[\/] -

degP‘, o~
D(b) A, (b, 6" P, (Ak(b 3})59[5 B.x] (O<ve?)
and thus
: R,(b, 90, x)
37 Py(x) = S
e S Db A6, 07
where
(3%) R,eQ[b, 1, ?c] 0=gv<2).

It lollows from (26), (35) and (37) that

L .
(D3 A:kh ! Z A,' X"i—RO R1 R2)|r=g = 0
=0

In view of (24}, (27) and (38) the polynomial in the parenthesis belongs to
Q[b, t, x]. From (29) and the irreducibility of F over kg ({,,) it follows that

FID A%~ ‘2 A x"~RyR, R;,

i=

where the d1v1sxb1hty holds in the ring ko (£ [b t, x]. Substituting b*, £* for
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b, t respectively, we get in view of (32)

k 2
D% A (b*, 0% Y o, x"— [] R,(b*, 0%, x) =0,
i=0

v=10
hence
k Z
(39) Y oax H P¥(x),
i=0 V=
where
R, (b*, 0%,
(40) P¥(x) = ( x)deg}, 0<v<2),
D) A (b, 6%)
and thus
deg PY<deg P, (0Sv<2).
Since
z deg P¥ =p, = Z deg P,
v=0 ya
it follows that
deg P¥=deg P, (0<v<2).

Moreover, by (34) P¥c K% [x]. To complete the proof of the lemma it sufﬁces
to show that either

KPE() =PI (=1,2)
or the conditions (22) and {23) hold. To this end we show .ﬁrst that
(1) P =Po(n

By (36) the coefficients of Py(x) are algebraic, hence Po(xyekyfx]-
By (37)

(D(B) A, (5, 0" Py ()= Ry (b, 7, )],y = 0.

By (24), (27) and (38) the polynomial in the parenthesis belongs to
ko[b, t, x]. From (29) and the irreducibility of F over ko (ao) it follows that
FID (B) Ay (b, **"° Py (x)~ Ro (b, , ),
where the divisibility holds in the ring ko(Cp) [, ¢, x]. Substltutmg b*, 6* for

h. t respectively we get
D(b*) A, (b*, 9*)““”01)0@) —Ry(b*, 0%, x) =

and (40) implies (41). :
Since 25 %0 we have by (39) P*(O) #0 (0<v<2 hence if
KP* (x) # P¥(x) (v =1 or 2) it follows that for a certain root of unity {y we

Reducib-iliry of lacynary polynomials, VIl 103
have
(42) P¥y =0 (v=1or 2).
y (39)
k
Z % C;.’L =0
i=0

and there is a decomposition

(43) (0,1, . kb= U 1,

where I, are non-emply disjoint sets such that
(44) Yauly=0 (I<sp<m.
iGI‘u .
We choose a decomposition with the maximal m and for all g < m we choose

an clement i, in I,. Since by (31) and (33) [K%:0] <d it follows from
Theorem 1 that putting

d, = (N, gcd.(m~ ))

ie I,u
we have

45) N, =§T—<C(d, k a<p<m).

The number C,J‘ is a primitive root of unity of order N,, we denote it
by CN 1t follows from (44) that

(n;— nlﬂ),ld

Zaty =0
hence by (32) B o
T oAb, 00y, ¢ =0,
&l
Since F(b*, 0%) = 0 we l:a:e

R, Ny pu(b%) =0
where p, (i) is defined for iel, as the residue mod N, of (rz,:——rz,-u)/dﬂ. In view
of (30) this implies
' R, N, p.> =0,

“thus

(F, ¥ Ailw, ™21

el

However by (45) and the remark after (29), the last formula implies
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(n;—n; }d
1?|§: jiiCNﬁ “ ﬂ)
iely,
where the divisibility holds in the ring kg () [b, £]. Substituting ¢ for ¢ we
get by (26)

ni— niﬂ)ld“

2 CNM = 0.
islu
Hence
Z a,-C',{f=0 (l<spusm
ieI_u
and by (43)
k
z a; [y =

i=0

It follows from (35) and (36) that Po{{y) = 0, hence by (41)
PE(Lw) =0.

k
By (39) and (42) ¢y is a multiple zero of 3, & x™. The conditions (22) and (23)
i=0
follow now from Lemma 4 with C;(a) = Cy(x, 1).
Proof of Theorem 2. Let ay, ..
numbers the existence of which is asserted in Lemma 3, ak= [otgy < oy 0tp—¢].- Int

virtue of that lemma if 0 =ny <n; <...<mn and K(3 a;x7) is reducible
=t

&
over K, then either K( Y a;x") is reducible over K§ = Q(og, ..., a1} or
. et
the conditions (22) and (23) hold. Since K% = Qo /ag, ..., 0p/ag), 1n virtue of

Theorem 1 of [6] the number of integer vectors [ny, ..., n,] satisfying
(46) O<n, <...<n <N,

for which the first possibility holds is for N = 3 less than

_ming, 61 (log N}‘w
X gy el
Cla, N (loglog N

where for k < 6 the logarithmic factors can be omitted. On the other hand,
the nomber of vectors in question for which the conditions (22) and (23) hold
with % # 0, vi41 =%+2=...= % =0 does not exceed

2C, () (2€, (@) + 1) " F VR L,

since the coordinates #; for j # i can be chosen in at most N ways each and

o1, 0 =1 be k+1 algebraic’

icm
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then », in at most

20, (@ (2C, (@) +1) "
ways. Since
min {k, 6} <
2k—1)
and
k o .
220 (@20 (@+1) " < (2C, (@) +1,
i=1
Theorem 2 holds with )
Cla) = Ca, 1)+{2C, (a)+ 1)

min {k, 6}
‘ 3k(k—1)
there exists a constant (k) > 0 and infinitely many integers N such that

S(N) > y(kyN1~2

Therefore, the number of vectors [n,, ..., ] such that meS{1<j<k) .and

Proofl of Theorem 3. By the assumption about S for ¢ =

47 O=my<n <.,.<m<N
exceeds

(RN 5, (k) N

kThe. number of vectors [ny, ..., m]eZ* such that (47) holds and

K( ZD a;;x) is reducible over K; is by Theorem 2 less than
=

min{l;, 6} (log N)1© _

= T e N

Us = C(a)N (loglog N)® '

where a,eC"' " is the vector obtained from {a, ..., a,] by leaving out all

coordinates equal to 0 and the factor N° ™" reflects the free choice of n; for
all j with iy = 0.

Further, by Theorem 2 of [6] the number of vectors [my, ..., mJeZ¥
k

such that (47) holds and K(} &;x")e K, is less than

i=0
b+ 1

¥ = NN = gy ne ]

Since by the assumption [ > 2 for all i< h and 2<I<k implies

min [k, 6) min {k, 6
= 4 > ek, ;%_.L_.’__f
2(k—1) { J 2(k—1)

max {I, 81
23~ 1)

! k
2 -
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we have for N large enough
h
7L N2 3 (U + W)
i=1

and the theorem follows.
ExamrLe. Take k=2, k=3;
i—j=1,

2 i
AR T
We assert that for every choice of n,;, ny, where 0 <n; <n, at least one of
) .
the polynomials f;{x) = o+ 3, a;x " (1 <i < 3) is reducible over Q. Indeed,
=1

let (ny, ny) = d, n; =dm; (j =1, 2). We cannot have m; =m, =0 mod 2.

If my =1, my =1 mod 2, then x*+1|f, (x);

if my =1, my=0mod 2 then x*+1|f,(x);

if my =0, my =1 mod 2, then x*+1|f;(x).
Since deg f; = n, > d, the claim follows.

Note added in proof. U. Zaaniér in the paper On the lineur dependence gf roots of unity
over finite extensions of Q, due to appear in Acta Arithmetica, vol. 52, gives the lollowing bound for
Cid. k)

t{d)d. k
dk) ——
C(d, k) < exp (c ol log( )logk.)’

where ¢ is an absolute constant and t(d) the number of divisors of d.
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